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Abstract—This paper investigates the problem of identifying
sparse multilinear systems. Such systems are characterized by
multiplicative interactions between the input variables with spar-
sity meaning that relatively few of all conceivable interactions are
present. This problem is motivated by the study of interactions
among genes and proteins in living cells. The goal is to develop
a sampling/sensing scheme to identify sparse multilinear systems
using as few measurements as possible. We derive bounds on the
number of measurements required for perfect reconstruction as
a function of the sparsity level. Our results extend the notion
of compressed sensing from the traditional notion of (linear)
sparsity to more refined notions of sparsity encountered in
nonlinear systems. In contrast to the linear sparsity models, in
the multilinear case the pattern of sparsity may play a role in
the sensing requirements.

I. I NTRODUCTION

The investigation in this paper is motivated by the following
problem in systems biology. High-throughput experiments
allow biologists to probe the effects of individual genes and
their protein products. For many model organisms, such as
yeast and the fruit fly, we now have so-called “single-deletion”
cell libraries consisting of all possible variations of thenormal
cell with one gene removed or suppressed. By studying each
single-deletion strain, biologists are able to deduce the rele-
vance (or irrelevance) of a particular gene/protein to a specific
function or process. For example, this kind of study was used
to identify a small subset of the13, 071 genes in the fruit
fly that may be relevant to the replication of the influenza
virus [1]. Similar studies have applied this methodology to
identify genes involved in HIV virus replication. However,a
meta-analysis of several independent studies has revealeda
low degree of overlap between the sets of genes identified in
the different studies [2].

One likely explanation is that there is redundancy in the
genome. For example, two or more genes/proteins may have
very similar functionalities. Removing a single gene in a
situation like this may not produce a detectable effect, since
a similar gene can perform the function of the deleted one.
To detect the relevant genes it is necessary to remove them
or modulate their expression levels simultaneously. A recent
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study tackled the problem directly for pairwise gene interac-
tions in yeast [3]. This huge undertaking involved testing over
5 million gene pairs; yet only a small subset were identified
as having potentially relevant interactions. Moving beyond
pairwise interactions and/or to organisms with larger genomes
is formidable to say the least. However, the results of this
paper suggest that it may be possible to exploit the sparsity
of the problem in order to drastically reduce the number of
experiments required to identify the relatively small subset of
significant interactions.

We propose and investigate a stylized version of the problem
above and give bounds on the number of required measure-
ments. A multilinear functional is used is used to model linear
and nonlinear effects observable at the output of the underlying
system. Through a change of variables, this identification
problem can be expressed in a linear form and viewed as a
compressed sensing problem with partially dependent mea-
surement vectors. We use this formulation to leverage existing
theory from compressed sensing. The novelty here is that
the sensing matrices involved have a nonlinear dependency
structure that requires a delicate analysis in order to establish
a restricted isometry property (RIP) for our problem.

A. Related Work

Since the seminal papers of Candes, Romberg, Tao, and
Donoho, there has been a great deal of interest in compressed
sensing and its applications [4]–[6]. We do not attempt a full
survey of the literature and only mention a few papers that are
directly relevant to our considerations. The restricted isometry
property and its connections to the Johnson-Lindenstrauss
lemma were examined in [7] and we will use elements of
that work in some of our own proofs. In [8], the authors
showed how compressed sensing can be generalized to include
sensing matrices with Toeplitz dependency structure. We will
employ techniques from that paper to prove one of our bounds.
Another bound we develop makes use of the framework
recently developed in [9] for matrices with independent and
isotropic rows or columns. We also mention that there have
been proposals to use compressed sensing the design of
genomics experiments [10], [11], but we are not aware of work
that considers gene interactions.



II. PROBLEM STATEMENT

We now propose a mathematical model for interactions.
There areM inputs a1, a2, . . . , aM that take values in the
reals. These inputs pass through a multilinear system with
output

u =
∑

1≤i1<···<iD≤M

ai1 · · ·aiD xi1···iD . (1)

where each coefficientxi1i2···iD takes values in the reals. Note
that each combination ofD inputs appears exactly once and
thatN =

(

M
D

)

such combinations are possible. We will refer
to N as the problem size. We are particularly interested in
sparsemultilinear functions in which only a small fraction
of the coefficients are non-zero. Note that withD = 1 the
multilinear function reduces to the standard linear model.

Example 1: ForD = 2, the function can be written as the
sum of all pairwise interactions:

u =

M
∑

i1=1

M
∑

i2=i1+1

ai1ai2 xi1i2

Remark 1:We can generalize our framework to include all
interactions of orderD or less without affecting our results.
In this case, we would have functions of the form

D
∑

d=1

∑

1≤i1<···<id≤M

ai1ai2 · · · aim x
(d)
i1i2···im .

The restriction to interactions of orderD simplifies the expo-
sition and analysis.

The values of the coefficientsxi1···iD are unknown and our
objective is to learn their values accurately and efficiently. To
do so, we make measurements by choosing values for theM
inputs and recording the resulting output. Letuk denote the
kth measurement resulting from the input{ak1, . . . , akM} and
let K denote the total number of measurements taken. The
goal is to determine bounds on the number measurementsK
needed to identify coefficients. In general, ifK < N , then
perfect reconstruction of the coefficients is impossible asthe
number of unknowns exceeds the number of equations.

