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Abstract

This paper introduces an expectation-maximization (EM) algorithm for image restoration (deconvo-

lution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by

promoting a reconstruction with low-complexity, expressed in the wavelet coeÆcients, taking advantage

of the well known sparsity of wavelet representations. Previous works have investigated wavelet-based

restoration but, except for certain special cases, the resulting criteria are solved approximately or require

demanding optimization methods. The EM algorithm herein proposed combines the eÆcient image rep-

resentation o�ered by the discrete wavelet transform (DWT) with the diagonalization of the convolution

operator obtained in the Fourier domain. Thus, it is the �rst general-purpose approach to wavelet-

based image restoration with computational complexity comparable to that of standard wavelet denoising

schemes or of frequency domain deconvolution methods. The algorithm alternates between an E-step

based on the fast Fourier transform (FFT) and a DWT-based M-step, resulting in an eÆcient iterative

process requiring O(N logN) operations per iteration. The convergence behavior of the algorithm is

investigated, and it is shown that under mild conditions the algorithm converges to a globally optimal

restoration. Moreover, our new approach performs competitively with, in some cases better than, the best

existing methods in benchmark tests.
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I. Introduction

Wavelet-based methods had an important impact on the �eld of image processing, especially

in coding and denoising. Their success is supported on the fact that the wavelet transforms of

images tend to be sparse (i.e., most of the wavelet coeÆcients are close to zero). This implies

that image approximations based on a small subset of wavelets are typically very accurate,

which is a key to wavelet-based compression. The good performance of wavelet-based denoising

is also intimately related to the approximation capabilities of wavelets. Thus, the conventional

wisdom is that wavelet representations that provide good approximations will also perform well

in estimation problems [23].

Image deconvolution is a more challenging problem than denoising. This is a classic, well-

studied image processing task [1], but applying wavelets has proved to be a challenging problem.

Deconvolution is most easily dealt with (at least computationally) in the Fourier domain. How-

ever, image modelling (thus denoising) is best handled in the wavelet domain; here lies the

problem. Convolution operators are generally quite diÆcult to represent in the wavelet domain,

unlike the simple diagonalization obtained in the Fourier domain. This naturally suggests the

possibility of combining Fourier-based deconvolution and wavelet-based denoising, and several

ad hoc proposals for this sort of combination have appeared in the literature.

In this paper we formally develop an image deconvolution algorithm based on a maximum

penalized likelihood estimator (MPLE). The MPLE cannot be computed in closed-form, and so

we propose an expectation-maximization (EM) algorithm to numerically compute it. The result

is an EM iterative deconvolution algorithm which alternates between the Fourier and wavelet

domains. We compare our results with state-of-the-art methods in benchmark problems and show

that it performs competitively, sometimes better, in terms of the SNR improvement achieved.

II. Problem Formulation

The goal of image restoration is to recover an original image x from a degraded (or imperfect)

observed version y [1]. In this paper, x and y will denote vectors containing all the image
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pixel values, after some (e.g., lexicographic) ordering. Let Nx and Ny be the dimensionality of

vectors x and y, respectively. The class of observations/degradations considered in this paper is

described by the standard \linear observation plus Gaussian noise" model:

y = Hx+ n: (1)

In (1), H denotes the (linear) observation operator (i.e., a Ny�Nx matrix), and n is a sample of

a zero-mean white Gaussian noise process with variance �2; that is, p(n) = N (nj0; �2I), where

N (gj�;�) denotes a multivariate Gaussian density with mean � and covariance �, evaluated

at g, and I is an identity matrix. Typical observation mechanisms which are adequately ap-

proximated by (1) include: optical blur, motion blur, tomographic projections, refraction and/or

multipath e�ects (e.g., in underwater imaging), electronic noise, photoelectric noise.

More speci�cally, in this paper we are interested in problems where H models space-invariant

periodic convolutions in the original image domain. This class of problems are usually termed

image deconvolution or image restoration. The corresponding matrix H is then square (with

Nx = Ny = N) block-circulant and can be diagonalized by the 2D discrete Fourier transform

(DFT):

H = U
H
DU: (2)

In the above equation,U is the matrix that represents the 2D discrete Fourier transform,UH = U

is its inverse (since U is a unitary matrix, that is, UUH = U
H
U = I, where (�)H denotes conju-

gate transpose), and D is a diagonal matrix containing the DFT coeÆcients of the convolution

operator represented byH. This means that multiplication byH can be performed in the discrete

Fourier domain with a simple point-wise multiplication (recall that D is diagonal)

Hx = U
H
DUx = U

H
Dex;

where ex = Ux denotes the DFT of x.

If matrix H is not block-circulant, but just block-Toeplitz, it is possible to embed the non-

periodic convolution that it represents in a larger periodic convolution and still work in the DFT
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domain [16]. Using this technique, all the results and statements made in this paper concerning

circulant observation matrices (periodic convolutions) can be extended to the Toeplitz case.

III. Review of FFT-Based Recovery and Wiener Filtering

If H is invertible (i.e., there are no zeros in the diagonal of D, thus D�1 exists) we can write

H
�1 = U

H
D

�1
U. Then, if we ignore the presence of noise, we can obtain an estimate of x as

bx = U
H
D

�1
Uy = U

H
D

�1 ey; (3)

where ey = Uy denotes the DFT of the observation y. Of course, in practice, the DFT and

its inverse are computed by using the fast Fourier transform (FFT) algorithm, which requires

O(N logN) operations (where N = Nx = Ny is the number of pixels), and not with matrix

multiplications. Consequently, implementing (3) also requires O(N logN) operations.

