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Abstract—This paper investigates the problem of identifying study tackled the problem directly for pairwise gene intera
sparse multilinear systems. Such systems are characterteby tions in yeast [3]. This huge undertaking involved testingro

multiplicative interactions between the input variables wth spar- 5 million gene pairs; yet only a small subset were identified
sity meaning that relatively few of all conceivable interations are '

present. This problem is motivated by the study of interactons as. hf’f‘V'”_g poter?tlally relevant |ntergctlons: Moving beyon
among genes and proteins in living cells. The goal is to dewsd Pairwise interactions and/or to organisms with larger gees

a sampling/sensing scheme to identify sparse multilineaystems is formidable to say the least. However, the results of this
using as few measurements as possible. We derive bounds o®th paper suggest that it may be possible to exploit the sparsity

number of measurements required for perfect reconstructio as 4t the problem in order to drastically reduce the number of
a function of the sparsity level. Our results extend the notin

of compressed sensing from the traditional notion of (lineg e?(pe_r_lmen'[_s reqwred to identify the relatively small setisf
sparsity to more refined notions of sparsity encountered in Significant interactions.
nonlinear systems. In contrast to the linear sparsity mode, in We propose and investigate a stylized version of the problem
the multilinear case the pattern of sparsity may play a role b 46y and give bounds on the number of required measure-
the sensing requirements. » S ) .
ments. A multilinear functional is used is used to modeldine
|. INTRODUCTION and nonlinear effects observable at the output c_>f the uyl_i@grl _
system. Through a change of variables, this identification
The investigation in this paper is motivated by the followin problem can be expressed in a linear form and viewed as a
problem in systems biology. High-throughput experimenigmpressed sensing problem with partially dependent mea-
allow biologists to probe the effects of individual genesl ansyrement vectors. We use this formulation to leverageiegist
their protein products. For many model organisms, such ggory from compressed sensing. The novelty here is that
yeast and the fruit fly, we now have so-called “single-deleti the sensing matrices involved have a nonlinear dependency
cell libraries consisting of all possible variations of thermal strycture that requires a delicate analysis in order tchéista

cell with one gene removed or suppressed. By studying eaghestricted isometry property (RIP) for our problem.
single-deletion strain, biologists are able to deduce tie-r

vance (or irrelevance) of a particular gene/protein to aifipe

function or process. For example, this kind of study was us@d Related Work

to identify a small subset of thé@3,071 genes in the fruit

fly that may be relevant to the replication of the influenza Since the seminal papers of Candes, Romberg, Tao, and

virus [1]. Similar studies have applied this methodology tDonoho, there has been a great deal of interest in compressed

identify genes involved in HIV virus replication. However, sensing and its applications [4]-[6]. We do not attempt & ful

meta-analysis of several independent studies has revealesurvey of the literature and only mention a few papers that ar

low degree of overlap between the sets of genes identifieddinectly relevant to our considerations. The restrictedristry

the different studies [2]. property and its connections to the Johnson-Lindenstrauss
One likely explanation is that there is redundancy in tHemma were examined in [7] and we will use elements of

genome. For example, two or more genes/proteins may hakeat work in some of our own proofs. In [8], the authors

very similar functionalities. Removing a single gene in ahowed how compressed sensing can be generalized to include

situation like this may not produce a detectable effectgesinsensing matrices with Toeplitz dependency structure. \We wi

a similar gene can perform the function of the deleted onemploy techniques from that paper to prove one of our bounds.

To detect the relevant genes it is necessary to remove th@mother bound we develop makes use of the framework

or modulate their expression levels simultaneously. A mecerecently developed in [9] for matrices with independent and

isotropic rows or columns. We also mention that there have

This work was partially supported by the AFOSR grant FA9886L-0140  heen proposals to use compressed sensing the design of

and the NSF grant CCF-0728767. R. Nowak would also like takhErinity . .

College and the Isaac Newton Institute at the University amBridge for genomics experiments [10]' [11]' but we are not aware of work

support while this work was being completed. that considers gene interactions.



Il. PROBLEM STATEMENT I1l. SUMMARY OF MAIN RESULTS

We now propose a mathematical model for interactionfs.-rhf3 re_Iat|on between the measurements Of the mult|I|_near
: . unction in (1) and the parameters can be written as a linear
There areM inputs aj,ase,...,ays that take values in the

reals. These inputs pass through a multilinear system Wﬁxstem of equations. Using t.hls repres_entatlon, we apply
output results from compressed sensing to obtain upper bounds on

the number of required measurements. Throughout the paper,
w— Z iy - Gip Tigoip - @ We letlog x deno_te the logarithm af to the base andlnz
the natural logarithm.