However, if we assume that the number of non-zero co-
efficients is small compared to the problem size (i.e. the
coefficients are sparse), then the coefficients can be identified
with far less thanN measurements. Formally, we say that
the multilinear function in (1) isS-sparse ifxi1i2···iD 6= 0
for at mostS coefficients. Our bounds on the number of
measurements needed for recovery rely on the use of random
inputs. Also, although we focus on a noiseless measurement
model in this paper, It is straightforward to also include the
possibility of additive measurement noise using existing theory
and methods (e.g., [12], [13]).

Throughout the paper, we will usec andC to denote generic
positive numerical constants in our calculations, and theymay
represent different constants in different bounds.

III. SUMMARY OF MAIN RESULTS

The relation between the measurements of the multilinear
function in (1) and the parameters can be written as a linear
system of equations. Using this representation, we apply
results from compressed sensing to obtain upper bounds on
the number of required measurements. Throughout the paper,
we let log x denote the logarithm ofx to the base2 and lnx
the natural logarithm.

Our first approach in Section VI combines the fact that
our measurements preserve the input norm in expectation
with a union bound over all sparsity patterns. In Section
VII, we work with a framework that bounds all sparsity
patterns simultaneously and yields optimal results to within
polylogarithmic factors. Finally, in Section VIII, we work
with tail bounds on our measurement vectors combined with
a union bound over all patterns. This bound are based on a
refined notion of sparsity called thecombinatorial dimension
of a multilinear functional which takes values in1 ≤ α ≤ D
[14]. Overall, we arrive at the following theorem.

Theorem 1: Assume that the inputs are i.i.d. binary sym-
metric random variables. If the number of measurementsK
satisfies

K ≥ cmin

{

S log3(S) logN,S2 log

(

N

S

)

, Sα logα
(

N

S

)}

then the measurements can be used to infer an arbitraryS-
sparse multilinear function with overwhelming probability.
This result is simply a combination of Theorems 3, 6, and 7,
which we now set out to prove. Note that in our setting,α
will tend to be close to be1 as this corresponds to the case
where each gene is involved in only one interaction.

IV. COMPRESSEDSENSING FORMULATION

We relate our situation to the canonical compressed sensing
problem and use results from this area to derive an upper
bound on the number of measurements. We begin by vector-
izing the unknown coefficients according to some one-to-one
index map:

x = {xi1i2···iD} .

The same index map is used to create a measurement vector
out of the products of the inputs:

ak = {ai1ai2 · · ·aiD} .

This allows us to write each output in linear form:

uk = aTk x (2)

Next, we normalize each measurement by1√
K

:

yk =
1√
K

uk.

Finally, we can write allK measurements in matrix form:

A =











aT1
aT2
...

aTK











, y = [y1 y2 · · · yK ]
T
=

1√
K

Ax.



Remark 2: Usually, the factor1√
K

is absorbed intoA (the
input). To account for the possibility of sums of interactions of
different orders, here we normalize the measurements at the
output.

We now review some standard definitions and results from
compressed sensing that will be useful in our proofs. We
begin with the notion of a restricted isometry property, first
introduced in [5].

Definition 1: A matrixA satisfies the restricted isometry
property (RIP) of orderS with constantδS if

(1− δS)‖x‖22 ≤ 1

K
‖Ax‖22 ≤ (1 + δS)‖x‖22

for all vectorsx with support of sizeS or less,‖x‖0 ≤ S.
If the matrixA satisfies the RIP withδ2S < 1, then it can

be shown that solving the followingℓ0 optimization problem

min
x̂∈RN

‖x̂‖0 subject to
1√
K

Ax̂ = y (3)

yields an estimatêx that equalsx if ‖x‖0 ≤ S. However, this
approach quickly becomes computationally intractable as the
problem sizeN grows. The landmark result of compressed
sensing is that, under some technical conditions, theℓ0 crite-
rion in the optimization in (3) can be relaxed to anℓ1 norm
(which corresponds to solving a linear program) [4]–[6]. The
theorem below is a good representative of the compressed
sensing framework [15].

Theorem 2 (Cand̀es): Assume the matrixA satisfies the
RIP with δ2S <

√
2 − 1 and let xS be the unique vector

in R
N that is equal tox ∈ R

N on its largestS values
and zero elsewhere. Then, the solutionx∗ of the following
ℓ1 optimization problem:

min
x̂∈RN

‖x̂‖1 subject to
1√
K

Ax̂ = y (4)

satisfies

‖x∗ − x‖1 ≤ c1‖x− xS‖1

‖x∗ − x‖2 ≤ c2
‖x− xS‖1√

S

for some positive constantsc1 and c2.
For a full proof, see Theorem 1.2 in [15]. For extensions to
cases where the measurements are contaminated with noise
see, for example, [13].

Corollary 1: If the vectorx has at mostS non-zero entries
and the matrixA satisfies the RIP withδ2S <

√
2 − 1, then

the solutionx∗ of (4) is exactly equal tox.
Thus, if we can demonstrate the matrixA satisfies the RIP,

we can apply the tools of compressed sensing to efficiently
infer the unknown coefficients.

V. I NITIAL OBSERVATIONS

The RIP enforces that the norms all sparse vectors are
approximately preserved by the measurement matrix. As a first
step, we will show that our measurements preserve the norm
in expectation.

Lemma 1: Assume the inputs are generated independently
according to symmetric distributions with unit variance. Then,
the expected value of the Gram matrixG = 1

KATA of the
measurement matrix1√

K
A is an identity matrix:

E [G] = E

[

1

K
ATA

]

= I .

