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ABSTRACT

The problem of recovering a sparse signalx ∈ Rn from a rela-
tively small number of its observations of the formy = Ax ∈ Rk,
whereA is a known matrix andk ≪ n, has recently received a lot
of attention under the rubric ofcompressed sensing(CS) and has
applications in many areas of signal processing such as datacom-
pression, image processing, dimensionality reduction, etc. Recent
work has established that ifA is a random matrix with entries drawn
independently from certain probability distributions then exact re-
covery ofx from these observations can be guaranteed with high
probability. In this paper, we show that Toeplitz-structured matri-
ces with entries drawn independently from the same distributions
are also sufficient to recoverx from y with high probability, and we
compare the performance of such matrices with that of fully indepen-
dent and identically distributed ones. The use of Toeplitz matrices in
CS applications has several potential advantages: (i) theyrequire the
generation of onlyO(n) independent random variables; (ii) multipli-
cation with Toeplitz matrices can be efficiently implemented using
fast Fourier transform, resulting in faster acquisition and reconstruc-
tion algorithms; and (iii) Toeplitz-structured matrices arise naturally
in certain application areas such as system identification.

Index Terms— Compressed sensing, restricted isometry prop-
erty, system identification, Toeplitz matrices, underdetermined sys-
tems of linear equations

1. INTRODUCTION

1.1. Background

We begin by revisiting the problem of recovering a signalx ∈ Rn

from linear observations of the form

y = Ax : ‖x‖0 ≤ m, (1)

where‖ · ‖0 counts the number of non-zero entries in a vector, and
A ∈ Rk×n is a known matrix. Of particular interest is the special
case of highly underdetermined system,k ≪ n, that has applica-
tions in many areas of signal processing such as data compression,
image processing, dimensionality reduction etc. and has recently re-
ceived a lot of attention under the rubric ofcompressed sensing(CS)
– starting in particular with some of the earlier works of Candes,
Romberg and Tao [1, 2, 3] and Donoho [4].

One of the fundamental problems in CS is to identify the obser-
vation matrices that are sufficient to ensure exact recoveryof x from
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y; we term such matrices as the CS matrices. Independently, Donoho
[4], and Candes and Tao [1, 3] have provided sufficient conditions for
CS matrices. In particular, it was established in [3] (and refined in
[1]) that for ak×n observation matrixA to be a CS matrix, it is suf-
ficient that it satisfiesrestricted isometry property(RIP) of order3m
in the following sense: letT ⊂ {1, 2, . . . , n} andAT be thek×|T |
submatrix obtained by retaining the columns ofA corresponding to
the indices inT ; then, there exists a constantδ3m ∈ (0, 1/3) such
that

∀ z ∈ R
|T |, (1 − δ3m)‖z‖2

2 ≤ ‖AT z‖2
2 ≤ (1 + δ3m)‖z‖2

2 (2)

holds for all subsetsT with |T | ≤ 3m.1 Moreover, it was also shown
in [1] that x can be exactly recovered in that case by the convex
program

x = arg

�
min
z∈Rn

‖z‖1 subject to y = Az

�
, (3)

which is attractive because it can be solved in a computationally
tractable manner using linear programming and convex optimization
techniques – see, e.g., [1, 4, 5]. Note that the RIP of order3m is
equivalent to saying that the singular values of allk × 3m submatri-

ces ofA lie in the interval
�p

2/3,
p

4/3
�

. And while the definition

of RIP does not guarantee the existence of CS matrices, recent work
has shown that (appropriately scaled) random matrices withentries
drawn independently from certain probability distributions satisfy
RIP of order3m with high probability for everyδ3m ∈ (0, 1/3)
providedk ≥ const · m ln(n/m) – see, e.g., [1, 3, 4, 6]; we refer
to such matrices as independent and identically distributed (IID) CS
matrices.

1.2. Main Result

In this paper, we show that if a probability distributionP (a) yields
an IID CS matrix (having unit-norm columns in expectation) then a
k × n (partial) Toeplitz matrixA (also having unit-norm columns in
expectation) of the form

A =

26664 an an−1 . . . a2 a1

an+1 an . . . a3 a2

...
...

. . .
. . .

