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Abstract

The fundamental objective of this work is to determine the extent to which unicast, end-
to-end network measurement is capable of determining internal network losses. We show that
it is not possible to determine internal losses based solely on unicast, end-to-end measure-
ment. However, by identifying and incorporating reasonable prior information or constraints,
we demonstrate that it is possible to resolve these losses. The major contributions of this re-
port are three-fold: we formulate a measurement procedure for network loss inference based on
end-to-end packet pair measurements, we identify suitable prior probability models for network
inference, and we develop a novel factor graph framework for inference calculation. Simulation
experiments demonstrate the potential of our new framework.
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1 Introduction

In large-scale networks, end-systems cannot rely on the network itself to cooperate in character-
izing its own behavior. Network tomography (the inference of internal network behavior based
on end-to-end network measurements) is a vital component in current efforts to transform large-
scale internetworks into well-understood and predictable systems. Several groups have considered
the network tomography problem [7, 16, 17, 18, 2, 13]; while promising, these methods require
special support from the network in terms of either cooperation between hosts, internal network
measurements, or multicast capability. Many networks do not currently support multicast due to
its scalability limitations (routers need to maintain per group state), and lack of access control. In
contrast, unicast inference is easily deployable on a scalable commercial infrastructure.

There is an urgent need for flexible measurement and inference tools that allow us to obtain
useful information from end-to-end network measurements. To accomplish this we require new
algorithms that fuse end-to-end traffic statistics with prior information about network behavior — a
capability not provided by existing methods. We propose a new theory and tool for gauging internal
network loss characteristics solely from unicast, end-to-end measurements, requiring no special-
purpose network support and taking advantage of the wealth of information available in existing
network traffic. There is a potential for new edge-based strategies of network prediction and control
based on the novel theoretical framework for network inference developed in this report. A key
strength of our methodology is that it can deliver not only point estimates and confidence intervals,
but also probability distributions for network parameters of interest. This provides the complete
characterization of the accuracy and reliability of inferred network behavior that is necessary for
modelling, maintenance, and service provisioning.

The inherent structure of networks makes this problem ideally suited to the new field of fac-
tor graph analysis. We propose an inference framework based on probabilistic factor graphs and
Bayesian analysis. We employ two types of statistics in our analysis — single packet losses and
joint packet pair losses. The joint statistics are crucial because they capture key temporal correla-
tions. These spatio-temporal statistics provide an enormous amount of information about internal
network behavior; however harnessing this information for practical inference is a daunting task.
Factor graphs enable us both to visualize the relationships between statistics and network pa-
rameters and to greatly simplify the tomography problem through probability factorization [8].
Probabilistic factor graph representations thus provide a theoretical and computational foundation

for our spatio-temporal network analysis methodology.

1.1 Related Work

Several groups have considered the problem of estimating source-destination rates based on indi-
vidual link-level traffic measurements [16, 17, 18]. These techniques are useful in network design,
routing, and optimization, but require special support from the network to collect link level statis-

tics. Conversely, others have made efforts to measure loss and delay statistics between participating



hosts or routers based on the exchange of unicast probes [1, 4, 12]. There have also been recent
proposals for network tomography based on end-to-end measurements. The Felix project employs
linear decomposition techniques to determine network topology [3]. Two other approaches use
active, multicast probing to gather packet correlation statistics and infer internal network charac-
teristics [7, 2, 13]. Here we propose an alternative approach that does not require special support
from the network (such as multicast capability) and enables the fusion of end-to-end traffic statistics

with prior information about the network.

1.2 Bayesian Network Modelling and Analysis

One of the fundamental objectives of this work is to determine the extent to which unicast, end-to-
end (edge-based) measurement is capable of determining internal network losses. By end-to-end we
mean measurements of packet losses along entire paths, from source to receiver(s). Without special
(and usually unrealistic) assumptions it can be shown that strictly speaking the internal loss rates
on individual links are not uniquely determined by end-to-end statistics. That is, more than one
internal loss configuration can give rise to the same end-to-end measurement. This is a classical
example of an underdetermined or ill-posed inverse problem. Thus, the objective stated above
boils down to the following question: Can we identify reasonable prior information or constraints
to uniquely resolve the losses based on end-to-end measurement?