In most cases of interest, H is non-invertible (there are zeros in the diagonal of D) or at least

very ill-conditioned (there are very small values in the diagonal of D), with direct inversion lead-

ing to a severe ampli�cation of the observation noise. Therefore, some regularization procedure

is required. A common choice is to adopt a maximum penalized likelihood estimator (MPLE)

bx = argmax
x
flog p(yjx) � pen(x)g = argmin

x
f� log p(yjx) + pen(x)g ; (4)

where p(yjx) = N (yjHx; �2I) is the likelihood function corresponding to the observation model

in (1), and pen(x) is a penalty function. From a Bayesian perspective, this is a maximum a

posteriori (MAP) criterion under the prior p(x), such that pen(x) = � log p(x).

If the prior p(x) is Gaussian, with mean � (usually zero) and covariance matrix G, it is

well-known (see, for example, [31]) that the MPLE/MAP estimate can be written as

bx = argmin
x

�
1

�2
kHx� yk2 + (x� �)HG�1 (x� �)

�
= �+GH

H
�
�2I +HGH

H
��1

(y �H�) : (5)

When the covariance of the prior, G, is also (as the observation matrix H) block-circulant

(meaning that the original image is considered a sample of stationary Gaussian �eld with periodic
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boundary conditions), it is also diagonalized by the DFT and we can write G = U
H
CU, where

C is diagonal. In this case, (5) can be implemented in the DFT domain as

bx = �+U
H
CD

H
�
�2I+DCD

H
��1

(Uy �DU�): (6)

Since the matrix being inverted in (6) is diagonal, the leading computational cost is theO(N logN)

corresponding to the FFTs U� and Uy and to the inverse FFT expressed by the left multipli-

cation by UH . Equation (6) is a Wiener �lter in the DFT domain [1].

Unfortunately, this FFT-based procedure only discriminates between signal and noise in the

frequency domain. It is well-known that real-world images are not well modelled by stationary

Gaussian �elds. A typical image x will not admit a sparse Fourier representation; the signal

energy may not be concentrated in a small subspace, making it diÆcult to remove noise and

preserve signal simultaneously.

IV. Wavelet-Based Image Restoration

A. Introduction

In wavelet-based estimation, the image x is re-expressed in terms of an orthogonal wavelet

expansion, which typically provides a very sparse representation (a few large coeÆcients and

many very small ones) [23]. Let W denote the (inverse) discrete wavelet transform (DWT) and

let us write x =W�, where � is the vector of wavelet coeÆcients [23]. As above, let us consider

an MPLE/MAP criterion, expressed in terms of �, the wavelet coeÆcients of the original image,

that is, taking the likelihood function to be p(yj�). Considering some penalty pen(�) emphasizing

sparsity of the DWT coeÆcients, the MPLE/MAP estimate is given by

b� = argmin
�

f� log p(yj�) + pen(�)g (7)

= argmin
�

�
ky �HW�k2

2�2
+ pen(�)

�
: (8)

The penalty function can be interpreted as minus the logarithm of some (non-Gaussian, sparseness-

inducing) prior [26], pen(�) = � log p(�), as a complexity-based penalty [27], or as a regulariza-

tion term [2].
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When H = I, that is, for direct denoising problems, wavelet-based methods are extremely

eÆcient, thanks to the fast implementations of the DWT and to the orthogonality of W (that

is, WT
W = WW

T = I) which allows solving (8) by applying a coeÆcient-wise denoising

rule; moreover, these methods achieve state-of-the-art performance (see [14], [23], [25], [26] and

references therein). The very good performance of wavelet-based denoising methods can be

traced back to the adequacy of the underlying priors/models of real world images.

Although wavelets have also been shown to be e�ective in image restoration problems (see [3],

[4], [8], [9], [17], [18], [22], [28], [29], [33], [34]), major diÆculties arise:

(a) unlike H alone, HW is not block-circulant, thus it is not diagonalized by the DFT;

(b) unlike W alone, HW is not orthogonal, thus precluding eÆcient coeÆcient-wise rules.

B. Previous Work

In [4], [22], [33], general frameworks aimed at restoration approaches of the form of (8) has

been proposed. The results are promising, but the proposed algorithms are very numerically

intensive. The iterative method of [28] is also similar in spirit, employing an ad hoc thresh-

olding step within an iterative restoration algorithm. In certain exceptional cases in which the

operator H is scale-homogeneous, and hence (approximately) diagonalized by W, the so-called

wavelet-vaguelette procedure developed by Donoho [9] leads to very eÆcient threshold restoration

procedures. However, most convolution operators are not scale-invariant and thus the wavelet-

vaguelette procedure is not applicable.