...
an+k−1 an+k−2 . . . . . . . ak

37775 , (4)

1This is a slightly weaker version of the sufficient conditionoriginally
given by Candes and Tao; for the sake of brevity, however, andbecause it
suffices to illustrate the principles, we limit ourselves tothis condition and
refer the reader to [1, 3] for further details.



where the entries{ai}
n+k−1
i=1 have been drawn independently from

P (a), is also a CS matrix in the sense that it satisfies RIP of order3m
with high probability for everyδ3m ∈ (0, 1/3) providedk ≥ const·
m3 ln(n/m). Essentially, the reduction in the number of degrees of
freedom (DoF) of a Toeplitz random matrix seems to result in an
increase in the required number of observations. Note, however, that
the result established in this paper is a sufficient condition for exact
recovery ofall m-sparse signals, and simulation results show that
actual performance of Toeplitz CS matrices tends to be comparable
to that of IID CS matrices formany, if not all, such signals. The
proof technique used for obtaining this sufficient condition is a novel
combination of existing results on IID CS matrices and equitable
coloring of graphs, and should be of particular interest to people
working in the area of compressed sensing.

The use of Toeplitz CS matrices is a desirable alternative for a
number of application areas because (i) IID CS matrices require gen-
eration ofO(kn) independent random variables, which could be par-
ticularly troublesome for large-scale applications, whereas Toeplitz
CS matrices require generation of onlyO(n) independent random
variables; (ii) multiplication with IID CS matrices requiresO(kn)
operations resulting in longer data acquisition and reconstruction
times, while multiplication with a Toeplitz CS matrix can beeffi-
ciently implemented using fast Fourier transform (FFT) andconse-
quently requires onlyO(n log2(n)) operations; and (iii) Toeplitz-
structured matrices arise naturally in certain application areas such
as identification of a linear time-invariant (LTI) system and conse-
quently, IID CS matrix results are not applicable in such cases.

1.3. Organization

The rest of this paper is organized as follows. In Section 2, we prove
that a Toeplitz matrix of the form given in (4) satisfies RIP ofor-
der 3m with high probability. In Section 3, we discuss extensions
of the result of Section 2 to circulant matrices,left-shiftedToeplitz-
structured matrices, identification of LTI systems having sparse im-
pulse responses and recovery of signals that are sparse in some trans-
form domain. In Section 4, we numerically compare the perfor-
mance of Toeplitz and circulant CS matrices to that of IID ones and
finally, in Section 5, we present some concluding remarks.

2. PROOF OF MAIN RESULT

To establish that Toeplitz-structured matrices with entries drawn in-
dependently from “good” probability distributions are also sufficient
to recoverx from y with high probability, we first observe that if (2)
holds for anyT then it also holds for allT ′ ⊂ T . Consequently, it
suffices to show that Toeplitz submatrices satisfy (2) with high prob-
ability for all T ⊂ {1, 2, . . . , n} such that|T | = 3m. Next, we
lower bound the probability that Toeplitz submatrices satisfy (2) for
any fixed subsetT with |T | = 3m.

Lemma 1. Suppose thatn, m are given, and letP (a) be a probabil-
ity distribution that generates ak × n IID matrix having unit-norm
columns in expectation such that, for everyδ3m ∈ (0, 1/3) and ev-
ery T ⊂ {1, 2, . . . , n} with |T | = 3m, thek × |T | IID submatrix
obtained by retaining the columns corresponding to the indices inT
satisfies(2) with probability at least

1 − e−f(k,m,δ3m), (5)

wheref(k, m, δ3m) is some real-valued function ofk, m andδ3m.
Let {ai}

n+k−1
i=1 be a sequence of random variables drawn indepen-

dently from the same distribution, andA be ak × n Toeplitz matrix

of the form given in(4). Then, for everyδ3m ∈ (0, 1/3) and ev-
ery T ⊂ {1, 2, . . . , n} with |T | = 3m, the Toeplitz submatrixAT

satisfies(2) with probability at least

1 − e−f(⌊k/q⌋,m,δ3m)+ln(q), (6)

whereq = 3m(3m − 1) + 1.