Ill-posed inverse problems similar to the network tomography problem arise routinely in many
fields of science and engineering [10]. Determination of useful solutions to such problems depends
on the clever incorporation of prior knowledge or constraints. For example, in the field of image
processing a commonly used technique is to incorporate prior information reflecting the high proba-
bility of similarity between the gray levels of neighboring pixels [9]. In this report, we aim to develop
a similar probabilistic modeling procedure that captures the expected characteristics of real-world
networks. Perhaps the most simple possibility that comes to mind, following the image modeling
approach, is to model the losses in spatially neighboring links as (probabilistically) correlated in
some fashion (e.g., if one link is experiencing heavy losses, then its neighbors are also probably very
lossy.) However, we argue that this type of modeling is unrealistic in many real situations and,
moreover, may lead to grossly inaccurate loss estimates.

We propose instead a network modeling framework based on the correlation between uncondi-
tional (single packet) losses and conditional (back-to-back) packet losses. Based on theoretical queue
models, we show that the unconditional and conditional loss probabilities are coupled. Throughout
the remainder of the report we work with “success” probabilities (probability of non-loss) instead
of loss probabilities. This provides a more convenient mathematical parameterization of the prob-
lem, and the probability of loss is simply one minus the probability of success. We regard the
two types of success probabilities as random variables themselves and model the coupling between
these random variables with a joint probability density function. To state it very simply, the con-

ditional success probability of a packet, given that the preceding packet was successfully received,



is lower than the unconditional success probability (probability of a packet being lost irrespective
of whether or not the preceding packet was received). This relationship has also been verified
experimentally in real networks [11]. Through the use of carefully designed joint prior probability
models for the conditional and unconditional success probabilities that reflect this relationship, we
develop a framework for the statistical estimation of internal success probabilities based solely on
end-to-end measurement.

The report is organized as follows. In Section 2, we discuss the basic inference problem in more
generality. In Section 3, we formally define our measurements and prior probability models for
network success probabilities. In Section 4, we describe the factor graph modeling and inference
process. In Section 5, we give a simulation experiment. In Section 6, we draw conclusions and

discuss avenues for future work.

2 End-to-end measurements and tomography

When we restrict ourselves to edge-based measurement of a tree topology, the simplest data we
can collect are counts of the number n; of packets sent from the source Sy to a receiver R; and the
number m; of these that were lost. Using these measurements and the independence assumptions
we can form maximum likelihood estimates {p;} of the true source-to-receiver path success rates
{p;}, where p; = . These estimates converge to the true success rates as the amount of collected
data grows large. However, there is no unique mapping of the path-level success probabilities to
the link-level success rates a; we are faced with an unidentifiable system. This is clear even for the
simple triad network of Figure 1. We can collect measurements for only two paths in this network,
which is clearly insufficient to resolve the three link success parameters uniquely. The system would
be identifiable if we knew one of the success probabilities beforehand, or if we could guarantee that
one of the three links was perfect. In general, we observe that each internal node in the logical tree
introduces an extra degree of rank deficiency in the system of (linear) equations that relate (log)
path success rates to (log) link success rates. This means that there are an infinite number of link
success probability vectors a that give rise to the same path success probability vector p. Hence,

no matter how many data are collected, we cannot fully resolve the individual link probabilities.