An adaptation of the wavelet-vaguelette approach, based on wavelet-packets designed to match

the frequency behavior of certain convolutions, was proposed in [18]. This method was extended

to a complex wavelet hidden Markov tree (see [6]) scheme in [17]. Although these methods are

computationally fast, they are not applicable to most convolutions and, moreover, choosing the

(image) basis to conform to the operator is exactly what wavelet methods set out to avoid in the

�rst place. The wavelet packets matched to the frequency behavior of the convolution operator

may not match image structure as well as a conventional wavelet basis.
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Other methods for more general deconvolution problems have been proposed. In [3], the

approach is to adapt the linear �ltering spatially, based on an edge detection test. The algorithm

presented in [29] combines Fourier domain regularization with wavelet domain thresholding, in a

non-iterative fashion, with very good results. Recently, an iterative method using preconditioned

conjugate gradient was proposed in [8]; the method achieves very good results, but it requires

complex wavelet transforms and a complicated initialization procedure based on another wavelet-

based restoration method (namely the one proposed in [29]).

Finally, we mention that EM and EM-type algorithms have been previously used in image

restoration and reconstruction, with non-wavelet-based formulations (e.g., [11], [12], [19]).

V. The Best of Both Worlds

The approach proposed in this paper is able to use the best of the wavelet and Fourier worlds

in image deconvolution problems. The speed and convenience of the FFT-based Wiener �lter,

which is well matched to the observation model, and the adequacy of wavelet-based image models.

A. An Equivalent Model and the EM Algorithm

Let us write the observation model in (1) with respect to the DWT coeÆcients � (recall that

x =W�):

y = HW� + n: (9)

As mentioned above, this equation clearly shows where the diÆculties come from: although H

is diagonalized by the DFT, HW is not, and so FFT-based methods are not directly applicable.

To overcome this problem, we propose decomposing the white Gaussian noise n into the sum of

two di�erent Gaussian noises (one of which is non-white), i.e.,

n = �Hn1 + n2; (10)

where � is a positive parameter, and n1 and n2 are independent noises such that

p(n1) = N (n1j0; I)

p(n2) = N (n2j0; �2I� �2HHT ):
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Notice that the covariance of �Hn1 + n2 is �2HHT + �2I � �2HHT = �2I, as required. For

(�2I � �2HHT ) to be semi-positive de�nite (thus a valid covariance matrix), we must have

�2 � �2=�1, where �1 is the largest eigenvalue of HH
T . With a normalized (total mass equal to

one) and periodic (corresponding to a block-circulant1 H) blur, we have �1 = 1, and the condition

simpli�es to �2 � �2. The idea behind the proposed noise decomposition is that it allows the

introduction of a hidden image z which decouples the denoising from the deconvolution, as next

described. Notice that using n1 and n2, we can decompose the observation model as8><>:
z = W� + �n1

y = Hz+ n2:

(11)

Clearly, if we had z, we would have a pure denoising problem with white noise (the �rst equation

in (11)). This observation is the key to our approach, since it suggests treating z as missing data

and estimating � via the EM algorithm (see, e.g., [7], [24]). Recall that the EM algorithm is a

means of obtaining MAP/MPLE estimates (of which maximum likelihood is a particular case)

of a parameter (see (7)) in cases where the penalized log-likelihood log p(yj�)�pen(�) is hard to

maximize, but the so-called complete penalized log-likelihood log p(y; zj�)�pen(�) would be easy

to maximize if we had z. The EM algorithm produces a sequence of estimates fb�(t); t = 0; 1; 2; :::g

by alternating two steps (until some stopping criterion is met):

� E-step: Computes the conditional expectation of the log-likelihood of the complete data, given

the observed data and the current estimate b�(t). The result is the so-called Q-function:

Q(�; b�(t)) � E
h
log p(y; zj�) j y; b�(t)i : (12)

� M-step: Updates the estimate according to

b�(t+1)
= argmin

�

f�Q(�; b�(t)) + pen(�)g: (13)

1If H is not block-circulant, but block-Toeplitz, as long as the blur satis�es some very mild conditions, the

eigenvalues are, asymptotically (in the size of the matrix) the same (see [15] and references therein); with blurs

that are much smaller than the image, the eigenvalues of the corresponding Toeplitz or circulant matrices are then

roughly the same.
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It is well known (see, e.g., [7], [24]) that each iteration of the EM algorithm is guaranteed to

increase the penalized log-likelihood, that is,

� log p(yjb�(t+1)
) + pen(b�(t+1)

) � � log p(yjb�(t)) + pen(b�(t)):
Next, we derive the speci�c formulas for the E and M steps, for our deconvolution problem.

B. The E-Step: FFT-Based Estimation

The complete-data likelihood is p(y; zj�) = p(yjz;�) p(zj�) = p(yjz) p(zj�), because, condi-

tioned on z, y is independent of � (see (11)). Since z =W� + �n1, where �n1 is zero-mean

with covariance �2 I, we simply have

log p(y; zj�) = �kW� � zk2
2�2

+K1

= ��
T
W

T
W� � 2�TWT

z

2�2
+K2; (14)

where K1 and K2 are constants that do not depend on �. This shows that the complete-data

log-likelihood is linear with respect to the missing data z. Consequently, all that is required in

the E-step is to compute the conditional expectation of z, given the observed data y and current

parameter estimate b�(t),
bz(t) � E[zjy; b�(t)] = Z

z p(zjy; b�(t)) dz; (15)

and plug it into the complete-data log-likelihood to obtain

Q(�; b�(t)) = ��
T
W

T
W� � 2�TWTbz(t)

2�2
+K2 = �kW� � bz(t)k2

2�2
+K1: (16)

Since p(yjz) = N (yjHz; �2I � �2HHT ) and p(zjb�(t)) = N (zjWb�(t); �2I), then p(zjy; b�(t)) /
p(yjz)p(zjb�(t)) is also Gaussian, with mean given by (see, e.g., [31])

bz(t) = Wb�(t) + �2

�2
H

T (y �HWb�(t)) (17)

= Wb�(t) + �2

�2
U

H
D

H(Uy �DUWb�(t)); (18)

which can be eÆciently implemented by FFT (recall that UH
D

H
U = H

T and U
H
D

H
DU =

H
T
H). Notice that since bx(t) �Wb�(t) can be seen as the current estimate of the true image x,
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we can write the E-step as

bz(t) = bx(t) + �2

�2
H

T (y �Hbx(t)); (19)

revealing its similarity with a Landweber iteration for solving Hx = y [20], [32]. Of course this

is just the E-step; the complete EM algorithm is not a Landweber algorithm.