Proof: First, note that each diagonal element ofE [G]
has the following form 1

K

∑K
k=1 E[a

2
ki1

a2ki2 · · · a2kiD ]. Since
the variables are independent and have variance1 this takes the
form 1

K

∑K
k=1 E[a

2
ki1

]E[a2ki2 ] · · ·E[a2kiD ] which is just equal to
one. Next, each off-diagonal element ofE [G] can be written
as a sum of products:

1

K

K
∑

k=1

E[aki1aki2 · · · akiDakj1akj2 · · · akjD ]

and because each of the products in (1) has a unique form, it
follows that two or more of the variables appears in just once
in the expectation above. Without loss of generality, leti1 and
j1 denote the indices of these variables. Then, the expectation
can be written as:

1

K

K
∑

k=1

E[aki1 ]E[akj1 ]E[aki2 · · · akiDakj2 · · · akjD ]

Since theaki are independent and symmetric random vari-
ables,E[aki] = 0 so the summation is zero and each off-
diagonal term has zero mean.

The lemma above has two key implications for our mea-
surements. First, it implies that the expectation of the square
of each measurement is equal to the norm of the vector:

E[u2
k] = ‖x‖22 .

Second, it shows that the sum of the squares of measurements
is also equal to the norm in expectation:

E
[

‖y‖22
]

=
1

K
xT

E
[

ATA
]

x = ‖x‖22 .

There are many input distributions that satisfy the assump-
tions of Lemma 1. We will assume from here forward that
the inputs are independent and identically distributed (i.i.d.).
Furthermore, for practical and theoretical reasons, we will
assume that the input distribution is bounded. This is partic-
ularly natural in the systems biology setting motivating our
investigation. Also, as we will see, nonlinear interactions lead
to heavy-tailed distributions which are difficult to control for
unbounded distributions. With these considerations in mind,
it suffices to consider binary symmetric input distributions.
Throughout the rest of the paper, we will consider i.i.d. inputs
with distributionP(aki = 1) = P(aki = −1) = 1/2.

This distribution satisfies the requirements of Lemma 1
and so the norm of the output vectory will eventually
converge to the norm of the input vectorx. To bound the
number of measurements required for the RIP to hold with
an appropriate constant, we need to characterize how quickly
1
K

∑

u2
k concentrates to its mean. Without loss of generality,



let us assume that‖x‖2 = 1. Then we need to quantify how
quickly 1

K

∑

u2
k concentrates about its mean value of1. In

the standard compressed sensing formulation, the elements
of the measurement matrix are drawn i.i.d. according to
a subgaussian distribution. In that case each measurement
satisfiesP(|u2

k − 1| > t) < exp(−c t), for a constantc > 0,
and from this tail bound it can be shown that the sum con-
centrates rapidly enough that onlyS log(N/S) measurements
are required.

The binary symmetric distribution is subgaussian, but be-
cause of the nonlinear interactions the distribution ofu2, as
defined in (1), can have much heavier tails. The tail behavior
is intimately connected to the pattern of sparsity. Unlike the
usual linear sparsity models, in the multilinear setting different
sparsity patterns lead to different tail behaviors, depending
on the amount of interaction and dependency in the terms
involved. The following lemma characterizes the extremes of
the tail behavior. A more refined analysis will be carried out
later in Section VIII.

Lemma 2: Letu a multilinear function of the form (1) and
let a1, . . . , aM be i.i.d. binary symmetric random variables.
Assume‖x‖2 = 1 and let T denote the set of indices on
which the coefficientsxi1i2···iD are non-zero. Then there exists
a constantc > 0 such that for sufficiently large positivet

sup
T

P
(

|u2 − 1| > t
)

≥ exp
(

−c t1/D
)

inf
T

P
(

|u2 − 1| > t
)

≤ exp (−c t) .

Proof: Let |T | = S ≤ N , the cardinality ofT . For
the first bound, supposeT consists of all D-tuples in the set
1 ≤ i1 < · · · < iD ≤ S1/D, where for convenience we assume
thatS1/D is an integer. In a sense, this is the most dependent
configuration of anS-sparseD-linear form. Furthermore,
assume that each non-zero coefficient takes the value1√

S
so

that ‖x‖2 = 1. The probability that|u2 − 1| ≥ S − 1 is lower
bounded by

P(|u2 − 1| ≥ S − 1) ≥ 2−S1/D

= exp(−S1/D ln(2))

as this is the probability thata1 = · · · = aS1/D = 1. For
the second bound, assume that each non-zero coefficient has a
completely unique set of indicesi1, . . . , iM ; i.e., no two non-
zero coefficients have a single index value in common. In this
case, the productsai1 · · · aiD associated with the non-zero co-
efficients are i.i.d. Thus,u is equivalent to a weighted sum of
i.i.d. binary symmetric random variables and is consequently
subgaussian with tailP

(

|u2
k − 1| > t

)

≤ exp (−ct), for some
c > 0, as desired [16].

