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ABSTRACT

The problem of recovering a sparse signale R™ from a rela-
tively small number of its observations of the fogm= Az € R*,
where A is a known matrix and: < n, has recently received a lot
of attention under the rubric afompressed sensingS) and has
applications in many areas of signal processing such ascdata
pression, image processing, dimensionality reduction, &ecent
work has established thatf is a random matrix with entries drawn
independently from certain probability distributions rthexact re-

covery ofz from these observations can be guaranteed with high

probability. In this paper, we show that Toeplitz-struethmatri-
ces with entries drawn independently from the same digtdbs
are also sufficient to recoverfrom y with high probability, and we
compare the performance of such matrices with that of faliiepen-
dent and identically distributed ones. The use of Toeplitrives in
CS applications has several potential advantages: (i)rtapyire the
generation of only)(n) independent random variables; (ii) multipli-
cation with Toeplitz matrices can be efficiently implemehtesing
fast Fourier transform, resulting in faster acquisitiod agconstruc-
tion algorithms; and (iii) Toeplitz-structured matricatsa naturally
in certain application areas such as system identification.

y; we term such matrices as the CS matrices. Independenthglizo
[4], and Candes and Tao [1, 3] have provided sufficient camditfor
CS matrices. In particular, it was established in [3] (arfthesl in
[1]) that for ak x n observation matrixl to be a CS matrix, it is suf-
ficient that it satisfiesestricted isometry propert{RIP) of orderdm
in the following sense: Ief’ C {1,2,...,n} andAr be thek x |T|
submatrix obtained by retaining the columnsAtorresponding to
the indices inT’; then, there exists a constait, € (0,1/3) such
that

Ve eRTL (1= 8sm)llzl3 < |A7z[3 < (1+8sm)ll=II3 (2)

holds for all subset# with | 7| < 3m.* Moreover, it was also shown

in [1] that z can be exactly recovered in that case by the convex

program

T = arg (m%{{n |z]l1 subjectto y= Az) , 3)
ze n

which is attractive because it can be solved in a computaition
tractable manner using linear programming and convex agaiion
techniques — see, e.g., [1, 4, 5]. Note that the RIP of osderis

Index Terms— Compressed sensing, restricted isometry prop-equivalent to saying that the singular values ofad 3m submatri-

erty, system identification, Toeplitz matrices, underdateed sys-
tems of linear equations

1. INTRODUCTION

1.1. Background

We begin by revisiting the problem of recovering a signat R"
from linear observations of the form
y = Az [z]lo < m,

@)

ces ofA lie in the interval(\ /273, + /4/3) . And while the definition

of RIP does not guarantee the existence of CS matrices,tr@oek
has shown that (appropriately scaled) random matrices emitties
drawn independently from certain probability distribuisosatisfy
RIP of order3m with high probability for everyds., € (0,1/3)
providedk > const - mIn(n/m) — see, e.g., [1, 3, 4, 6]; we refer
to such matrices as independent and identically distrib(it®) CS
matrices.

1.2. Main Result

where|| - [lo counts the number of non-zero entries in a vector, andn this paper, we show that if a probability distributiét{a) yields
A € R**™ is a known matrix. Of particular interest is the special an 11D CS matrix (having unit-norm columns in expectatidmr a

case of highly underdetermined systefn& n, that has applica-
tions in many areas of signal processing such as data cosnmmes
image processing, dimensionality reduction etc. and hantly re-
ceived a lot of attention under the rubricampressed sensirtgS)
— starting in particular with some of the earlier works of Ges,
Romberg and Tao [1, 2, 3] and Donoho [4].

One of the fundamental problems in CS is to identify the obser

vation matrices that are sufficient to ensure exact recaveryfrom
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k x n (partial) Toeplitz matrixA (also having unit-norm columns in
expectation) of the form

Qn an—1 as al-‘
An+1 Qn asz az

A= S )
Aptk—1 Qptk—2  connnon a

1This is a slightly weaker version of the sufficient conditioriginally
given by Candes and Tao; for the sake of brevity, however, teoduse it
suffices to illustrate the principles, we limit ourselvesth& condition and
refer the reader to [1, 3] for further details.



where the entriega;} 7!