C. M-Step: Wavelet-Based Denoising

In the M-step, the parameter estimate is updated as shown in (13), where Q(�; b�(t)) is as given
by (16) with bz(t) computed according to (18):

b�(t+1)
= argmin

�

(
kW� � bz(t)k2

2�2
+ pen(�)

)
: (20)

This is simply a MPLE/MAP estimate of �, under the prior p(�), for a \direct" observation

denoising problem: we observe bz(t) � N (W�; �2I). Because the wavelet transform is orthogonal

we have kW� � bz(t)k2 = k� � b!(t)k2, where b!(t) �W T bz(t) denotes the DWT transform of bz(t).
Thus, the M-Step can be computed by applying the corresponding denoising rule to b!(t):

b�(t+1)
= argmin

�

n
k� � b!(t)k2 + 2�2 pen(�)

o
: (21)

For example, under a i.i.d. Laplacian prior on the wavelet coeÆcients,

p(�) / expf��k�k1g ) pen(�) = �
X
i

j�ij; (22)

(where k�k1 =
P

i
j�ij denotes the l1 norm), b�(t+1)

is obtained by applying a soft-threshold

function to b!(t), the wavelet coeÆcients of bz(t) [26]. More speci�cally, each component of b�(t+1)

is obtained separately according to

b� (t+1)
i

= sgn
�b!(t)

i

��
jb!(t)

i
j � � �2

�
+

(23)

where (�)+ denotes the positive part operator, de�ned as (x)+ = maxfx; 0g, and sgn(�) is the sign

function, de�ned as sgn(x) = 1, if x > 0, and sgn(x) = �1, if x < 0. Other priors or complexity

penalties will lead to di�erent wavelet denoising rules in the M-Step [14], [23], [26], [27].
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D. Computational Complexity

The computational complexity of the M-Step is dominated by the DWT, usually O(N) for an

orthogonal DWT. The computational load of the E-step is dominated by the O(N logN) cost of

the FFT. The cost of each iteration of the complete EM algorithm is thus O(N logN).

E. Some Comments

A very important feature of this EM algorithm is that any wavelet denoising procedure that

can be interpreted as an MPLE/MAP rule can be employed in the M-Step. For example, p(�)

could correspond to a hidden Markov tree model [6] or to a locally adaptive model [25]; however,

in those cases, the M-step would not be as simple as a �xed nonlinear thresholding rule. We can

also use the denoising rule that we have proposed in [13], [14], since although it was originally

derived from an empirical-Bayes approach, we have shown that it corresponds to an MPLE/MAP

estimate under a prior of a particular form [14]; the rule is given by

b� (t+1)
i

=

�
(b!(t)

i
)2 � 3�2

�
+b!(t)

i

: (24)

Let D denote whichever denoising operation is applied to the wavelet coeÆcients (such as (23)

or (24)), and P the resulting denoising procedure applied to some image v, that is,

P(v) �WD(WT
v): (25)

With this notation, we can write compact a expression for each iteration of the EM algorithm

bx(t+1) = P
�bx(t) + �2

�2
H

T (y �Hbx(t))� ; (26)

which can be interpreted as a Landweber iteration followed by a wavelet-based denoising step.

Of course the choice of � a�ects the rate of convergence of the algorithm. The standard theory

of the rate of convergence of EM, based on the information matrices (see [24]), suggests that

� should be made as large as possible. Since we must have �2 � �2 to have a meaningful EM

algorithm (see Subsection V-A), a reasonable choice is �2 = �2. Although the analysis of the rate

of convergence based on the information matrices can only be performed ignoring the penalty
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terms, since these may be non-di�erentiable, we found experimentally that �2 = �2 is indeed

a good choice. Another line of thought uses the similarity of (26) with a Landweber iteration;

ignoring the denoising operator P suggests that we have a convergent algorithm for �2=�2 � 2

(rather than the 1 that results from the EM interpretation).

Finally, let us summarize the several very attractive features of this approach:

� the computational complexity of each iteration is O(N logN);

� we can employ any orthogonal wavelet basis;

� we can employ any wavelet-based penalization.