As the simplest packet count measurements do not provide sufficient information for identi-
fiability, we turn our attention to more sophisticated measurements. Measurements made using
back-to-back packet pairs provide an opportunity to generate spatio-temporal statistics of the sys-
tem. By back-to-back packet pairs we mean two packets that are sent one after the other by the
source, possibly destined for different receivers, but sharing a common set of links in their paths.
The reason for introducing back-to-back measurements is that we anticipate correlation between
the link-level success probabilities of closely-spaced packets travelling along the same links and
hope to exploit this correlation. Evidence for such correlation has been provided by observations
of the Internet; packet losses are observed to occur in bursts [5, 11]. On the basis of this evidence,

we model the success probabilities of packets belonging to different packet pairs as independent,
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(a)

Figure 1: (a) A simple network involving a source Sy, a router G, and two receivers Ry and R3. (b) Its
logical tree representation with unconditional () and conditional (3) success probabilities parameterising
each link.

but introduce a new parameter to capture the correlation of packet success rates within pairs.

We now characterise the loss behaviour of the link between nodes j and k£ by two parameters:
the unconditional probability «;; of receiving a packet from j at k, and the conditional probability
Bj,i, of receiving a packet given that it was the second of a packet pair traversing the link between j
and k and that the first packet was received (not dropped). Internet loss observations (see [15] lead
us to conjecture that for most networks each conditional probability 3, is greater than or equal
to the corresponding unconditional success probability «; ;. This is intuitively reasonable since the
condition that the first packet in a pair is successfully received suggests that it is probable that
the link is not presently experiencing heavy cross-traffic and losses. In fact, based on experimental
data [11], it is not unreasonable to expect that in many cases j; is known for each link, then there
is a unique mapping from the known (or estimated) p and B3 vectors to an a vector, implying
identifiability of the system and enabling the formation of robust maximum likelihood estimates of
the o values.!

In the case where the {§3, ; } are not known, the problem of unidentifiability remains. The back-
to-back measurements provide us with more data, (if there are N receivers then there are N2 back-
to-back receiver “pairings”), resulting in N count statistics per receiver. However, many of these
measurements are redundant, involving the same links and related losses. In general, although there
may be fewer unknown parameters than back-to-back statistics, the resulting system of equations
is underdetermined.

The parameterized triad logical tree in Figure 1(b) illustrates the packet pair approach. For
example, statistics collected from the first packets in back-to-back pairs with the first packet sent
to node 2 and the second to node 3 provide information about the relationship between a1,

a1, and the unconditional (single packet) path success denoted by Po,2; statistics from the second

!We can consider the multicast success inference procedure proposed in [7] as being equivalent to the case of total
correlation ({8, ,} are all identically one). An example clarifies this interpretation: multicast probes sent through the
triad network of Figure 1 provide exactly the same information as back-to-back packet pairs if ,80’1 is equal to one.
Given S ;, we can uniquely determine the remaining o, and 3, ; from the end-to-end packet-pair measurements.



probe (back-to-back packet) provide information about the relationship between 3 ;, 1,3 and the
conditional path success denoted by pf ;. However, as noted above, even perfect knowledge of all
the p* and p°¢ parameters does not produce a unique mapping to the « and 3 values.

In order to uniquely determine the network parameters (e, 3) we must incorporate additional
information into the estimation process. Specifically, we advocate the use of prior knowledge of pa-
rameters to help guide or “regularize” the estimation process. The Bayesian approach to parameter
inference provides us with a formal means for combining measurements and prior information. It is
important to emphasise that the modelling we will now describe is a priori modelling, i.e., before
any measurements are made. First of all, it is our contention that in the most general situations it is
unreasonable to assume specific prior information about the unconditional probabilities v is avail-
able. That is, in general we cannot assume that any one link is “good” or “bad” and, moreover, we
cannot assume any specific relationship (deterministic or probabilistic) between link losses. How-
ever, empirical observations of Internet traffic and theoretical results for network models suggests
that the assignment of partially-informative prior probabilities to the conditional probabilities 3
is reasonable. This is a key insight and major contribution of this report: joint prior probability
modeling of the network parameters (a, 3), as described next, enables identification of the most
probable network configuration, based soley on (unicast, end-to-end) packet-pair measurements.