Lemma 2 shows that the tails of aD-linear form can range
from subgaussian to arbitrarily heavy-tailed, depending on D.
Heavier tails generally translates into slower concentration
about the mean, which presents challenges for the sparse
recovery problem. Standard RIP bounds are not applicable to
our situation due to the nonlinear dependencies. Therefore,
we present three different attacks on our problem borrowing
ideas from other approaches. The first and simplest approachis

based on Geršgorin’s Disk Theorem. The second attack applies
a recent result for heavy-tailed restricted isometries [9], [17].
The third method uses results from the theory of Rademacher
Chaos. None of these attacks yields the optimal RIP bounds
in all situations, so our ultimate statement is a combination of
the bounds derived from the three different approaches.

A natural question to ask is whether the pattern of sparsity,
and hence the dependencies and tail behavior, has a real effect
on the problem in practice. The simulation results depictedin
Fig. 1 suggest that the dependencies have a significant impact.
The simulations show that Gram matrices corresponding to
higher order multilinear functions tend to have smaller min-
imum eigenvalues, which suggests that more measurements
will be needed for higher order problems.
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Fig. 1. Comparison of minimum eigenvalues of Gram matrices as a
function support sizeS. Each curve depicts the smallest minimum eigenvalue
observed in105 independent draws ofS×S Gram matrices generated by5S
independent vectors. Three different types of vectors are compared: vectors
with S i.i.d. binary symmetric random entries (solid), with entries equal to
all pairwise-products of∼

√
S i.i.d. binary symmetric variables (dash-dot),

and with entries equal to all third order products of∼ S1/3 i.i.d. binary
symmetric variables (dashed).

VI. RIP FROM GERŠGORIN’ S THEOREM

In this section, we will show how to get RIP constants
arbitrarily close to0 if the number of measurementsK scales
like S2 logN . We follow the proof strategy used by Hauptet
al. to establish the RIP for Toeplitz matrices [8]. Let1√

K
AR

be the submatrix formed by taking the columns of1√
K
A

with indices in the setR ⊂ {1, 2, . . . , N}. The Gram matrix
of 1√

K
AR is GR = 1

KAT
RAR. If we can show that the

eigenvalues ofGR lie in the range[1 − δS , 1 + δS ] for all
subsetsR of size S, |R| = S, then the matrix must satisfy
the RIP with constantδS . Hauptet al. bound the eigenvalues
using Geršgorin’s Disc Theorem which is reproduced below.

Theorem 3 (Geršgorin): LetG = {gℓm} be anS×S real-
valued matrix. Then, each eigenvalueλℓ lies in the following
range

λℓ ∈
[

gℓℓ −
∑

m 6=ℓ

|gℓm|, gℓℓ +
∑

m 6=ℓ

|gℓm|
]

.



See, for instance, [18] for a proof. Thus, if we can show
that the diagonal elements of eachGR are close to one and
the off-diagonal elements are close to zero, we can establish
the RIP. These requirements can be checked via Hoeffding’s
concentration inequality.

Lemma 3 (Hoeffding): Letv1, v2, . . . , vK be independent
random variables satisfying|vi| ≤ cMAX. Then, the probability
that the sumvSUM =

∑K
i=1 vi deviates from its meanE[vSUM]

is upper bounded as follows:

P

(

∣

∣

∣vSUM− E[vSUM]
∣

∣

∣ ≥ t

)

≤ 2 exp

(

− t2

2Kc2MAX

)

We can now prove our first main result.
Theorem 4: If the number of measurements satisfies

K ≥ c1S
2 logN

then the matrixA satisfies the RIP with probability at least
1− exp

(

−c2K/S2
)

for some positive constantsc1 and c2.
Proof: From Lemma 1, the expected value of the Gram

matrix is the identity matrix. Note that since the inputs are
binary and symmetric, the diagonal elements of the Gram
matrix are exactly equal to1:

gℓℓ =
1

K

K
∑

i=1

a2i1a
2
i2 · · ·a

2
iD =

1

K

K
∑

i=1

1 = 1 .

Since each off-diagonal element is the sum of binary sym-
metric random variables, we can use Lemma 3 to get
P (|gℓm| ≥ t) ≤ 2 exp

(

−Kt2

2

)

. By the union bound,

P





M
⋃

ℓ=1

M
⋃

m 6=ℓ

{|gℓm| ≥ t}



 ≤ 2N2 exp

(

−Kt2

2

)

.

≤ exp

(

−Kt2

2
+ logN + 1

)

.

Therefore, using Theorem 3 and settingt = δS/S, the
eigenvalues ofGR are in the rangeλℓ ∈ [1− δS , 1 + δS ] with

probability at least1− exp
(

−Kδ2S
2S2 + logN + 1

)

. Therefore,

if K ≥ 2
δ2S
(S2 logN + 1) we obtain the desired result.

Although this theorem does not establish the linear depen-
dence on sparsity that we would like, the proof is quite simple
and demonstrates that the number of required measurements
does not depend on the interaction orderD beyond thelogN
term which is approximately equal toD logM .

VII. H EAVY-TAILED RESTRICTEDISOMETRIES

We now show how a recent result due to Vershynin [9],
[17] can be applied to our problem. Vershynin’s result is
an extension of a framework pioneered in earlier work by
Rudelson and Vershynin [17] that developed new bounds for
random Fourier compressed sensing matrices as well as tighter
constants for i.i.d. Gaussian matrices. The main result that is
relevant to our discussion is the following theorem.