VI. Extension to Unknown Noise Variance

Up to this point, we have assumed that the noise variance �2 is known in advance. We now

present an extension of the proposed algorithm which also estimates �2. This is simply done by

inserting an additional step in which the noise variance estimate is updated based on the current

estimate of the true image bx(t) �W b�(t). The complete algorithm is now de�ned by two steps:

� EM step: equation (26);

� Noise variance update:

c�2(t+1)
=
kH bx(t+1) � yk2

N
: (27)

The complete algorithm is not an EM algorithm, but it is also guaranteed to increase the

penalized likelihood function. To see that this is true, let us denote the penalized negative

log-likelihood being minimized (which is now also a function of �2) as

L(�; �2) = N

2
log �2 +

kHW� � yk2
2�2

+ pen(�): (28)

Concerning the EM step, we know that L(b�(t+1)
;c�2(t)) � L(b�(t);c�2(t)); due to the monotonicity

properties of the EM algorithm [24]. The noise variance updating step is simply a maximum

likelihood estimate of �2, with the estimate of � �xed at b�(t+1)
,

c�2(t+1)
=
kHWb�(t+1) � yk2

N
= argmin

�2
L(b�(t+1)

; �2);
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since pen(�) does not depend on �2. Accordingly, we have L(b�(t+1)
;c�2(t+1)

) � L(b�(t+1)
;c�2(t)). In

conclusion, since both steps are guaranteed not to decrease the penalized log-likelihood function,

so is their combination.

VII. Convergence Analysis of the EM Algorithm

A general, basic property of an EM algorithm is that it generates a sequence of non-decreasing

(penalized) likelihood values [24]. EM iterations produce a sequence of images, each of which

has a penalized likelihood value greater than or equal to that of the preceding image. This is

a very desirable property, but several questions remain. (1) Does the sequence (of penalized

likelihood values) converge to the maximum of the penalized likelihood function? (2) Does the

corresponding sequence of images converge to a �xed image and is this limit (assuming it exists)

unique? This section explores these issues. First, we consider the conditions under which the

EM algorithm converges to a stationary point of the penalized likelihood function. Second, we

investigate the convexity of the penalized negative log-likelihood function and establish conditions

under which the EM algorithm converges to a unique solution.

A. Convergence to a Stationary Point

The results in [35] guarantee that the EM algorithm converges to a stationary point (local

maximum or saddle-point) of the penalized likelihood function under fairly mild conditions.

Theorem 2 of [35] shows that all limit points of the EM algorithm are stationary points of the

penalized likelihood function, provided that Q(�; b�(t)) and pen(�) are continuous in both � and b�.
This condition is clearly met by the expected complete-data log-likelihoodQ(�; b�(t)). The penalty
function pen(�) also needs to be continuous in order to guarantee convergence to a stationary

point. This precludes the use of the conventional hard-threshold function, but both the soft-

threshold rule (23) and our rule in (24) correspond to continuous penalty functions (log-priors).

To summarize, if the penalty function underlying the nonlinear shrinkage/threshold function

employed in the M-Step is continuous in �, then the EM algorithm converges to a stationary
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point of the penalized log-likelihood. The limit points may be local maxima or saddle-points;

it is diÆcult to guarantee convergence to a local maximum without further assumptions. Such

conditions are investigated next.

B. Convergence to a Global Maximum

Let us begin by considering the case in which H is invertible. Under this assumption, the

negative log-likelihood term of (8) is strictly convex in �. Now if the penalty function is also

convex (not necessarily strictly so), then the penalized negative log-likelihood function is strictly

convex in �. For example, the log-Laplacian penalty function, leading to the soft-threshold rule,

is convex (not strictly) in �. Strict convexity of the penalized negative log-likelihood function

implies that there is only one stationary point, the global maximum. Thus, under the continuity

conditions discussed above, the EM algorithm is guaranteed to converge to the global maximum.

Note that the uniqueness of the maximum point guarantees that the sequence of images produced

by the EM algorithm converges to the global maximum penalized likelihood image restoration.

Next consider situations when H is not invertible. For examples, H is not invertible if the

DFT of the underlying point spread response is zero at some point(s). In such cases, the negative

log-likelihood term of (8) is convex, but not strictly, in �. If the penalty function is also convex

(but not strictly so), then the sequences of penalized log-likelihood values produced by the EM

algorithms will converge to their respective global maximum penalized log-likelihood values. This

follows from the EM convergence results of Wu [35], since all stationary points of a convex function

are global minima. However, since there may be many global minima, the EM algorithms may

not converge to �xed images (they are only guaranteed to converge to their respective sets of

images corresponding to global minima). If it does converge to a �xed image (this limit could

depend on the initialization of the algorithm), then that image maximizes the penalized likelihood

criterion.

If the penalty function is strictly convex, then the EM algorithm is guaranteed to converge to

the unique maximum penalized likelihood value and a unique optimal image. This also follows
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from the EM convergence results [35]; the unique stationary point of a strictly convex function

is the global minimum. So far, the only convex penalty function we have considered is the log-

Laplacian (leading to the soft-threshold rule), but even this penalty function is not strictly convex,

since its growth with the absolute value of the argument is linear. The following modi�cation

of the log-Laplacian leads to a strictly convex penalty function and a threshold rule nearly the

same as the soft-threshold function, except that it is di�erentiable at all points. Instead of the

log-Laplacian penalty, which has the form � log e��j�j = � j�j, consider

pen(�) = � log e� �

p
�2+�2 = �

p
�2 + �2; (29)

for some small number �. Notice that as � ! 0, this penalty tends to the log-Laplacian. However,

for every �; � > 0 this penalty is strictly convex, since d2(�
p
�2 + �2)=d�2 > 0: The di�erence

between the threshold rule induced by the penalty (29) and the soft-threshold is that the former

makes a smooth transition across the threshold level, as shown in Figure 1.