Specifically, based on physical considerations of the network we assume that a conditional
probability (3, ; will be larger than its corresponding ;. We can formally characterise this belief
by placing a partially informative (conditional) prior probability distribution p (ﬁj’k|aj,k) on f3;
given aj . The distribution p (ﬂj7k|aj,k) models the (uncertain) relationship between a; and §; .
The least presumptive (non-informative) prior probability model that satisfies the basic physical
constraints of the problem (i.e., probabilities lie between 0 and 1 and Bik = aji) is: the ajp
parameters are independent and uniformally distributed over [0,1] and the B, parameters are
mutually independent and conditionally uniformally distributed over [ajy,1]. We will further
discuss the motivation for this choice and others in the forthcoming sections.

The prior model described above, and others like it, introduce probabilistic coupling between
the a and (8 parameters, which, in conjunction with back-to-back measurement, provides a means
for determining the most probable network configuration; i.e., most probable network parameters
(a, B). The key to our approach is that we identify the most probable joint cv; , and 3, ;, pairs rather
than attempting to identify them independently. The combination of prior probability models and
measured data is formally carried out using the Bayesian probability calculus, and we determine
a posteriori probability distributions for the network parameters. The posterior distributions can
be used to identify the most probable parameter settings, as well as confidence intervals for these

estimates.



3 Formalisation of the Adopted Model and Measurements

In this section, we formally define both our model for the network and the measurements that we
make. We consider the analysis of networks comprised of a single source and multiple receivers,
and represent them (using the same notation as in [7]) with a logical tree 7 := (V, L), consisting
of the set of nodes V that represent the source, routers and receivers in the network, and the set
of links £ connecting the nodes. Each node in the logical tree has a single parent and a number
of children. End-to-end measurements made on an isolated subpath (a subpath consisting of two
or more links in which internal nodes have only one child) do not provide sufficient information to
resolve the individual losses in the isolated subpath. Thus, if isolated subpaths exist in the network
under study, we remove the internal subpath nodes during the formation of the logical tree and use
a single composite link to represent the isolated subpath. All nodes in the logical tree thus have at

least two children, apart from the source (one child) and the receivers (no children).

Figure 2: An example of a depth-4 tree. The arrows depict the paths traversed by the first packet (P;) and
second packet (P,) of a (6,10) packet pair.

Figure 1(b) depicts the logical tree of the simplest non-trivial network (a triad). Figure 2 depicts
a depth-4 general tree that we will use to illustrate the form of the measurements and the likelihood
function. We use R to represent the set of leaf nodes (receivers) and 7 (k) := (V(k), L(k)) to denote
the subtree rooted at node k. R(k) := RN V(k) denotes the set of receivers that are descendants
of node k. P(j,k) C L denotes the set of links included in the shortest path from node j to node
k. The level I(j) of node j is defined as the cardinality of the set P(0, j).

Our goal is to estimate the success rates on individual links within the tree structure. If we
wish to estimate success probabilities for the entire tree, then for each pair of receivers (r;, ), we
gather the following statistics using (active) back-to-back probing pairs or (passive) back-to-back

pairs arising naturally in source traffic generation. The term “(j, k)-pairs” is used to denote those



pairs in which the first packet was destined for node j and the second for receiver k. The nature
of a (6,10) pair is shown by the two arrows in Figure 2: the first packet (P) is sent to node 6, and
the second (P,) to node 10.

We measure the number n;j of (j,k)-pairs in which the first packet was successfully received
and also count the number m j of these n;j pairs in which the second packet was also successfully
received. Similarly, we record ny ;j and my ; from the (k, j)-pairs. By considering all receiver pairs,
we generate two sets of measurements M := {m;x;j,k € R} and N := {n;x;j,k € R}.

We model the loss processes on separate links as mutually independent. Although spatial
dependence (correlated success probabilities on neighbouring links) may be observed in networks
due to common traffic, such dependence highly circumstantial and cannot be readily incorporated
in a model that is intended to be generally applicable to a variety of networks. Bolot et al.
proposed Markovian models of packet loss in [6] based on observations of Internet traffic. Although
such models do not fully account for the extended loss bursts observed in [11], we adopt a similar
approach for modelling the packet loss processes on each link (the model is reminiscent of that used
to explore temporal dependence in [7]).