Remark 1. As an illustration, let the probability distributionP (a)
be given by

N

�
0,

1

k

�
,

8<:+
q

1
k

with probability 1
2
,

−
q

1
k

with probability 1
2
,

or8>><>>:+
q

3
k

with probability 1
6
,

0 with probability 2
3
,

−
q

3
k

with probability 1
6
.

(7)

Then,

f(k, m, δ3m) = c0k − 3m ln(12/δ3m) − ln(2), (8)

wherec0 = c0(δ3m) = δ2
3m/16 − δ3

3m/48 (see, e.g., [6]).

Proof. Fix δ3m ∈ (0, 1/3) andT ⊂ {1, 2, . . . , n} with |T | = 3m.
Let AT,i denote thei-th row ofAT and construct an undirected (de-
pendency) graphG = (V, E) such thatV = {1, 2, . . . , k} and

E =
�
(i, i′) ∈ V × V : i 6= i′, AT,i andAT,i′ are dependent

	
.

Notice that because of the Toeplitz nature ofA, AT,i can at most be
dependent with

2 · (1 + 2 + · · · + (|T | − 1)) = 2 · |T |(|T | − 1)/2 = q − 1

other rows ofAT . This implies that the maximum degree∆ of G
(defined as the maximum number of edges originating from any ver-
tex) is given by∆ ≤ (q − 1).2 Consequently, using the well-known
Hajnal-Szemerédi theorem on equitable coloring of graphs[8], we
can always partitionG usingq (or more) colors such that

⌊k/q⌋ ≤ min
j∈{1,2,...,q}

|Cj | ≤ max
j∈{1,2,...,q}

|Cj | ≤ ⌈k/q⌉, (9)

where{Cj}
q
j=1 correspond to the different color classes.3 Next, let

Aj
T be the|Cj | × |T | partition submatrix obtained by retaining the

rows ofAT corresponding to the indices inCj and note that

∀ z ∈ R
|T |, ‖AT z‖2

2 =

qX
j=1

‖Aj
T z‖2

2 =

qX
j=1

|Cj |

k
‖Ãj

T z‖2
2,

(10)

whereÃj
T is defined to beÃj

T =
q

k
|Cj |

Aj
T (to ensure unit-norm

columns in expectation). Then, from the definition ofAj
T ’s, we have

that eachÃj
T is a |Cj | × |T | submatrix with IID entries from the

distributionP (a) and hence, satisfies (2) with probability at least

1 − e−f(|Cj|,m,δ3m) ≥ 1 − e−f(⌊k/q⌋,m,δ3m). (11)

2We refer the reader to [7] for a review of basic terminology ingraph
theory.

3Recall that coloring of a graph means that eachCj ⊂ V , ∪jCj = V ,
Cj ∩ Cj′ = φ and no two vertices in a color class share an edge.



Also, note that
Pq

j=1

|Cj |

k
= 1 and therefore, from (10), we have

that occurrence of the event(
q\

j=1

Ãj
T satisfies (2)

)
implies that∀ z ∈ R|T |

qX
j=1

|Cj |

k
(1 − δ3m)‖z‖2

2 ≤

qX
j=1

|Cj |

k
‖Ãj

T z‖2
2 ≤

qX
j=1

|Cj |

k
(1 + δ3m)‖z‖2

2

=⇒ (1 − δ3m)‖z‖2
2 ≤ ‖AT z‖2

2 ≤ (1 + δ3m)‖z‖2
2 , (12)

that is, (
q\

j=1

Ãj
T satisfies (2)

)
⊂ {AT satisfies (2)} . (13)

Consequently, we have that

Pr({AT satisfies (2)})

= 1 − Pr({AT does not satisfy (2)})

(a)

≥ 1 − Pr

 (
q[

j=1

Ãj
T does not satisfy (2)

)!
(b)

≥ 1 −

qX
j=1

Pr
�n

Ãj
T does not satisfy (2)

o�
(c)

≥ 1 −

qX
j=1

e−f(⌊k/q⌋,m,δ3m)

= 1 − e−f(⌊k/q⌋,m,δ3m)+ln(q), (14)

where(a) follows from (13),(b) follows from union bounding the

event
nSq

j=1 Ãj
T does not satisfy (2)

o
and (c) follows from (11);

this completes the proof of the lemma.