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 1. Soft-threshold function (dashed) and modi�ed soft-threshold function (solid) with threshold level

set at 1 and � = 1. If � = 0:1, then the di�erence between the soft-threshold function and the

modi�ed soft-threshold function are indistinguishable to the naked eye at this scale.

C. Summary of Convergence Results

The following four points summarize the convergence properties of our EM algorithm.

1. If the penalty pen(�) is a continuous function of �, then each iteration of the EM algorithm

produces an image with a penalized likelihood value greater than or equal to the previous image.
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2. If the penalty function is also convex (but not strictly convex) in �, then the sequence of

penalized log likelihood values converges to the global maximum. However, since there may be

many global maxima, the EM algorithm may not converge to a �xed image. If it does converge

to a �xed image, then that image maximizes the penalized likelihood criterion.

3. The EM algorithm converges to the unique, globally optimal solution (�xed image) of the

penalized likelihood criterion if either of the conditions below are met:

a) H is invertible and the penalty function is convex (e.g., soft-threshold);

b) the penalty function is strictly convex (e.g., the modi�ed soft-threshold penalty (29)).

4. Recall the that the EM algorithm coupled with the adaptive updates of the noise variance,

given by (27), produce non-decreasing sequences of penalized likelihood values (with the noise

variance �2 treated as an unknown parameter to be inferred jointly with �). However, the

corresponding penalized negative log likelihood function is non-convex and convergence is can

no longer be guaranteed in this case.

VIII. Extension to Translation-Invariant Restoration

It is well known that the dyadic image partitioning underlying the orthogonal DWT can cause

blocky artifacts in the processed images. In denoising problems, translation-invariant approaches

have been shown to signi�cantly reduce these artifacts and are routinely used instead of the or-

thogonal DWT [5], [14], [21]. The standard way to achieve translation invariance in denoising is to

use a redundant transform, called the translation-invariant DWT (TI-DWT), which corresponds

to computing the inner products between the image and all (circularly) translated versions of the

wavelet basis functions. Denoising is accomplished by thresholding as usual and then averaging

the results. Working with all possible shifts of the discrete wavelet basis functions, rather than

the dyadic shifts underlying the orthogonal DWT basis functions, helps to reduce blocky artifacts

and achieves better denoising performance [5], [14], [21].

In this paper, we consider three ways to achieve translation invariance in our iterative image

deconvolution algorithm, which we describe in the following three subsections.
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A. Translation Invariance via Undecimated DWT

The TI-DWT is an over-complete transform based on N orthogonal DWTs. Each of the N

DWTs is comprised of circularly shifted versions of the discrete DWT basis functions. Let W T

0

be an orthogonal DWT matrix. Let i 2 f0; :::; N � 1g index all possible circular image shifts; let

W
T

i
denote a DWT matrix with the i-th shift applied to all the basis functions in W T

0 . With

this notation, the TI-DWT matrix can be written as

W
T =

1p
N

[W 0 � � � WN�1]
T : (30)

Since the TI-DWT is not invertible, the pseudo-inverse

W =
1p
N

[W 0 � � � WN�1] (31)

is standardly used to transform the redundant set of coeÆcients back to the image space. Notice

that if x denotes any image, then

WW
T
x =

1

N
[W0 � � � WN�1]

2666664
W

T

0

...

W
T

N�1

3777775x =
1

N

N�1X
i=0

WiW
T

i x = x;

because W iW
T

i = I, thus WW
T = I. However, W T

W 6= I and thus W is not orthogonal.

When W corresponds to a TI-DWT2, the M-Step of our EM algorithm can not be simpli�ed

as in (21). However, as is common in denoising [5], [14], [21], we can ignore this fact and still

use (21) as ifW were orthogonal. The resulting method is no longer and EM algorithm but, as

will be shown below, it leads to excellent image restoration results.

Recall that the coeÆcients of the TI-DWT can be eÆciently computed using the so-called un-

decimated DWT (UDWT), which simply eliminates the down-sampling process in the �lter-bank

implementation of a wavelet transform [21]. The TI-DWT produces N2 coeÆcients in total, but

only N logN values are unique because certain shifts generate the same inner products between

2A similar complication arises if the orthogonal DWT is replaced by a biorthogonal DWT, but we will not

investigate that problem here.
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the image and basis functions. The �lter-bank implementation of the UDWT produces only

the N logN unique coeÆcients, and requires O(N logN) operations. Thus, the computational

complexity of each partial optimization in the M-Step is O(N logN).

Summarizing, our �rst approach to TI restoration consists simply in keeping the same E-step

and M-step, but letting b!(t) in (21) be the UDWT of bz(t), rather than its orthogonal DWT.

B. Translation Invariance via Random Shifts

Another possible way to achieve some level of translation invariance consists in choosing a

randomly shifted DWT at each iteration. Formally, at each M-step, we let i be a randomly chosen

circular shift. Then, we compute an i-shifted orthogonal DWT of bz(t), that is b!(t) �W T

i
bz(t) and

apply the original denoising step (21). With respect to the UDWT-based approach described in

the previous subsection, this method has the advantage of employing an orthogonal DWT, which

has O(N) computational cost, rather than the O(N logN) cost associated with the UDWT.

This method is of course not an EM algorithm. Although the M-step is exact, it corresponds

to using a di�erent penalty/prior at each iteration; accordingly, the resulting algorithm can not

be interpreted as maximizing some penalized likelihood (or a posteriori probability function).