Theorem 5 (Vershynin): LetA be aK × N measurement
matrix whose rowsaTℓ are independent isotropic random vec-
tors in R

N . Assume the entries ofA are bounded,|aℓm| ≤ 1,

almost surely. For every sparsity levelS ≤ N and constant
0 < ǫ < 1, if the number of measurements satisfies

K ≥ C ǫ−2S log3
(

ǫ−2S
)

logN (5)

then the RIP constantδS of the matrixA is upper bounded
by ǫ in expectation:E[δS ] ≤ ǫ.
This is Theorem 70 in [9]. The basic insight behind this result
is that a union bound argument is not strong enough to estab-
lish the RIP withS polylog(N) heavy-tailed measurements.
The arguments in the proof bound all possible sparsity patterns
simultaneously.

The expectation bound on the RIP constantδS can easily
be converted to a bound on the probability thatδS exceeds
some threshold using Markov’s inequality. This leads us to
the following bound on the number of required measurements
to a RIP.

Theorem 6: If the number of measurementsK is at least

K = C
S

γ2δ2S
log3

(

S

γ2δ2S

)

log(N) (6)

then the matrixA satisfies the RIP with constantδS with
probability at least1− γ for some positive constantC.

Proof: From Lemma 1, 1KE[ATA] = I so the rows of
A are isotropic. Since we generate the inputs independently
for each observation, the rows are also independent (i.e. all
the dependencies introduced by the multilinear structure are
across the columns). Applying Theorem 5, we get that the
RIP constant satisfiesE[δS ] ≤ ǫ if K satisfies (5). Now,
by Markov’s inequality, the probability that the RIP constant
exceedsδS is upper bounded byǫ/δS. Setting ǫ = γδS
completes the proof.

Note that if the sparsityS scales linearly with the problem
sizeN , this bound takes the simpler formS log4(N).

VIII. RIP FROM TAIL BOUNDS

To obtain the RIP based on tail bounds we give a straightfor-
ward generalization (to the heavy-tailed situation) of a well-
known result for subgaussian tail bounds [7]. The proof is
included in the Appendix. The basic idea is to start with a tail
bound on the measurement vector and apply the union bound
to bound the number of measurements needed to get a RIP.

Lemma 4: Assume that for anyx ∈ R
N that is S-sparse,

‖x‖0 ≤ S, the sensing matrixA satisfies the following
concentration inequality for constantsη, ρ > 0 and any
0 < δ < 1:

P

(∣

∣

∣

∣

1

K
‖Ax‖22 − ‖x‖22

∣

∣

∣

∣

> ǫ‖x‖22
)

< exp
(

− c0(δ)K
ρSη

)

.

If K ≥ c1(δ)S
(1−η)/ρ (log(N/S))1/ρ (the number of rows in

A), thenA satisfies the RIP with constantδ with probability
at least1− exp (−c2(δ)K

ρSη).
Vershynin’s bound is within a poly-logarithmic factor of

S log(N/S), the bound onK one would have for an i.i.d.
subgaussian sensing matrix. As pointed out in Section V,
certain sparsity patterns in the multilinear forms have no
dependencies among the terms and thus are equivalent to linear



forms. Vershynin’s bound is not adaptive to the pattern of
sparsity and consequently it is sometimes too conservative. In
this section we use Rademacher chaos theory to obtain bounds
that are adaptive in this sense. Before following this more
sophisticated approach, we state a simple tail bound based on
Bernstein’s inequality.

Recall thatK−1‖Ax‖22 = K−1
∑K

k=1 u
2
k, where theuk

are i.i.d. Rademacher chaos variables (of the form ofu(M))
as defined in (2). In the following sections we will assume
(without loss of generality) that‖x‖2 = 1 and thus focus on
boundP(|K−1

∑K
k=1 u

2
k − 1| > t).

Lemma 5: Assume thatu1, . . . , uK are i.i.d. random vari-
ables of the form (2) witha1, . . . , aM i.i.d. binary symmetric
andx is S-sparse. Then

P

(

∣

∣

∣

1

K

K
∑

k=1

u2
k − 1

∣

∣

∣ > t

)

≤ exp

(

−min
(

3−2DKt2, Kt
3S

)

4

)

Proof: Note that due to the sparsity and unit norm of
x, each measurement satisfiesu2

k ≤ ‖ak‖∞‖x‖1 ≤ S. Using
Bonami’s hypercontractive inequality (see equation (1.2)in
[14]), it can be shown that

(

E[u4
k]
)1/4 ≤ (4 − 1)D/2

E[u2
k] =

3D/2. By Bernstein’s inequality, we get that

P

(

∣

∣

∣

1

K

K
∑

k=1

u2
k − 1

∣

∣

∣ ≥ t

)

≤ exp

(

−1

4

Kt2

max(32D, tS/3)

)

which completes the proof.
Using this tail bound in Lemma 4 produces a requirement of

the formK ≥ Cmax(32DS log(N/S), S2 log(N/S)). This is
similar to the bound obtained via Geršgorin’s Theorem, but
can be a bit tighter for larger values ofS.

A. Rademacher Chaos Tail Bounds

A homogeneous Rademacher chaos of orderD ≥ 1 is a
random variable of the same form as our observations, that is
for any positive integerL

u(L) =
∑

1≤i1<i2<···<iD≤L

ai1ai2 · · ·aiD xi1i2···iD , (7)

wherexi1,...,iD are real-valued coefficients and{a1, . . . , aL}
are i.i.d. binary symmetric (i.e.,Rademacher) random vari-
ables,P(ai = 1) = P(ai = −1) = 1/2. Note that variableL
is the number of independent variables involved in the chaos,
and the multilinear functionu defined in (1) corresponds to
u(M). As shown in Lemma 2, the tails of this random variable
can be quite heavy or as light as subgaussian, depending on
the pattern of non-zeroxi1,...,iD . It turns out that the effect of
this pattern is well-captured by thecombinatorial dimension
of the chaos [14].