Remark 2. Note that the idea of using equitable coloring of graphs
to partition a set of dependent random variables into disjoint sets
having approximately equal number of independent random vari-
ables is not new and has been previously used by researchers to de-
rive deviation bounds for sums of dependent random variables that
exhibit limited dependence – see, e.g., [9].

Loosely speaking (and fork sufficiently large), Lemma 1 says
that for any subsetT of cardinality3m, if an IID submatrix satisfies
(2) with probability at least1 − e−O(k), then a Toeplitz submatrix
with entries drawn independently from the same distribution also
satisfies (2) with probability at least1 − e−O(k/m2). The next step
of lower bounding the probability that Toeplitz submatrices satisfy
(2) for all subsetsT of cardinality3m follows trivially from this
result by union bounding over the choice of

�
n

3m

�
such subsets. Be-

low, we specifically state the implications of this union bound for the
distributions given in (7).

Theorem 1. Suppose thatn, m are given, and letA be ak × n
Toeplitz matrix of the form given in(4), where the entries{ai}

n+k−1
i=1

are drawn independently from one of the probability distributions
given in(7). Then, there exist constantsc1, c2 > 0 depending only

on δ3m such that for anyk ≥ c1 m3 ln(n/m), A satisfies RIP of
order 3m for everyδ3m ∈ (0, 1/3) with probability at least

1 − e−c2k/m2

. (15)

Proof. Fix δ3m ∈ (0, 1/3). From Lemma 1 and (8),A satisfies (2)
for anyT ⊂ {1, 2, . . . , n} of cardinality3m with probability at least

1 − e−c0⌊k/q⌋+3m ln(12/δ3m)+ln(2)+ln(q) ≥

1 − e−c0k/9m2+3m ln(12/δ3m)+ln(9m2)+ln(2)+c0 ,

and there are
�

n
3m

�
≤ (en/3m)3m such subsets. Consequently,

union bounding over these subsets yields thatA satisfies RIP of or-
der3m with probability at least

1 − e−c0k/9m2+3m[ln(n/3m)+ln(12/δ3m)+1]+ln(9m2)+ln(2)+c0 .
(16)

Next, fix c2 > 0 and pickc1 > 27c3/(c0 − 9c2), wherec3 =
ln(12/δ3m)+ln(2)+c0+4. Then, for anyk ≥ c1 m3 ln(n/m), the
exponent in the exponential in (16) is upper bounded by−c2k/m2

and this completes the proof of the theorem.

Before discussing natural extensions to Toeplitz CS matrices, it
is instructional to compare the result of Theorem 1 with thatfor IID
CS matrices. Specifically, previous work has shown that IID CS
matrices generated from the distributions given in (7) satisfy RIP of
order3m for everyδ3m ∈ (0, 1/3) with probability≥ 1 − e−c′

2
k

providedk ≥ c′1 m ln(n/m), wherec′1, c
′
2 > 0 are constants de-

pending only onδ3m – see, e.g., [3, 6]. It might be tempting, there-
fore, to conclude that reduction in the number of DoFs of a Toeplitz
matrix from O(kn) to O(n) results in a factor ofO(m2) increase
in the required number of observations. One needs to apply cau-
tion, however, as Theorem 1 bounds the worst case performance of
Toeplitz CS matrices forall m-sparse signals and it might very well
be that this oversampling is not required formostsignals in the class.
Extensive simulations carried out for a number ofm-sparse signals
using IID and Toeplitz matrices of equal dimensions, in fact, sup-
port this intuition. It is also interesting to note that somewhat similar
numerical results (without any performance guarantees) have been
reported in [10] in the context ofrandom filters.

3. EXTENSIONS

In this section, we discuss natural extensions of the resultof Sec-
tion 2 to circulant and left-shifted Toeplitz-structured matrices. Fur-
ther, we also describe how the results for Toeplitz-structured CS
matrices lend themselves to (i) identification of LTI systems having
sparse impulse responses; and (ii) recovery of signals thatare either
piecewise constant (PWC) or sparse in the Haar wavelet domain.

3.1. Circulant CS Matrices

Theorem 2. Suppose thatn, m are given, and letA be ak × n
(partial) circulant matrix of the form

A =

26664 an an−1 . . . a2 a1

a1 an . . . a3 a2

...
...