Let us assume a total of N packet pairs are sent to each (j, k) receiver pair. We assume that sepa-
rate packet pairs are sufficiently spaced so that the link loss processes for the first packets of all pairs
can be modelled as a set of mutually independent Bernoulli processes X (n) = {X; x(n); (4, k) € L}.
X r(n) is the value of the first packet loss process on link (j, k) for the n-th packet pair, and takes
a value 0 to indicate a loss occurred and 1 to indicate successful transfer. X ;(n) is Bernoulli with
probability a;; of being in state 1. The link loss processes for the second packets in the pairs,
denoted Y (n), are conditionally independent given X (n). If X ;(n) = 1, then Y; (n) is Bernoulli
with probability 3, of being in state 1.

Using this model, it is possible to write an expression for the probability of observing an

(mj g, mj %) pair’:

QU k) = H ﬁs,t H Qs

(s,t)EP(0,r) (s,t)EP(r:k)
p (mj,k‘nj,ka Q5 K, ﬁj,k) X (Q(]a k))mj,k (1 - Q (]a k))nj’k_mj,k

where r = max, {I(p) : j,k € R(p)} is the node at which the two paths diverge. The likelihood of
observing M and N is then:

pMIN,a,8) = T[] p(mjklnge ik Bj)

j,kER

The system is not identifiable, and there is not a unique pair of & and 3 vectors that maximise

2The proportionality in the expression indicates that there is a constant factor that is independent of the pa-
rameters, but necessary as a normalisation factor for constructing a valid density. As the factor does not affect any
comparative calculations, it can be safely neglected.



this likelihood. In a Bayesian framework we can combine the likelihood with our prior knowledge

or beliefs to form a posterior density:

p(a, BIM,N) o p(MIN, o, B) p(Bla)p ()

The generation of this density requires the specification of a prior density on the «;; parameters
and a conditional prior density on the 3, parameters given a.

As discussed in the previous section, we have no prior knowledge about the a parameters in a
general setting, so a non-informative prior density must be selected. A specific success probability
aj i, is modelled as uniformally distributed over the range 0 to 1, i.e., p(a;x) = U [0,1] and p(a) =
1 k)ec P(ejk). It is however reasonable to assume that 3; is greater than a ;. A obvious choice is
model the {beta; \} as independent with non-informative uniform densities, p(3, x|a;jx) = U [k, 1]
However, there are other reasonable choices for the prior p(8; x|a; k), as discussed later in Section
5.

4 Implementation: A Factor Graph Approach

Factor graphs (or Bayesian networks) enable us both to visualize the relationships between statis-
tics and network parameters and to greatly simplify the tomography problem through probability
factorization [8]. The graphical structure of the probabilistic factor graph representations thus pro-
vides a theoretical and computational foundation for our network loss analysis methodology. This
factorization facilitates a computationally efficient probability propagation strategy to determine
the posterior success probabilities, optimally fusing the prior probabilities with the measurement
statistics. Indeed, without such factorization, the problem becomes computationally overwhelming
for networks of reasonable size. The application of factor graphs is naturally suited not only to the
estimation problem presented in this report, but to a variety of network problems, because of their
corresponding graphical structures.

We do not intend to provide a detailed account of how factor graphs are derived or how to
apply graphical methods for inferring posterior probabilities (see [8] for details). We merely want
to illustrate the principles underpinning the factor graph framework, and therefore focus on the
problem of inferring success probabilities across the internal links in the triad network of Figure 1.
Figure 3(a) depicts the form of the packet-pair used to collect the statistics mo3 and ng3, as
described in the previous section. The packet-pair consists of the first packet P; destined for node
2 and the second packet P, destined for node 3. We also consider (unconditional) single packet
statistics. Let ng denote a number of single packets sent to node 2 and let mo denote the number
of these actually received. For clarity, we consider the factor graph when only these statistics, and
the statistics ny and mg have been collected (using single probe packets sent to node 2). If the
other measurable statistics (n3, ms, ns2, and m32) are available, then the resulting factor graph

is a relatively straightforward extension of the one we derive.
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Figure 3: (a) The structure of (2-3) packet-pairs, and the recorded statistics. (b) The factor graph repre-
sentation available from experiments that measure ms 3, n2 3 and ma, ns.

