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Abstract

Standard compressive sensing results state that to exactly recover an s sparse signal in R?, one requires
O(s-log p) measurements. While this bound is extremely useful in practice, often real world signals are not
only sparse, but also exhibit structure in the sparsity pattern. We focus on group-structured patterns
in this paper. Under this model, groups of signal coefficients are active (or inactive) together. The
groups are predefined, but the particular set of groups that are active (i.e., in the signal support) must
be learned from measurements. We show that exploiting knowledge of groups can further reduce the
number of measurements required for exact signal recovery, and derive near optimal bounds for the same.
The number of measurements needed only depends on the number of groups under consideration, and
not the particulars of the groups (e.g., compositions, sizes, extents, overlaps, etc.). The results are also
shown to predict experimental performance quite well.

1 Introduction

In many fields such as genetics, image processing, and machine learning, one is faced with the task of
recovering very high dimensional signals from relatively few measurements. In general this is not possible,
but fortunately many real world signals are, or can be transformed to be, sparse, meaning that only a
small fraction signal coefficients are non-zero. Compressed Sensing [3| [7] allows us to recover sparse, high
dimensional signals with very few measurements. In fact, the results indicate that one only needs O(s-logp)
random measurements to exactly recover an s sparse signal of length p. Moreover, greedy and convex
procedures ([I1, [10]) exist to efficiently recover the signal.

In many applications however, one not only has knowledge about the sparsity of the signal, but some
additional information about the structure of the sparsity pattern as well:

e In genetics, the genes are arranged into pathways, and genes belonging to the same pathway are highly
correlated with each other [22].

e In image processing, the wavelet transform coefficients can be modeled as belonging to a tree, with
parent-child coefficients exhibiting similar properties [13] [6] [16].

e In wideband spectrum sensing applications, the spectrum typically displays clusters of non-zero fre-
quency coefficients, each corresponding to a narrowband transmission [12]

In cases such as these, the sparsity pattern can be represented as a union of certain groups of coefficients
(e.g., coefficients in certain pathways, tree branches, or clusters). This knowledge about the signal structure
can help further reduce the number of measurements one needs to exactly recover the signal. Indeed, the



authors in [5] derive information theoretic bounds for the number of measurements needed for a variety
of signal ensembles, including trees. In, [I7, (1], the authors show that one needs far fewer measurements
when the signal can be expressed as lying in a union of subspaces, and explicit bounds are derived for the
tree-structured case. In this paper, we derive bounds on the number of random iid gaussian measurements
needed to exactly recover a sparse signal when its pattern of sparsity is a union of a subset of groups.

We show that the number of measurements needed only depends on the number of groups under considera-
tion, and not the particulars of the groups (e.g., compositions, sizes, extents, etc.). In particular, the groups
need not be disjoint. The degree to which groups overlap, remarkably, has no effect on our bounds. This
is somewhat surprising since overlapping groups are strongly coupled in the observations, tempting one to
suppose that overlap may make recovery more challenging.

We analyze the group-structured sparse recovery problem using a random Gaussian measurement model. We
emphasize that although the derivation assumes the measurement matrix to be Gaussian, it can be extended
to any subgaussian case, by paying a small constant penalty, as shown in [19]. We restrict ourselves to the
Gaussian case here since it highlights the main ideas and keeps the analysis as simple as possible.

In this paper, we aim to contribute the following:

e We show that the group lasso with overlap [8] method lends itself well to the task of structured signal
recovery under CS measurements.

e We derive near optimal measurement bounds for group-sparse signals, under no assumptions about the
nature of overlap between groups.

e We show how, using these bounds, we can recover structured sparse signals with far fewer measurements
than the standard number of compressive measurements.

To the best of our knowledge, these results are new and distinct from prior theoretical characterizations of
group lasso methods. In [I5] [14], the authors derive consistency results for the group lasso under arbitrary
groupings of variables. In [4], the authors consider the groups to partition the space, and derive conditions
for recovery using the group lasso [9]. In this paper, we focus on deriving non-asymptotic sample bounds
rather than consistency, and make no assumptions about the nature of groups. We appeal to the notion of
restricted minimum singular values of an operator, which is a much weaker assumption than the restricted
isometry conditions required in [17 [4].