First, we introduce the notion of a infinite series
Rademacher chaos of the form

∑

1≤i1<···<iD<∞
ai1ai2 · · · aiD xi1i2···iD ,

wherea1, a2, . . . are i.i.d. Rademacher random variables. Let
T ⊆ N

D be the set of indices on which the coefficients of the

Rademacher chaos are non-zero. For eachL = 1, 2, . . . , let
TL be the restriction ofT to inputs1, 2, . . . , L:

TL = T ∩ {1, 2, . . . , L}D.

Note that truncating the infinite series to terms involving only
{a1, . . . , aL} is equivalent to the multilinear formu(L) in (7)
andTL is its coefficient support.

Different patterns of sparsity lead to varying degrees of
dependency among the terms in the chaos. This dependency
can be quantified in terms of the so-calledcombinatorial
dimensionwhich is defined below following the work of [14],
[19].

Definition 2: We say thatT has combinatorial dimension
α if there exist positive constantsc1 and c2 and a positive
integerM0 such that for eachL ≥ L0,

sup
A1,A2,...,AD⊂{1,...,L}D

|TL ∩ (A1 ×A2 × . . .×AD)|
(max1≤j≤D |Aj |)α

≤ c1

and |TL| ≥ c2L
α.

As shown in the following lemma (see Theorem 1.5 in
[19] for a proof), the combinatorial dimension is intimately
connected to the rate at which the chaos concentrates.

Lemma 6 (Blei-Janson): Letu(L) be a sequence of
Rademacher chaos of orderD with combinatorial dimension
α. For all t ≥ 2, there exist positive constantsc1 and c2 such
that the upper tail is lower and upper bounded as follows:

exp
(

−c1t
2/α
)

≤ sup
L

P
(∣

∣u(L)
∣

∣ > t
)

≤ exp
(

−c2t
2/α
)

.

If we assume that‖x‖2 = 1, then it follows that

exp
(

−c1t
1/α
)

≤ sup
L

P
(∣

∣u2(L)− 1
∣

∣ > t
)

≤ exp
(

−c2t
1/α
)

It can be shown that1 ≤ α ≤ D for orderD Rademacher
chaos. For example, in Lemma 2, the worst-case (heaviest)
tail was generated by a chaos with combinatorial dimension
of α = D and the best-case (lightest) tail corresponded to a
situation whereα = 1. Those two tails corresponded to the
largest lower bound and smallest upper bound, respectively,
possible for a Rademacher chaos of orderD.

The Blei-Janson result characterizes the tails of a sin-
gle chaos. We are interested in the tails ofK−1‖Ax‖22 =
K−1

∑K
k=1 u

2
k, where theuk are i.i.d. and each is an order-D

chaos inM variables. The tails of this sum are bounded in
the following lemma.

Lemma 7: Assume thatuk, k = 1, . . . ,K, are i.i.d.
Rademacher variables of orderD with combinatorial dimen-
sion 1 ≤ α ≤ D. There exist constantsc, C > 0 such that

P

(

∣

∣

∣

1

K

K
∑

k=1

u2
k − 1

∣

∣

∣ > t

)

≤ C exp(−cmin(Kt2,K1/α t1/α))

The lemma is proved in the Appendix. A key element of the
proof is a moment bound for sums of symmetric i.i.d. variables
due to R. Latala [20]. Plugging the tail bounds from Lemma
5 and 7 into Lemma 4 yields the following theorem.



Theorem 7:If the number of measurements satisfies,

K ≥ c1 min
{

S2 log(N/S), Sα logα(N/S)
}

(8)

then the matrixA satisfies the RIP with probability at least
1− exp

(

−c2max
{

K/S, K1/α
})

.
Note that in the caseα = 1, we have a bound that is strictly
better than the bounds obtained above. The caseα = 1 may
be common in many applications. For example, in the systems
biology setting we may have pairs of genes interacting with
each other but not with other genes.

IX. EXTENSIONS

It is possible in certain cases to obtain a tail bound that does
not depend on the combinatorial dimension of the individual
Rademacher chaos variables. Consider the (normalized) sum
K−1/2

∑K
k=1(u

2
k − 1). This sum can be written as a sum of

the formK−1/2
∑K

k=1 vk, where thevk are i.i.d. and can be
written as a sum of Rademacher chaos variables of order2
through2D in KM variables (withM variables contributed
by eachvk in the sum). Observe that the constituent chaos
variables include no interactions between the variables in-
volved in vi and vj , for all i 6= j. This implies that the
combinatorial dimension ofK−1/2

∑K
k=1 vk is less that that

of uk. In fact, asK → ∞ the combinatorial dimension
of K−1/2

∑K
k=1 vk tends to1. Suppose that eachuk is S-

sparse, withS < N a fixed constant. TakeK = cS log(N/S)
for some constantc > 0. Then it follows from Lemma 6
that limN→∞ P(|K−1/2

∑K
k=1 vk| > t) ≤ exp(−c2t

2), and
hencelimN→∞ P(| 1K

∑K
k=1 vk| > t) ≤ exp(−c2Kt2). This

tail bound suggests that if the sparsity level is fixed, then
K > cS log(N/S) measurements will suffice forN suffi-
ciently large.