As shown by the experiments reported below, this method almost always leads to results very

close to those obtained by the UDWT-based method.

C. Translation Invariance via a Generalized EM Algorithm

Although both TI restoration methods described above perform well, none of the two is a

true EM algorithm, thus they don't have any monotonicity or convergence guarantee. Our third

approach to TI restoration consists in using the UDWT but, rather than keeping the original

form of the M-step, we change it to recover the monotonicity properties of the algorithm. Specif-

ically, we derive a so-called generalized EM (GEM) algorithm, in which the exact maximization

performed in the M-step is replaced by a weaker condition:

L(b�(t+1)
; b�(t)) � L(b�(t); b�(t)) (32)
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where

L(�; b�(t)) � � 2�2
�
Q(�; b�(t)) + pen(�)

�
= kbz(t) �W �k2 + 2�2 pen(�) (33)

is the function to be minimized in the M-Step (see (20)), and � denotes the vector of N logN

unique coeÆcients associated with the UDWT. The GEM algorithm possesses the same basic

monotonicity and convergence properties as the the standard EM [24], [35].

As above,Wl denotes the orthogonal inverse DWTmatrix at an arbitrary shift l, and �l denotes

the corresponding set of N coeÆcients. Writing � = (�l;��l), where ��l are the N(logN � 1)

coeÆcients not associated with the basis functions inWl, we have

W� =Wl �l +W�l ��l; (34)

where W�l is composed of the basis functions not inWl.

The generalized M-step is obtained by optimizing L(�; b�(t)) with respect to �l alone, keeping

��l �xed. To this end, notice that we can write (33) as

L(�; b�(t)) = kWl �l +W�l ��l � bz(t)k2 + 2�2 pen ((�l;��l)) (35)

= kWl �l � e
(t)k2 + 2�2 pen (�l) + 2�2pen (��l) ; (36)

where e(t) = bz(t) �W�l
b�(t)�l , and where we are assuming a separable penalty function. Then,

the generalized M-step is performed by choosing some l 2 f0; 1; :::; N � 1g, either randomly or

following some prespeci�ed schedule and then letting

b�(t+1)
�l = b�(t)�l (37)

b�(t+1)

l = argmin
�l

n
kWl �l � e

(t)k2 + 2�2 pen (�l)
o
; (38)

�nally, we set b�(t+1)
= (b�(t+1)

l ; b�(t+1)
�l ). This b�(t+1)

does verify the GEM condition (32):

L(b�(t+1)
; b�(t)) = kWl

b�(t+1)

l � e
(t)k2 + 2�2 pen

�b�(t+1)

l

�
+ 2�2pen

�b�(t)�l � (39)

= min
�l

n
kWl �l � e

(t)k2 + 2�2 pen (�l)
o
+ 2�2pen

�b�(t)�l � (40)

� kWl
b�(t)l � e

(t)k2 + 2�2 pen
�b�(t)l �+ 2�2pen

�b�(t)�l � (41)

= L(b�(t); b�(t)): (42)



20

Moreover, the computation of the update is simple. To obtain e(t) we apply the inverse UDWT

to � = (0; b�(t+1)
�l ) to obtain W�l

b�(t)�l . This can be computed in O(N logN) operations. Finally,

notice that (38) is simply a standard DWT denoising operation (with the threshold/shrinkage

function associated with pen(�)) applied to e(t), which can be computed in O(N) operations.

Being a GEM algorithm, this method has all the monotonicity guarantees of EM and is thus of

theoretical interest. However, it turns out that, in all the experiments carried out, this approach

performs slightly worse than the two previous methods; for this reason, we will not further

consider it in this paper.

IX. Experimental Results

In this section, we present a set of experimental results illustrating the performance of the

proposed approach and comparing it with some state-of-the-art methods recently described in

[17], [22], and [29]. We consider only the TI versions of the algorithm: the UDWT-based method

(using the UDWT �lterbank of [21]) and the method based on random shifts; the reason for this

choice is that the TI versions clearly and consistently outperform those that use the orthogonal

DWT. Moreover, we do not consider the noise-adaptive version described in Section VI; this is

because we always achieve better performance using a �xed noise variance, which can be easily

estimated directly from the observed image using the MAD scheme proposed in [10].

In all the experiments, we employ Daubechies-2 (Haar) wavelets; we have tried other wavelets

and the results are always very similar to those obtained with Daubechies-2. The algorithm

is initialized with a Wiener estimate, as given by (5), with � = 0 and G = 103I, and the

convergence criterion is

kx̂(t+1) � x̂
(t)k2

kx̂(t)k2
< Æ;

where Æ is a threshold, typically set to 10�3�2. As discussed in Section V-E, we set � = �; we

found experimentally that this is a good general-purpose choice.