The main result shows that signals with support on & of M possible groups, exact recovery is possible from
O(k[log(M — k) +1]) measurements using an overlapping group lasso algorithm. Also, the bounds we derive
is near optimal in the sense that the constants cannot be made much smaller. Note that the bound does
not depend on the size of the support (sparsity level s), and so the bound can be much smaller than the
number of measurements required by methods that assume a simple, unstructured model of sparsity such as
the lasso.

Our proof derives from the techniques developed in [24]. The rest of this paper is organized as follows: in
section [2| we lay the groundwork for the main contribution of the paper, viz. bounding the gaussian width
of the Normal Cone at a point under the atomic norm of group sparse signals. We describe the theory and
reasoning behind this approach. In section [3] we derive bounds on the gaussian width of the aforementioned
normal cone, and show how this allows us to bound the number of random i.i.d. gaussian measurements
needed to be taken for exact recovery of group sparse signals. Section[d]outlines the experiments we performed
and the corresponding results obtained. We conclude our paper in section

1.1 Notations

We first introduce notations that we will use for the rest of the paper. Consider a signal of length p, that is s
sparse. Note here that in case of multidimensional signals like images, we assume they are vectorized to have
length p. The coefficients of the signal are grouped into sets {G;}*,, such that Vi € {1,2,--- ,M},G; C



{1,2,---,p}. We denote the set of groups by G = {G;}i;=1..m, and | - | denotes the cardinality of a set. We
let z* be the (sparse) signal to be recovered, whose non zero coefficients lie in k of the M groups G* C G.
Clearly, |G*| = k < M = |G|. We let ®,,», be a measurement matrix consisting of i.i.d. gaussian entries
of mean 0 and unit variance so that every column is a realization of an i.i.d. gaussian length n vector with
covariance I. For any vector z € RP, we denote by z the subvector of x such that (zg); = z; if ¢ € G, and
0 otherwise. We denote the observed vector by y € R™ :y = ®&z*. The absence of a subscript following a
norm || - || implies the ¢2 norm.

2 Preliminaries

In this section, we will set up the problem that we wish to solve in this paper. We will argue as to why exact
recovery of the signal corresponds to the minimization of the atomic norm of the signal, with the atoms
obeying certain properties governed by the signal structure.

2.1 Atoms and the atomic set

To begin with, let us formalize the notion of atoms and the atomic norm of a signal (or vector). We will
restrict our attention to group-sparse signals in RP, though the same concepts can be extended to other
spaces as well. We assume that z € R? can be decomposed as :

k
T = E cia; ¢; >0
i=1

The vectors a; are called atoms, and form the basic building blocks of any signal, which can be represented
as a conic combination of the atoms. We call A = {a;} to be the atomic set. Given a vector x € R? and an
atomic set, we define the atomic norm as

||J?|A=inf{zca:xzzcaa a0 VaeA} (1)

acA acA

The atomic decomposition of the signal has been known to be the simplest representation of the signal in
some sense. Hence, to obtain a “simple” representation of a vector, we look to minimize the atomic norm
subject to constraints (equation ):

& = argmin||z||4 s.t. y = dz* (2)
TERP

Indeed, when the atoms are merely the canonical basis in RP, the atomic norm reduces to the standard ¢,
norm, and minimization of the atomic norm yields the well known lasso procedure [23].

Assuming we are aware of the group structure G, we now proceed to define the atomic set and the corre-
sponding atomic norm for our framework:

VG € G, let Ag = {a® € R? : ||(a®)g]|2 = 1, (a%)ge = 0}

A= {AG}GGQ (3)

We now show that the atomic norm of a vector z € RP under the atomic set defined in equation is
equivalent to the overlapping group lasso norm defined in [§], a special case of which is the standard group
lasso norm [9]. Thus, minimizing the atomic norm in this case is exactly the same as the group lasso with
overlapping groups.



Lemma 2.1 Given any arbitrary set of groups G, we have

| |$| |-A = ngerlap (x)

and hence any algorithm that minimizes one norm will equivalently minimize the other.

Proof In equation ()), we can substitute v = cqa, giving us cg = |c| - [la]| = ||cqal| = ve. Hence,
||x|A:inf{an:x: ana Ca ZOVaEA}
acA acA
Ziﬂf{2||vg| :x:ng}
Geg Geg

= ngerlap(x) I
Corollary 2.2 Under the atomic set defined in[3, when G partitions RP,

lzlla =) [zl

Geg
Proof ngerlap = > aeg llrcl| in the non overlapping case. [}
Thus, equation (2] yields:
& = argmin ngerlap(a:) s.t. y = da” (4)

TERP

which can be solved using the overlapping group lasso [3].