The factor graph in Figure 3(b) is derived by considering the dependencies between all network
parameters and measured statistics. The hollow circles represent the parameters/data in the ex-
periment; the filled circles (labelled A-F) indicate dependencies between these parameters. The
right branch of the graph arises from the consideration of the ms and no statistics, and the left
branch is determined from the no3 and mo 3 statistics. The branches are connected because of
our assumption of a dependency between the values of 3,; and «ap;. The factor graph for this
experiment introduces two auxiliary variables (23 and 23) that represent unobserved or “hidden”
data and enable a simplified factorization of the probabilistic network model. In this case, zy is
the number of the ny probes that reached node 1, and 233 is the number of the ngy 3 probes that
reached node 1. The conditional probabilities at A—D describe the functional relationship between
the parameters connected to the nodes. Due to the assumed model, these conditional probabilities
are binomial, and depend only on a (potentially conditional or unconditional) success probability
parameter of the link of interest. Our prior beliefs are embedded at E which assigns the prior
distribution p(f 1 |co,1) as the functional relationship between the conditional and unconditional
success parameters on the (0,1) link.

Once the appropriate factor graph has been derived, probability propagation algorithms (see [8])
can be used to generate posterior distributions for the network parameters. Prior distributions from
the Beta-family are conjugate to the binomial likelihoods, so if we choose from this family, analytic

expressions can be derived for the posterior distributions.
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5 Simulation Experiments

We experimented using simulations based on the network in Figure 2link in the network to assume
one of two state values, 0 representing congestion, and 1 representing a light traffic burden. At time
instants ¢ € T, the state of each link was updated according to a Markov process. The transition
probability matrix of the process governing the state of link (u,v) was determined by drawing a,, ,
from a uniform distribution U [0, 1], and then drawing (3, ,, from Ul[ay, 1]; the matrix was designed
so that if traffic were sent across the link it would experience a steady-state success probability of
Qy,p and a conditional success probability of 8, ,. Packet-pair probes were sent in to the various
receivers in an ordered fashion designed to extract an informative subset of the possible m;; and
n;j k- The times at which the first packets of these pairs were sent were determined from a Poisson
process, such that interarrival times were well-separated. The second packet in a pair was sent one
time instant later. 1600 packet pairs were sent through the network, with the destinations designed
so that there was a uniform distribution across the network of divergence nodes (the node at which
the paths of the individual packets in the packet-pairs separated). Such a distribution guarantees
an equal (prior) exploration of all network parameters.

Figure 4 depicts the result of one of the experiments. The posterior distribution of success
probability was calculated for each link, and plotted in the boxes; the arrows mark the true values.
The confidence that can be placed on an estimate is clearly dependent on the amount of data that
can be collected; estimation of the success probabilities of links (2,4), (4,6), (4,7) are generated
from packet-pairs involving a packet travelling from the source to either node 6 or 7, both of which
are extremely lossy paths. One hundred random trials were conducted for each of the three priors
(uniform, queue-based scale-invariant, and queue-based exponential) depicted in Figure ??. When
the success rate was estimated using the peaks of the generated distributions, the mean absolute

errors were 0.084, 0.069, and 0.074, respectively.

6 Conclusions

We have demonstrated that unicast, end-to-end measurement is capable of determining internal
network losses provided that prior information can be incorporated into the estimation process. We
have identified reasonable prior information models to resolve the losses based on solely end-to-end
measurement. The factor graph framework enables efficient inference methods based on probability
propagation, and we believe that our preliminary experimental results support further investigation

of this new methodology.
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