It is possible to extend the results for the recovery of
sparse multilinear functions to sparse polynomial functions.
Polynomial functions include auto-interactions not present
in the multilinear form. These interactions require the input
distribution to be multi-level (binary will not suffice) and
imply that the expectation of the Gram matrixE[ATA]
is not proportional to identity. Instead the expected Gram
matrix can be arranged in a block diagonal structure. The
techniques developed in this paper can be used to deal
with this situation and the resulting RIP conditions will then
depend on the eigenvalue spread of the expected Gram matrix.
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APPENDIX

A. Proof of Lemma 4

Without loss of generality, we can assume that‖x‖ = 1.
Let AT denote the set of all vectors withℓ2-norm of1 in R

N

whose support is on patternT . Choose a coverQT ⊆ AT

such thatminq∈QT
‖x − q‖2 ≤ δ

4 for all x ∈ BT . It can be
shown that there are choices ofQT with cardinality at most
(

12
δ

)S
. We now use the union bound to give an upper bound

on the probability thatA distorts the length of someq by
more thanδ

2 :

P

({

∣

∣

∣‖Aq‖22 − 1
∣

∣

∣ ≥ δ/2 for someq ∈ QT

})

≤
∑

q∈QT

P

(∣

∣

∣‖Aq‖22 − 1
∣

∣

∣ ≥ δ/2
)

≤
∑

q∈QT

exp(−c0(δ/2)K
ρSη)

≤
(

12

δ

)S

exp(−c0(δ/2)K
ρSη).

This implies that

(

1− δ

2

)

≤ ‖Aq‖2 ≤
(

1 +
δ

2

)

(9)

for all q ∈ QT with probability at least 1 −
(12/δ)S exp(−c0(δ/2)K

ρSη). To each vectorx ∈ BT assign
a cover vectorqx ∈ QT such that‖qx − x‖2 ≤ δ

4 . Now,
let γ ≥ 0 be the smallest number such that‖Ax‖2 ≤
(1 + γ)‖x‖2 for all x ∈ BT . Assume that (9) holds. By
the triangle inequality,

‖Ax‖2 ≤ ‖Aqx‖2 + ‖A(qx − x)‖2 (10)

≤ 1 +
δ

2
+ (1 + γ)

δ

4
. (11)

By assumption,γ ≤ δ/2 + (1 + γ) δ/4, γ (1− δ/4) ≤
3δ/4, and γ ≤ 3δ/4

1−δ/4 ≤ δ. Plugging this back into (11)
we get ‖Ax‖2 ≤ 1 + δ/2 + (1 + δ)δ/4 ≤ 1 + δ for all
x ∈ BT . Similarly, by the reverse triangle inequality, we get
that ‖Ax‖2 ≥ ‖Aqx‖2 − ‖A(x − qx)‖2 ≥ 1 − δ/2 − (1 +
δ)δ/4 ≥ 1− δ.

Now that we have established that RIP holds for a single
patternT , we can apply the union bound to show that it holds
over allS-sparse vectors. There are

(

N
S

)

patterns with support

up to the sparsity levelS. Recall that
(

N
S

)

≤
(

eN
S

)S
. The

probability that RIP does not hold for at least one pattern
with support of sizeS (or less) is upper bounded as follows:

(

eN

S

)S (
12

δ

)S

exp(−c0(δ/2)K
ρSη)

≤ exp

(

−c0(δ/2)K
ρSη + S ln

(

eN

S

)

+ S ln

(

12

δ

))

≤ exp(−c2(δ)K
ρSη) if Kρ ≥ c1(δ)S

1−η log

(

N

S

)



B. Proof of Lemma 7

Each term in the sumu2
k can be written as the sum of the

form

u2
k =





∑

1≤i1<i2<···<iD≤M

ai1ai2 · · · aiD xi1i2···iD





2

,

=
∑

1≤i1<i2<···<iD≤M

a2i1a
2
i2 · · ·a

2
iD x2

i1i2···iD + vk ,

= ‖x‖22 + vk

where thevk are the cross-terms of the sum and we have
used the fact thata2i = 1, i = 1, . . . ,M . Recall that we are
assuming (wlog) that‖x‖22 = 1. Therefore,P(| 1K

∑K
k=1 u

2
k −

1| > t) = P(| 1
K

∑K
k=1 vk| > t).

The vk are i.i.d. and symmetrically distributed. Lemma 6
implies thatP (|vk| > t) ≤ exp

(

−c2t
1/α
)

, where1 ≤ α ≤ D
is the combinatorial dimension of the chaos variables{uk}.
The moments of sums of i.i.d. symmetric random variables
can be bounded using Corollary 2 in [20] which states that
for r > 2

(

E

[

( K
∑

k=1

vk

)r
])1/r

≤ sup

{

r

s

(

K

r

)1/s

(E |vk|s)1/s : max
(

2,
r

K

)

≤ s ≤ r

}

≤ C
(√

Kr +K1/r (E |vk|r)1/r
)

.

Note that E|vk|r ≤
∫∞
0 e−ct1/(αr)

dt = c−αrΓ(1 + αr),
where Γ is the gamma function. It follows from Stirling’s
approximation thatΓ(1 + αr)1/r ≤ Crα, and so we have

(

E

[

( K
∑

k=1

vk

)r
])1/r

≤ C′(
√
Kr +K1/rrα)

≤ C(
√
Kr + rα) .