Also note that we can directly compute the dual of the atomic norm from the set of atoms
ul||* = sup{a,u) = max||u 5
l[uell 4 aeg( ) = max [lu|| (5)

The dual norm will be useful in our derivations below.

2.2 Gaussian Widths and Exact Recovery

We define the tangent cone and normal cone at z* with respect to conv(A) under ||z|| 4 as [I8]:

Ta(az") = conefz —z" - [[z][a < [lz"[|a} (6)
Nyg@*)={u : (u,2) <0, Vz€ Ta(z")} (7)
={u : (u,z*) =t||z| .4 and |Ju|’y <t for some ¢t > 0}

We note that, from [24] (Prop. 2.1), & = z* (equation (2)) is unique iff

null(®) N Ta(z*) = {0} 8)

Hence, we require that the tangent cone at x* intersects the nullspace of ® only at the origin, to guarantee
exact recovery.

Before we state the main recovery result from [24], we define the gaussian width of a set:
Definition Let SP~! denote the unit sphere in R?. The Gaussian width w(S) of a set S € SP~1 is
w(S) =E, [sup gtz]
z€S

where g ~ N (0, 1)



Gordon uses the Gaussian width to provide bounds on the probability that a random subspace of a certain
dimension misses a subset of the sphere [2]. In [24], these results are specialized to the case of atomic norm
recovery. In particular, we will make use of the following

Proposition 2.3 [[2]], Corollary 3.2] Let ® : RP — R™ be a random map with i.i.d. zero-mean Gaussian
entries having variance 1/n. Further let Q = T (x*) NSP~Y denote the spherical part of the tangent cone
Ta(x*). Suppose that we have measurements y = ®x*, and we solve the convexr program (@ Then x* s the
unique optimum of (@ with high probability provided that

n>w(Q)? +0(1).

To complete our problem setup we will also restate proposition 3.6 in [24] :

Proposition 2.4 (Proposition 3.6 in [24)]) Let C be any non-empty convex cone in RP, and let g ~ N(0,1)
be a Gaussian vector. Then:
w(CNSPY) < E, [dist(g, C*)] (9)

where dist(.,.) denotes the Euclidean distance between a point and a set, and C* is the dual cone of C

We can then square equation @D use Jensen’s inequality to obtain
w(C'NSPH? < E,[dist(g,C*)?] (10)

We note here that the dual cone of the Tangent cone is the Normal cone, and vice-versa.

Thus, to derive measurement bounds, we only need to calculate the square of the gaussian width of the
intersection of the tangent cone at x* with respect to the atomic norm and the unit sphere. This value can
be bounded by the distance of a gaussian random vector to the Normal cone at the same point, as implied
by equation . In the next section, we derive bounds on this quantity.

3 Gaussian Width of the Normal Cone of the Group Sparsity
Norm

For generic groups G v € Ny(z*) & I >0 : (v,z*) =t|lz*||a, lvgl| =11 G € G*, |vg| <tif G &G
It is not hard to see that, in the case of disjoint groups,

NA(x*){ZERp:zitfzzj)ﬁ VG € G*, |lzgl| <t VG ¢ G*,t > 0} (11)
G

However, in the case of overlapping groups, we do not know how to obtain such a closed from.

We now prove the main result of this paper, a near optimal bound on the number of gaussian measurements
needed to recover a group-sparse signal:

Theorem 3.1 To exactly recover a k- group sparse signal decomposed into M groups in RP, O(k[log(M —
k) + 1)) iid gaussian measurements are sufficient.