P(a), is also a CS matrix in the sense that it satisfies RIP of cyder
with high probability for everys., € (0, 1/3) providedk > const-

have been drawn independently from of the form given in(4). Then, for everys,, € (0,1/3) and ev-

eryT C {1,2,...,n} with |T'| = 3m, the Toeplitz submatrid
satisfieq2) with probability at least

m? In(n/m). Essentially, the reduction in the number of degrees of

freedom (DoF) of a Toeplitz random matrix seems to resultrin a

increase in the required number of observations. Note, henvthat
the result established in this paper is a sufficient cormlii exact

1 — e~ (LK/almdsm) +in(@)

(6)
whereq = 3m(3m — 1) + 1.

recovery ofall m-sparse signals, and simulation results show thaRemark 1. As an illustration, let the probability distributioR ()

actual performance of Toeplitz CS matrices tends to be coabfm
to that of IID CS matrices fomany if not all, such signals. The
proof technique used for obtaining this sufficient conditi®a novel

combination of existing results on IID CS matrices and ethlé

coloring of graphs, and should be of particular interest eéopbe

working in the area of compressed sensing.

The use of Toeplitz CS matrices is a desirable alternative fo

number of application areas because (i) IID CS matricesregen-

eration ofO(kn) independent random variables, which could be par- 0

ticularly troublesome for large-scale applications, vetaer Toeplitz
CS matrices require generation of or}(n) independent random
variables; (ii) multiplication with 1ID CS matrices reqes O(kn)
operations resulting in longer data acquisition and retroogon
times, while multiplication with a Toeplitz CS matrix can béi-
ciently implemented using fast Fourier transform (FFT) andse-
quently requires onlyD(nlog,(n)) operations; and (iii) Toeplitz-
structured matrices arise naturally in certain applicaiceas such
as identification of a linear time-invariant (LTI) systemdatonse-
quently, IID CS matrix results are not applicable in suctesas

1.3. Organization

The rest of this paper is organized as follows. In Sectioneprove
that a Toeplitz matrix of the form given in (4) satisfies RIPoof

der 3m with high probability. In Section 3, we discuss extensions

of the result of Section 2 to circulant matricésit-shiftedToeplitz-
structured matrices, identification of LTI systems havipgrse im-
pulse responses and recovery of signals that are sparsmétsmns-

be given by
1 +
N <0, E) —

+/2 with probabity £,

with probability 2,
with probability 2,

ﬁ\ =

with probability 2, 7
—y/2  with probability £.
Then,
flk,m,d3m) = cok —3mIn(12/d3m) — In(2), (8)

whereco = co(83m) = 03, /16 — 83, /48 (see, e.g., [6]).

Proof. Fix d3m € (0,1/3) andT C {1,2,...,n} with |T'| = 3m.
Let A7 ; denote the-th row of Ap and construct an undirected (de-
pendency) grapl¥ = (V, E) such that = {1,2,...,k} and

E={(i,i') eV xV:i#i, Ar;andAr, are dependet.

Notice that because of the Toeplitz naturegfAr ; can at most be

dependent with
21424+ (T[-1) = 2-T|(IT| - 1)/2 = ¢—1

other rows ofAr. This implies that the maximum degrée of G

form domain. In Section 4, we numerically compare the perfor (defined as the maximum number of edges originating from any v

mance of Toeplitz and circulant CS matrices to that of IIDaad
finally, in Section 5, we present some concluding remarks.

2. PROOF OF MAIN RESULT

To establish that Toeplitz-structured matrices with estdrawn in-
dependently from “good” probability distributions are@tufficient
to recoverz from y with high probability, we first observe that if (2)
holds for anyT" then it also holds for ali” c T. Consequently, it
suffices to show that Toeplitz submatrices satisfy (2) wigiinlprob-
ability for all T C {1,2,...,n} such that|T’| = 3m. Next, we
lower bound the probability that Toeplitz submatricessat{2) for
any fixed subsel’ with |T'| = 3m.

Lemma 1. Suppose that, m are given, and leP(a) be a probabil-
ity distribution that generates A x n [ID matrix having unit-norm
columns in expectation such that, for evégy, € (0,1/3) and ev-
eryT C {1,2,...,n} with |T'| = 3m, thek x |T'| lID submatrix
obtained by retaining the columns corresponding to thedeslinT
satisfieq2) with probability at least

1— eff(kﬂmésm)7 (5)
where f (k, m, 03 ) is some real-valued function &f m and dz.,.
Let {ai}?:lkﬂ
dently from the same distribution, antlbe ak x n Toeplitz matrix

be a sequence of random variables drawn indepen-

tex) is given byA < (g — 1).2 Consequently, using the well-known
Hajnal-Szemerédi theorem on equitable coloring of grdBhswe
can always partitiolds usingg (or more) colors such that

k < min ;| < max c;| < [k/q]l, (9
bfa] < _min |G| £ _max |G| < [k/al, @)

where{C;}j_, correspond to the different color clasdellext, let

A’ be the|C;| x |T| partition submatrix obtained by retaining the
rows of Ar corresponding to the indices {; and note that

q q
. Cil -
vaeRT, arzlE = Yo hapalp = S0 1A,
j=1 j=1
(10)

where A7 is defined to bed}, = /& A7 (to ensure unit-norm
J

columns in expectation). Then, from the definitionA#’s, we have
that eachA, is a|C;| x |T| submatrix with 11D entries from the
distribution P(a) and hence, satisfies (2) with probability at least