. . .
. . .

...
ak−1 ak−2 . . . . . . . ak

37775 , (17)



where the entries{ai}
n
i=1 are drawn independently from one of the

distributions given in(7). Then, there exist constantsc′′1 , c′′2 > 0
depending only onδ3m such that for anyk ≥ c′′1 m3 ln(n/m), A
satisfies RIP of order3m for everyδ3m ∈ (0, 1/3) with probability
at least

1 − e−c′′
2

k/m2

. (18)

Sketch of Proof.Using the notational convention of Lemma 1, note
that for any fixedT ⊂ {1, 2, . . . , n} with |T | = 3m, the i-th row
AT,i of a circulant submatrixAT can at most be dependent with
2|T |(|T | − 1) ≤ 6m(3m − 1) other rows ofAT because of the
circulant nature ofA, i.e., the maximum degree∆ of the dependency
graph (as defined in Lemma 1) ofAT is given by∆ ≤ 6m(3m−1).
The rest of the proof follows along exactly the same lines as for the
Toeplitz case.

3.2. Left-shifted Toeplitz and Circulant CS Matrices

The results of Theorem 1 and 2 apply equally well to left-shifted
Toeplitz and circulant matrices of the form26664a1 a2 . . . an−1 an

a2 a3 . . . an an+1

... � �
...

...
ak . . . . . . . an+k−2 an+k−1

37775 , (19)

and 26664a1 a2 . . . an−1 an

a2 a3 . . . an a1

... � �
...

...
ak . . . . . . . ak−2 ak−1

37775 , (20)

because the submatrices of such matrices also give rise to depen-
dency graphs with maximum degrees upper bounded by3m(3m−1)
and6m(3m − 1), respectively.

3.3. System Identification

The area of estimation of the impulse response of an LTI system from
the knowledge of its input and output signals, commonly termed as
system identification, is of considerable importance in signal pro-
cessing because of its applicability to a wide range of problems –
see, e.g., [11, 12]. In the case of a finite impulse response (FIR) LTI
system, this typically involves probing the system with a (known)
white noise sequence of duration orders of magnitude greater than
that of the impulse response [13], which may be prohibitive because
of the delay incurred in solving for the impulse response andthe dif-
ficulty of generating a truly white noise sequence. For the purposes
of deconvolving an LTI system having a sparse impulse response,
however, a more promising alternative is to appeal to the results of
Section 2.

As an illustration, letx[ℓ] be anm-sparse impulse response of
an LTI system (of durationn) anda[ℓ] be an IID sequence of dura-
tion (n + k − 1) that has been drawn from one of the probability
distributions given in (7). Then, probing the given system with a[ℓ]
yieldsy[ℓ] = a[ℓ] ∗ x[ℓ] and the theory of CS along with Theorem 1
guarantees that, with high probability,x[ℓ] can be exactly recovered
by solving the convex program

x[ℓ] = arg

�
min
z∈Rn

‖z‖1 subject to y = Az

�
, (21)

where, in this case,y =

26664 y[n − 1]
y[n]

...
y[n + k − 2]

37775, and

A =

26664 a[n − 1] a[n − 2] . . . a[1] a[0]
a[n] a[n − 1] . . . a[2] a[1]

...
...

. . .
. . .

...
a[n + k − 2] a[n + k − 3] . . . . . . . . a[k − 1]

37775 .

3.4. Beyond Sparse Signals

We have proven above that Toeplitz (and circulant) matrices, having
entries drawn independently from probability distributions that yield
IID CS matrices, satisfy RIP of order3m with high probability. Of-
ten, we are interested in signals that are sparse in some transform
domainΨ 6= I , i.e., x = Ψθ andθ ∈ Rn is m-sparse, in which
case it is required that the product matrixAΨ satisfies RIP of or-
der 3m for successful recovery ofθ (and hencex). This is indeed
the case whenA happens to be an IID CS matrix andΨ is any or-
thonormal basis [6]. Toeplitz matrices, however, seem to lack this
universalityproperty because of their highly structured nature. Nev-
ertheless, the results of Section 2 can still be leveraged todesign
CS matrices forfixed transformations to retain some of the benefits
of Toeplitz-structured CS matrices such as generation of only O(n)
independent random variables, and faster acquisition and reconstruc-
tion algorithms.