To prove this result, we need two lemmas:

Lemma 3.2 Let q1,...,qr be L, x-squared random variables with d-degrees of freedom. Then

E[ sup ¢;] <2log(L)+d+ 1.
1<i<L



Proof This result is well-known, but we provide a simple proof for completeness. ||z||2 is Lipschitz with
Lipschitz constant 1. Thus we can apply concentration of measure for Gaussian random variables. First,
bound the expectation as

E Lrg_ag(L q,] /0 P LI??LXL %= t} d

§5+/ P[max qizt] dt
5 1<i<L

§5+L/ Plq > t]dt
o

Setting 0 = 2log(L) + d gives

oo

[ee]
6+L/ ]P’[(th]dt:Qlog(L)-i-d-i-L/ Plg > t]dt
5 2log(L)+d

§210g(L)+d+n/oo P[qlz(\/&+\/i)2]dt

2log(L)

L o0
§210g(L)+d+*/ exp (—4) dt
2 2log(L)

=2log(L) +d+ Lexp (—%) dt

t=2log(L)

=2log(L)+d+1
where the first inequality follows by the triangle inequality and the second inequality is concentration of
measure. ||

Lemma 3.3 Suppose v € RP is supported on some set of groups G* C G

loll < VIG*[lvll% -

Proof By duality, it suffices to show that ||z]|.4 < 1/|G|||z|| for all z. For any z, there exists a representation
z= ZGEQ* wg where none of the wg overlap. It then follows that

1/2
Izla <= Y llwell < V1671 < > IIwG||2> = V1g*1|l-|

Geg Geg

completing the proof. |

Proof of Theorem [3.1] Let v € N4 (z*) with [[v]|*% = 1. Since z¢ = 0 for G ¢ G*, we may assume that
vg =0 for G ¢ G*.

We need to compute an upper bound on the expected distance of a normal random vector to a point in
the normal cone at x*. To proceed, let w ~ N(0,I,) be a vector with iid gaussian entries. Let t(w) =
we || and construct a vector r € N4(x*) by setting:

maxgegg*

{tUG if G e Gg*
rg =

wWa otherwise

It is clear that rg satisfies all the necessary properties for membership in N 4(z*). Referring to equation



(10), we now consider the expected squared distance between r and w:

g1

E[||r — w||*] = ]EZ(W —w;)”
= E[ Z (TG - w(;) + Z (’I“G — wg)]

geg* G¢g*
DES (1 ve - we)’]
Geg
2
()
= Et(w)’]| > ve| +E| D IwGIIQ]
Geg* Geg*
(iii) ?
< (2log(M —k)+B+1) | Y va| +kB
Geg*

(iv)
< k(2log(M —k)+B+1)+kB
= 2k(log(M — k) + B) + k

Where (i) follows from that fact that we considered part of the same gaussian vector to lie in the normal
cone. (ii) follows because t is independent from wg. B is the maximum over all group sizes, and (ii) uses this
to bound the expectation of the x? random variable |[w¢||?. (iii) follows from Lemma|3.2|as |G\ G*| = M —k.
(iv) follows from Lemma giving us the final result. |

Thus, we see that we require 2k(log(M — k) + B) + k gaussian measurements to exactly recover a M — group
sparse signal, out of which k groups are active. It is worthwhile to note that the constant we obtain (2) is
near optimal, in that the bound on the maximum of y? variables cannot be made much tighter. If the
groups are disjoint to begin with , the the normal cone will be given by equation 7 and we would have
an equality in (iv). Thus, we see that we do not pay an additional penalty when the groups overlap. This
fact is surprising, since one would expect that one would need more measurements to effectively capture the
dependencies among the overlapping groups.

We note that although we pay no extra price to measure the signal when the groups overlap, there is
an additional cost in the recovery process of the signal, in that the groups need to first be separated by
replication of the coefficients [8], or resort to a primal-dual method to solve the problem [20].

4 Experiments and Results

We extensively tested our method against the standard lasso procedure . In the case where the groups overlap,
we use the replication method outlined in [§], to reduce the problem to that of non overlapping groups. Note
that, [20] develop an algorithm to solve the overlapping group lasso problem without replication. Although
this is better in terms of memory requirements, the replication method is faster, and we prefer to use it. We
will denote the group lasso with overlap by “OG lasso”.

4.1 Comparison with lasso

We compare the number of measurements needed for our method with that needed for the lasso. For the
lasso, we use the bound derived in [24] , viz. (25 + 1)log(p — s). We generate toy signals with p = 1024. We
consider M = 32 non overlapping groups for simplicity, all of the same size B = 32. We let k = 2, which
gives an upper bound on the sparsity as s < k x B = 64. However, we randomly assign non zero coefficient



to one of these locations in the signal with probability 0.7. This yields s ~ 45 in expectation. The active
groups are assigned uniformly at random.