1 o FUCImbsm) . 1 _ o= f(lk/a),m.05m) (11)

2We refer the reader to [7] for a review of basic terminologygiaph
theory.
3Recall that coloring of a graph means that eathC V, U;C; =V,
C; N Cj = ¢ and no two vertices in a color class share an edge.



Also, note thatzq ‘C | — 1and therefore, from (10), we have

that occurrence of the event
q ~ .
{ () A satisfies (2}
j=1
implies thatv z € R!7

q
|C5] Cj
;T (1~ dam)ll2lB < 2' o <

|C;]
; T (L + 0am)||z[l5

= (1 =&m)lzl3 < A7zl < (1+dsm)lzl3. (12)

that is,

{ ﬁ Al satisfies (2} C {Ar satisfies (2) . (13)

Consequently, we have that

Pr({Ar satisfies (2))
= 1 — Pr({Ar does not satisfy (2)

q
1—Pr ({ |J A7 does not satisfy (2}>
j=1

—
Ve

b q
(2) 1-> Pr({fle does not satisfy (%))
j=1
© &
D 1o I Uhalmsan)
j=1
—1— e*f(UV/CZJa"%<5?nn)+1n(q)7 (14)

where(a) follows from (13), (b) follows from union bounding the
event{U;?:1 A?, does not satisfy (%) and (c) follows from (11);
this completes the proof of the lemma. |

0N d3., such that for anyk > c1 m®In(n/m), A satisfies RIP of
order 3m for everyds,, € (0,1/3) with probability at least

1— e c2k/m®, (15)
Proof. Fix ds, € (0,1/3). From Lemma 1 and (84 satisfies (2)
foranyT C {1, 2,...,n} of cardinality3m with probability at least

1 — e—colk/al+3m In(12/83,) +In(2)+1n(a)

1— efcok/9m2+3m In(12/83,, )+1n(9m2)+1In(2)+co
b

and there arg,” ) < (en/3m)®" such subsets. Consequently,
union bounding over these subsets yields thaatisfies RIP of or-
der3m with probability at least

1— efcok/9m2+3m[ln(n/3m)+ln(12/63m)+1]+ln(9m2)+ln(2)+cg )
(16)

Next, fix c2c > 0 and pickei > 27cs/(co — 9c2), wherecs =
In(12/93m ) +1n(2)+co+4. Then, foranyk > c; m? In(n/m), the
exponent in the exponential in (16) is upper bounded-layk /m>
and this completes the proof of the theorem. O

Before discussing natural extensions to Toeplitz CS nesriit
is instructional to compare the result of Theorem 1 with thatlD
CS matrices. Specifically, previous work has shown that 1I® C
matrices generated from the distributions given in (7)séafRIP of
order3m for everyds,, € (0,1/3) with probability > 1 — e—c2k
providedk > ¢} mIn(n/m), whereci,c;, > 0 are constants de-
pending only ors,,, — see, e.g., [3, 6]. It might be tempting, there-
fore, to conclude that reduction in the number of DoFs of golite
matrix from O(kn) to O(n) results in a factor of)(m?) increase
in the required number of observations. One needs to apply ca
tion, however, as Theorem 1 bounds the worst case perfoerainc
Toeplitz CS matrices foall m-sparse signals and it might very well
be that this oversampling is not required foostsignals in the class.
Extensive simulations carried out for a numbemofsparse signals
using IID and Toeplitz matrices of equal dimensions, in facip-
port this intuition. It is also interesting to note that sevhat similar
numerical results (without any performance guaranteeg} baen

Remark 2. Note that the idea of using equitable coloring of graphsyeported in [10] in the context aandom filters

to partition a set of dependent random variables into disjséts
having approximately equal number of independent random va
ables is not new and has been previously used by researohdes t
rive deviation bounds for sums of dependent random vasathlat
exhibit limited dependence — see, e.g., [9].