As an illustration, letx be anm-piece PWC signal; such a signal
can be written asx = Lθ, whereθ ∈ Rn ism-sparse andL ∈ Rn×n

– the discrete integral transform – is given by

L =

2666641 0 . . . 0

1 1
. . . 0

1
. . .

. . . 0
1 . . . 1 1

377775 . (22)

Further, let{ai}
n+k−1
i=1 be a sequence of random variables drawn

independently from a distribution that yields an IID CS matrix and
AL ∈ Rk×n be the cascade of ak × n Toeplitz matrixA and the
n × n differencing operator

D =

266664 1 0

−1 1
. . .

. . .
. . . 0
−1 1

377775 , (23)

that is,

AL =

26664 (an − an−1) . . . (a2 − a1) a1

(an+1 − an) . . . (a3 − a2) a2

...
. . .

...
...

(an+k−1 − an+k−2) . . . (ak+1 − ak) ak

37775 . (24)

Then, by construction, (i)AL has only(n + k − 1) DoFs; (ii) mul-
tiplication with AL = AD requires onlyO(n log2(n)) operations;
and (iii) the product matrixALL = ADL = A is a Toeplitz CS
matrix and consequently, satisfies RIP with high probability. Like-
wise, ifx happened to bem-sparse in the Haar wavelet domain, i.e.,
Ψ = W−1 (the inverse Haar wavelet transform matrix), then a CS
matrix of the formAW = AW would also have these three proper-
ties.
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Fig. 1. Empirical probability of success as a function of number of
observationsk (n = 2048, m = 20).

4. NUMERICAL RESULTS

In this section, we numerically compare the performance of Toeplitz
and circulant CS matrices to that of IID ones. The experimental
setup involves generating a lengthn = 2048 signal with randomly
placedm = 20 non-zero entries drawn independently fromN (0, 1).
Each such generated signal is sampled usingk × n IID, Toeplitz
and circulant matrices with entries drawn independently from the

Bernoulli =
�
+
q

1
k

with probability 1
2
,−
q

1
k

with probability 1
2

	
distribution and reconstructed using the gradient projection algo-
rithm described in [5], where matrix multiplications are carried out
using FFT in the case of Toeplitz and circulant observation matrices.
Successis declared if the algorithm exactly recovers the signal (tak-
ing into account machine precision errors), and the empirical proba-
bility of success for each value ofk is determined by repeating this
process1000 times and calculating the fraction of successes. While
running this experiment for allx ∈ Rn or even all

�
2048
20

�
unique

sparsity patterns does not seem possible, simulation results show
that for a large number of synthesized signals (and for the reasons
described earlier), Toeplitz and circulant matrices perform as well as
IID ones in terms of the empirical probability of success. Weplot
the empirical probability of success versus number of observations
k for one such signal in Fig. 1.

5. CONCLUSIONS

In this paper, we have shown that Toeplitz-structured matrices with
entries drawn independently from probability distributions that yield
IID CS matrices are also sufficient to recover undersampled sparse
signals. The use of such matrices is a desirable alternativefor a num-
ber of application areas because it greatly reduces the computational
and storage complexity in large-dimensional problems.4 Our proof
technique uses the celebrated Hajnal-Szemerédi theorem on equi-
table coloring of graphs to partition ak × |T | Toeplitz-structured
submatrixAT into roughlyO(m2) IID submatrices having dimen-
sions approximately equal toO(k/m2) × |T |. It is interesting to
note that certain special types of graphs can be equitably colored

4We refer the reader to [14] for a different take on solving theproblem of
computational and storage complexity in CS applications.

using far fewer colors – see, e.g., [9]. This implies interesting ex-
tensions to the work presented here. First, to the best of ourknowl-
edge, the minimum number of colors needed to equitably colorthe
structured dependency graphs considered here is still unknown and
sharper coloring results could provide a reduction in the required
number of observations in the above results. In addition, itmight
be possible to obtain other structured CS matrices by starting with
dependency graphs for which sharp equitable coloring results are
known and working backwards.
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