For the lasso , we use SpaRSA [21] , learning the regularization parameter A over a logarithmic grid. The
same grid is used to learn A for the group lasso, for which we use SpaRSA again, after the replication
step. Fig displays the mean reconstruction error ||# — x*||3 as a function of the number of random
measurements taken. The errors have been averaged over 200 tests, and each time a new random signal was
generated with the above mentioned parameters.

——- lasso
= OGlasso

40t

30 ¢
MSE

20 +

10 ¢

0 ‘ e H
50 100 150 200 250 300
# MEASUREMENTS

(a) (b)

Figure 1: Comparison of the reconstruction error of the lasso and the group lasso, with increasing measure-
ments. (a) Lasso achieves near perfect reconstruction when #measurements ~ 225, whereas the same error
is achieved by OG lasso when #measurements ~ 150. (b) shows the modeling of DWT coefficients along
paths on a tree

4.2 Wavelet transform coefficients modeled as overlapping groups

Wavelet transform coefficients of images/signals obey a group sparse structure, due to the parent-child
dependencies across scales [16]. These dependencies can be modeled as groups along paths in the wavelet tree
from root to leaf (Figure . We consider the “peppers” image, sized to 128 X 128. We vectorize the
image to length 16384, and take 5000 gaussian measurements. We considered this image so as to compare
our results with those in [I7]. We see that (Figure [2]), we can recover the signal accurately, with very
few measurements. The figure also shows the results obtained by [I7], where the authors also take 5000
measurements.

[ e A .
(a) Peppers (b) CoSaMP (c) Model-Based (d) OG Lasso
(MSE = 22.8) (MSE = 11.1) (MSE = 7.8)

Figure 2: Performance on the peppers image



Along the same lines, we consider the DWT coeflicients of a piecewise constant, length 2048 signal, with
5 “jumps” located randomly in the signal. Considering the wavelet tree structure again [I7, [T6], we have
k=5M =1024, B = 11, s < 55,p = 2048. These numbers indicate that we need atleast 185 measurements
for recovery using the group lasso with overlap, as opposed to nearly 800 measurements for recovery using
the lasso. Figure shows that this is indeed true, validating the bound we obtained in theorem The
y-axis has been cropped at 0.5 for representation purposes. Also, we note that we require only around 550
measurements to recover the signal using the lasso. The disparity between this and the theoretical bound in
[24] arises because we can only upper bound s in our experiments, and it is more than likely that s << 55.

045 L B lasso a7
Hl OG lasso
035 1 Measurements || MSE OG lasso || MSE lasso
' 100 204,31 481.61
MEE 200 73.92 238.54
0.25 300 26.97 118.95
400 9.89 58.75
0.15 500 3.46 2945
600 1.25 14.44
B 700 0.45 7.12
800 0.15 351
s 900 005 171

(a) (b)

Figure 3: Performance on DWT coeffecients (a) and the “metastasis” part of the gene data (b)

4.3 Gene expression data, overlapping pathways

Finally, we test our recovery bounds on gene expression data for breast cancer detection. The dataset we
use is the same as that used in [8]. The genes are grouped into 639 pathways, [22]. Like [§], we restrict our
attention to only 3310 genes that are at least in one pathway.

We try to predict the values of the sparse gene expression data, based on observing a limited number of
compressive measurements. For the sake of consistency, we limit ourselves to only one class among the 2
in the dataset. We note that the gene expression data is nearly sparse, meaning a very large fraction of
elements are close to zero. We retain the 20 “most active” groups (in terms of magnitude), to sparsify the
data. We use a randomly selected set of 50 measurements for training A, and the remaining for testing,
from the section of the data that corresponds to tumors leading to metastasis. Figure shows the mean
reconstruction error over the test set, for a range of random measurements considered for every vector.

5 Conclusion

We showed that, when additional structure about the support of the signal to be estimated is known, we
can recover the signal in much fewer measurements that what would be needed in the standard compressed
sensing framework. Also, we showed that we surprisingly do not pay an extra penalty when the groups
overlap each other. Moreover, the bound holds for arbitrary group structures, and can be used in a variety
of compressed-sensing applications. The bounds we derive are tight, and can be extended to subgaussian
measurement matrices by incurring a constant penalty.
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