Loosely speaking (and fot sufficiently large), Lemma 1 says
that for any subséet’ of cardinality3m, if an 11D submatrix satisfies
(2) with probability at least — e~©*, then a Toeplitz submatrix
with entries drawn independently from the same distributdso
satisfies (2) with probability at leagt— e~C /™) The next step
of lower bounding the probability that Toeplitz submatsatisfy
(2) for all subsetsI’ of cardinality 3m follows trivially from this
result by union bounding over the choice(gf,) such subsets. Be-
low, we specifically state the implications of this union hddor the
distributions given in (7).

Theorem 1. Suppose that, m are given, and letd be ak x n
Toeplitz matrix of the form given i@), where the entriega; } 7+~
are drawn independently from one of the probability disitibns
given in(7). Then, there exist constants, c; > 0 depending only

3. EXTENSIONS

In this section, we discuss natural extensions of the reguftec-
tion 2 to circulant and left-shifted Toeplitz-structureaimices. Fur-
ther, we also describe how the results for Toeplitz-stmaciuCS
matrices lend themselves to (i) identification of LTI syssenaving
sparse impulse responses; and (ii) recovery of signalsateatither
piecewise constant (PWC) or sparse in the Haar wavelet domai

3.1. Circulant CS Matrices

Theorem 2. Suppose thah, m are given, and letd be ak x n
(partial) circulant matrix of the form

an An—1 az ai
ai an az a2

A= . . O a7
Ar—1 Ak—2 v oo v ak



where the entriega; }i—, are drawn independently from one of the [ yln — 1] -|

distributions given in(7). Then, there exist constant¥,cs > 0 N y[n]
depending only o3, such that for anyk > ¢/ m>In(n/m), A where, in this casg; = : ‘ »and
satisfies RIP of orde3m for everyds,, € (0,1/3) with probabilit '
~tloast m Yos (0,1/3) p y yln +k— 2]
aln —1] aln — 2] ..oall] al0]

e (18) a[n] aln—1] ... a[2]  a[l

Sketch of Proof.Using the notational convention of Lemma 1, note : : . . :
that for any fixedl’ C {1,2,...,n} with |T| = 3m, thei-th row a[n—i—.k: —9 afn e 3 alk _ 1]
Ar,; of a circulant submatrixAr can at most be dependent with
2|IT(JT'] = 1) < 6m(3m — 1) other rows ofAr because of the
circulant nature of4, i.e., the maximum degre& of the dependency
graph (as defined in Lemma 1) dfr is given byA < 6m(3m—1).  We have proven above that Toeplitz (and circulant) matricaging
The rest of the proof follows along exactly the same linesasife  entries drawn independently from probability distribnsdhat yield

3.4. Beyond Sparse Signals

Toeplitz case. LI 11D CS matrices, satisfy RIP of ord&m with high probability. Of-
ten, we are interested in signals that are sparse in somsfdram
3.2. Left-shifted Toeplitz and Circulant CS Matrices domain¥ # I,i.e,z = ¥f andd € R" is m-sparse, in which

case it is required that the product matd¥ satisfies RIP of or-
The results of Theorem 1 and 2 apply equally well to lefttshif gy 3., for successful recovery af (and hencer). This is indeed
Toeplitz and circulant matrices of the form the case whent happens to be an IID CS matrix andis any or-
thonormal basis [6]. Toeplitz matrices, however, seem ¢& tais
universalityproperty because of their highly structured nature. Nev-
_ _ 7 (19) ertheless, the results of Section 2 can still be leveragedksign
a4 : : CS matrices fofixedtransformations to retain some of the benefits
of Toeplitz-structured CS matrices such as generation lyf Orin)

al a2 e An—1 An
a2 as e Qn An+1

A oo An+k—2 Ontk—1 . i isiti
independent random variables, and faster acquisitionerahstruc-
and tion algorithms.
w a a a As anillustration, let: be anm-piece PWC signal; such a signal
[ ot el O -‘ can be written as = L6, whered € R" ism-sparse and, € R"*"
az as . an al . . . .
_ _ 7 (200 ~ the discrete integral transform — is given by
S S : : 1 0 ... 0
[0 ak—2 Ak—1 .
. . L 1 1 0
because the submatrices of such matrices also give risepende L = (22)
dency graphs with maximum degrees upper boundethbim —1) 1 . .0
and6m(3m — 1), respectively. 1 ... 1 1

Further, let{a;}7"*~! be a sequence of random variables drawn
independently from a distribution that yields an [ID CS ma#nd
The area of estimation of the impulse response of an LTI syftem Az € R¥*™ be the cascade offa x n Toeplitz matrixA and the
the knowledge of its input and output signals, commonly tmiras 7 X n differencing operator

system identification, is of considerable importance imalgoro-

3.3. System ldentification

cessing because of its applicability to a wide range of oisl — 1 0

see, e.g., [11, 12]. In the case of a finite impulse responsd (H] -1 1 .