The last inequality above follows by showing that for any
r ≥ 2, 1 ≤ α < ∞, andK ≥ 1, we have

√
Kr +K1/rrα ≤

3
√
Kr+e4αrα. This is established by considering three cases:

1) If 2 ≤ r ≤ 4, thenK1/rrα ≤ K1/2rα ≤ 4α−1/2
√
Kr.

2) If K1/rrα ≤
√
Kr, then the claim is trivial.

3) If r ≥ 4 and K1/rrα ≥
√
Kr, then K1/2−1/r ≤

rα−1/2 ≤ rα, soK1/r ≤ r2α/(r−2) ≤ r4α/r ≤ e4α.

So we have a bound of the form
(

E

[

( K
∑

k=1

vk

)r
])1/r

≤ Cmax
{√

Kr, rα
}

. (12)

Markov’s inequality yields

P

(∣

∣

∣

∣

∣

K
∑

k=1

vk

∣

∣

∣

∣

∣

≥ t

)

≤ t−r
(

Cmax
{√

Kr, rα
})r

.

In both cases the upper bound has the formC(t−1Kγrζ)r , for
appropriateγ andζ. Taking r = (tK−γe−1)1/ζ in each case
we obtain the following bound for larget (so thatr > 2):

P

(∣

∣

∣

∣

∣

K
∑

k=1

vk

∣

∣

∣

∣

∣

≥ t

)

≤ C′ exp
(

−cmin
{

t2/K, t1/α
})

.

SubstitutingKt for t, we get that

P

(∣

∣

∣

∣

∣

1

K

K
∑

k=1

vk

∣

∣

∣

∣

∣

≥ t

)

≤ C′ exp
(

−cmin
{

Kt2,K1/αt1/α
})

.

REFERENCES

[1] L. Hao, A. Sakurai, T. Watanabe, E. Sorenson, and C. A. Nidom
et al., “Drosophila RNAi screen identifies host genes important for
influenza virus replication,”Nature, vol. 454, pp. 890–893, August 2008.
doi:10.1038/nature07151.

[2] F. D. Bushman, N. Malani, J. Fernandes, I. D’Orso, and G. Cagneyet
al., “Host cell factors in HIV replication: Meta-analysis of genome-
wide studies,” PLoS Pathogens, vol. 5, p. e1000437, May 2009.
doi:10.1371/journal.ppat.1000437.

[3] M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, and E. D.Spearet
al., “The genetic landscape of a cell,”Science, vol. 327, pp. 425–431,
January 2010. doi:10.1126/science.1180823.

[4] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Info. Theory, vol. 52, pp. 489–509, February 2006.

[5] E. J. Candès and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies,”IEEE Trans. Info. Theory,
vol. 52, pp. 5406–5425, December 2006.

[6] D. L. Donoho, “Compressed sensing,”IEEE Trans. Info. Theory, vol. 52,
pp. 1289–1306, April 2006.

[7] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property of random matrices,”Constructive
Approximation, vol. 28, pp. 253–263, 2008.

[8] J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed
sensing matrices with applications to sparse channel estimation,” IEEE
Trans. Info. Theory, Submitted August 2008.

[9] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” tech. rep., University of Michigan, August 2010.

[10] W. Dai, O. Milenkovic, M. Sheikh, and R. Baraniuk, “Probe design for
compressive sensing DNA microarrays,”IEEE Intl. Conf. on Bioinfor-
matics and Biomedicine, pp. 163–169, 2008.

[11] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering sparse
signals using sparse measurement matrices in compressed DNA mi-
croarrays,”IEEE Journal of STSP, vol. 2, pp. 275–285, June 2008.

[12] J. Haupt and R. Nowak, “Signal reconstruction from noisy random
projections,” IEEE Trans. Info. Theory, vol. 52, pp. 4036–4048, Sept.
2006.

[13] E. Candès and T. Tao, “The Dantzig selector: Statistical estimation when
p is much larger thann,” Ann. Statist., pp. 2313–2351, Dec. 2007.

[14] R. Blei, Analysis in Integer and Fractional Dimensions. Cambridge,
UK: Cambridge University Press, 2001.

[15] E. J. Candès, “The restricted isometry property and its implications for
compressed sensing,”C. R. Acad. Sci. Paris, Ser. I, vol. 346, pp. 589–
592, May 2008.

[16] D. Achlioptas, “Database-friendly random projections: Johnson-
Lindenstrauss with binary coins,”J. of Comp. and Sys. Sci., vol. 66,
pp. 671–687, 2003.

[17] M. Rudelson and R. Vershynin, “On sparse reconstruction from fourier
and gaussian measurements,”Comm. Pure Appl. Math., vol. 61,
pp. 1025–1045, 2008.

[18] R. A. Brualdi and S. Mellendorf, “Regions in the complexplane con-
taining the eigenvalues of a matrix,”The Am. Math. Monthly, vol. 101,
pp. 975–985, December 1994.

[19] R. Blei and S. Janson, “Rademacher chaos: tail estimates versus limit
theorems,”Arkiv för Matematik, vol. 42, pp. 13–29, April 2004.

[20] R. Latala, “Estimation of moments of sums of independent real random
variables,”The Annals of Prob., vol. 25, no. 3, pp. 1502–1513, 1997.