In the �rst set of tests, we consider the setup of [29] and [3]: uniform blur of size 9�9, and the

noise variance such that the SNR of the noisy image, with respect to the blurred image without
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TABLE I

SNR improvements (SNRI) obtained by several variants of the proposed algorithm on

the blurred image shown in Figure 2

Method SNRI

Rule (24), UDWT 7:47dB

Rule (24), random shifts 7:59dB

Modi�ed Laplacian, UDWT 7:26dB

Modi�ed Laplacian, random shifts 7:34dB

Soft-threshold, UDWT 7:26dB

Soft-threshold, random shifts 6:33dB

Result by Neelamani et al [29] 7:3dB

Result by Banham and Katsaggelos [3] 6:7dB

noise (BSNR), is 40dB (this corresponds to �2 ' 0:308). We have restored this image using

six variants of the algorithm: the denoising rule (24), the rule corresponding to the modi�ed

Laplacian prior (with � = 0:35 and � = 0:02, see (29)), and the soft-threshold rule, each with the

UDWT-based method and the random shifts scheme. The SNR improvements obtained by the

several algorithms are summarized in Table I, showing that our methods perform competitively

(some versions better, others slightly worse) than the one in [29]. Figure 2 shows the original,

blurred/noisy, and restored images, using rule (24) and the UDWT-based method. The other

restored images are visually indistinguishable from this one, so we do not show them here.

Finally, in Figure 3, we plot the evolution of the SNR improvement along the EM algorithm, for

the UDWT-based and the random shifts algorithm, both with rule (24) (the other versions of

the algorithm evolve similarly). We can observe that convergence is obtained after 200 � 300

iterations.

In the second set of tests, we replicate the experimental condition of [17]. The point spread

function of the blur operator is given by hij = (1 + i2 + j2)�1, for i; j = �7; :::; 7. Noise
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Fig. 2. Original image (top), blurred image (bottom left) and restored image (bottom right) using the

UDWT version of our algorithm with rule (24).

variances considered are �2 = 2 and �2 = 8. The SNR improvements obtained are summarized

in Table II, together with the results reported in [17]. Figure 4 shows the original image, the

two blurred/noisy images, and the corresponding restorations, obtained with rule (24) and the

UDWT-based method. The SNR improvements obtained by our method are very similar to those

reported in [17]; notice that [17] uses a more sophisticated wavelet transform and prior model.

Finally, in Figure 5, we plot the evolution of the SNR improvement along the EM iterations, for

the UDWT-based algorithm with rule (24) (the other versions of the algorithm evolve similarly).

we see that convergence is achieved after approximately 40 and 8 � 10 iterations, respectively,

for �2 = 2 and �2 = 8.
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Fig. 3. SNR improvement along the iterations of EM (left: UDWT-based method; right: random shifts),

for the example of Figure 2.

In the �nal set of tests we have used the blur �lter and noise variance considered in [22].

Speci�cally, the original image was blurred by a 5 � 5 separable �lter with weights [14641]=16

(in both horizontal and vertical directions) and then contaminated with white Gaussian noise of

standard deviation � = 7. The SNR improvements obtained by the six instances of our algorithm

are reported in Table III. The original, blurred, and restored images are shown in Figure 6. In

this case, convergence is obtained after 5 � 7 iterations.

TABLE II

SNR improvements obtained by several variants of the proposed algorithm on the

images shown in Figure 4

Method �2 = 2 �2 = 8

Rule (24), UDWT 6:91dB 4:88dB

Rule (24), random shifts 6:93dB 4:37dB

Modi�ed Laplacian, UDWT 6:39dB 4:51dB

Modi�ed Laplacian, random shifts 6:33dB 4:22dB

Soft-threshold, UDWT 6:36dB 4:12dB

Soft-threshold, random shifts 6:42dB 4:01dB

Results by Jalobeanu et al [17] 6:75dB 4:85dB
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Fig. 4. Blurred and noisy images (top row), with �2 = 2 (left) and �2 = 8 (right), and corresponding

restored images (bottom row).

We can observe a clear trend in the behavior of the algorithm: for larger noise variance,

convergence is achieved in fewer iterations (recall from the results above: 200 � 300 iterations

for �2 ' 0:308; � 40 iterations for �2 = 2; 8 � 10 iterations for �2 = 8; and 5 � 7 iterations

for �2 = 72). As the number of iterations decreases, the performance of the random-shifts-based

method degrades, since it does not cover enough shifts to achieve approximate shift-invariance.

X. Conclusions

This paper proposed a wavelet-based MPLE/MAP criterion for image deconvolution. The

estimate must be computed numerically, and we derived an EM algorithm for this purpose, lead-

ing to a simple procedure that alternate between Fourier domain �ltering and wavelet domain
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Fig. 5. SNR improvement along the iterations of EM for the example of Figure 4 (left, �2 = 2; right,

�2 = 8).

TABLE III

SNR improvements obtained by several variants of the proposed algorithm on the

blurred image shown in Figure 6

Method SNRI

Rule (24), UDWT 2:94dB

Rule (24), random shifts 1:71dB

Modi�ed Laplacian, UDWT 2:75dB

Modi�ed Laplacian, random shifts 1:77dB

Soft-threshold, UDWT 2:75dB

Soft-threshold, random shifts 1:61dB

Best result by Liu and Moulin [22] 1:078dB

denoising. We have also proposed extensions of the algorithm which perform shift-invariance

restoration. Experimentally, our approach performs competitively with two of the best existing

methods. Our analysis sheds light on the nature of wavelet-based image restoration; in particular

this is the �rst work we are aware of that carefully investigates and describes the subtle distinc-

tions between the application of orthogonal and (non-orthogonal) translation-invariant DWTs

to image restoration.
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Fig. 6. Original image (left), blurred image (midle) and restored image (right) using the noise-adaptive

version of our algorithm with rule (24).
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