system, this typically involves probing the system with adikn) D = . . ) (23)

white noise sequence of duration orders of magnitude gréfzde -0

that of the impulse response [13], which may be prohibitieeduse -1 1

of the delay incurred in solving for the impulse responsetaedlif- that is

ficulty of generating a truly white noise sequence. For thpses '

of deconvolving an LTI system having a sparse impulse resgon (an — an—1) ce (a2z—a1) @

however, a more promising alternative is to appeal to theltesf (an+1 — an) o (as—a2) a2

Section 2. A = : .. : s (24
As an illustration, letz[¢] be anm-sparse impulse response of (amsxs - tres) . (akﬂ._ o) a.k

an LTI system (of duratiom) anda[¢] be an 11D sequence of dura-
tion (n 4 k — 1) that has been drawn from one of the probability Then, by construction, (iz, has only(n + & — 1) DoFs; (i) mul-
distributions given in (7). Then, probing the given systeithwt[¢] tiplication with A, = AD requires onlyO(n log,(n)) operations;
yieldsy[¢] = a[(] * z[¢] and the theory of CS along with Theorem 1 and (iii) the product matrixd;, L. = ADL = A is a Toeplitz CS
guarantees that, with high probability[¢] can be exactly recovered matrix and consequently, satisfies RIP with high probapbilitike-

by solving the convex program wise, if z happened to be:-sparse in the Haar wavelet domain, i.e.,
¥ = W~! (the inverse Haar wavelet transform matrix), then a CS
z[f] = arg <min lz|l. subjectto y= Az) , (21) matrix of the formAy = AW would also have these three proper-

Z€ER™ ties.
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Fig. 1. Empirical probability of success as a function of number of

observationg (n = 2048, m = 20).

4. NUMERICAL RESULTS

In this section, we numerically compare the performanceoefslitz

and circulant CS matrices to that of IID ones. The experident

setup involves generating a length= 2048 signal with randomly
placedm = 20 non-zero entries drawn independently fraf{o, 1).
Each such generated signal is sampled uging n |ID, Toeplitz
and circulant matrices with entries drawn independentiynfithe

Bernoulli= {+\/% with probability 1, —\/% with probability 3 }
distribution and reconstructed using the gradient prajacalgo-

rithm described in [5], where matrix multiplications arered out
using FFT in the case of Toeplitz and circulant observatiatrites.

Successs declared if the algorithm exactly recovers the sign&-(ta

ing into account machine precision errors), and the engligmba-

bility of success for each value é&fis determined by repeating this

using far fewer colors — see, e.g., [9]. This implies inténgsex-
tensions to the work presented here. First, to the best dfroowl-
edge, the minimum number of colors needed to equitably dbkr
structured dependency graphs considered here is stillowrkiand
sharper coloring results could provide a reduction in thguired
number of observations in the above results. In additiomight
be possible to obtain other structured CS matrices by stawith
dependency graphs for which sharp equitable coloring tesuk

known and working backwards.

(1]

(2]

(3]

[4]
[5]

[6]

[7]
(8]

processl 000 times and calculating the fraction of successes. While

running this experiment for att € R™ or even all(*)2%) unique

sparsity patterns does not seem possible, simulationtsesihbw
that for a large number of synthesized signals (and for theams
described earlier), Toeplitz and circulant matrices penfas well as
1ID ones in terms of the empirical probability of success. plat
the empirical probability of success versus number of olagiems
k for one such signal in Fig. 1.

5. CONCLUSIONS

In this paper, we have shown that Toeplitz-structured masrivith
entries drawn independently from probability distribusdhat yield
IID CS matrices are also sufficient to recover undersampbedse
signals. The use of such matrices is a desirable alterrfatizenum-
ber of application areas because it greatly reduces the waiignal
and storage complexity in large-dimensional problén@ur proof
technique uses the celebrated Hajnal-Szemerédi theoneatui-
table coloring of graphs to partition fa x |7'| Toeplitz-structured

submatrixAz into roughly O(m?) 11D submatrices having dimen-

sions approximately equal ©(k/m?) x |T|. It is interesting to
note that certain special types of graphs can be equitabbrezb

4We refer the reader to [14] for a different take on solvingheblem of
computational and storage complexity in CS applications.

9]

(10]

(11]
(12]

(13]

(14]
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