Our first approach in Section VI combines the fact that
where each coefficient;, ;,...;,, takes values in the reals. Noteour measurements preserve the input norm in expectation
that each combination ab inputs appears exactly once anavith a union bound over all sparsity patterns. In Section
that N = (}7) such combinations are possible. We will refeVIl, we work with a framework that bounds all sparsity
to N as the problem size. We are particularly interested fpatterns simultaneously and yields optimal results to iwith
sparsemultilinear functions in which only a small fractionpolylogarithmic factors. Finally, in Section VIII, we work
of the coefficients are non-zero. Note that with = 1 the with tail bounds on our measurement vectors combined with
multilinear function reduces to the standard linear model. a union bound over all patterns. This bound are based on a

Example 1: ForD = 2, the function can be written as therefined notion of sparsity called trembinatorial dimension
sum of all pairwise interactions: of a multilinear functional which takes values In< o« < D
[14]. Overall, we arrive at the following theorem.

1<iy<--<ip<M

Mo M Theorem 1: Assume that the inputs are i.i.d. binary sym-
U= Z Z Qiy iy Tiyig metric random variables. If the number of measuremédtits
i =liz=i1+1 satisfies

Remark 1:We can generalize our framework to include all- . . Slog®(S)log N, §% log N 5% log® N
interactions of ordetD or less without affecting our results.  — ’ S )’ S

In this case, we would have functions of the form then the measurements can be used to infer an arbitéary
I sparse multilinear function with overwhelming probalyilit
Z Z PN C ) This result is simply a combination of Theorems 3, 6, and 7,
71 212 Tm .

faizim which we now set out to prove. Note that in our setting,
will tend to be close to bé as this corresponds to the case
The restriction to interactions of ordé» simplifies the expo- where each gene is involved in only one interaction.
sition and analysis.
The values of the coefficients, ...;,, are unknown and our
objective is to learn their values accurately and efficierb
do so, we make measurements by choosing values folMthe

d=1 1<i;<--<ig<M

IV. COMPRESSEDSENSING FORMULATION

We relate our situation to the canonical compressed sensing
problem and use results from this area to derive an upper

inputs and recording the resulting output. kgt denote the pound on the number of measurements. We begin by vector-

1 measurement resulting from the inplut; apar} and izing the unknown coefficients according to some one-to-one
1yeeey . .

let K denote the total number of measurements taken. ngex map:

goal is to determine bounds on the number measurenfénts X = {Tiyig-ip ) -

needed to identify coefficients. In general, Af < N, then

perfect reconstruction of the coefficients is impossiblehes

number of unknowns exceeds the number of equations.
However, if we assume that the number of non-zero co- ap = {a;, ai, - aip }t -

efficients is small compared to the problem size (i.e. thenis allows us to write each output in linear form:

coefficients are sparse), then the coefficients can be fahti T

with far less thanN measurements. Formally, we say that Uk =X (@)

the multilinear function in (1) isS-sparse ifx;,i,..., 7 0 Next, we normalize each measurementg%;
for at mostS coefficients. Our bounds on the number of

The same index map is used to create a measurement vector
out of the products of the inputs:

measurements needed for recovery rely on the use of random yp = 1 U

inputs. Also, although we focus on a noiseless measurement VK

model in this paper, It is straightforward to also include thFinally, we can write allk’ measurements in matrix form:

possibility of additive measurement noise using existhapty a¥

and methods (e.g., [12], [13]). al 1
Throughout the paper, we will useandC to denote generic A = . ) y=1[y1y2 - yK]T = \/—F Ax.

positive numerical constants in our calculations, and thay -
represent different constants in different bounds. ax



Remark 2: Usually, the factorl—K is absorbed intA (the Lemma 1: Assume the inputs are generated independently
input). To account for the possibility of sums of interasimf according to symmetric distributions with unit variancéwen,
different orders, here we normalize the measurements at the expected value of the Gram matfk = %ATA of the

output. measurement matrixT%A is an identity matrix:
We now review some standard definitions and results from
compressed sensing that will be useful in our proofs. We E[G]=E {iATA] =1.
begin with the notion of a restricted isometry property,tfirs K
introduced in [S]. _ o _ . Proof: First, note that each diagonal elementBfG]
Definition 1. A matrix A satisfies the restricted isometryhas the following formt S°5  E[a2, a2, ---a2, ]. Since
. . ) - K k=1 ki Pkig . k_zD .
property (RIP) of orderS' with constantis if the variables are independent and have variartbés takes the

form & S0 | Ela?, |Ela},,] - - E[a?, ] which is just equal to
one. Next, each off-diagonal elementi®fG| can be written
as a sum of products:

1
(1= ds)lx[l3 < = lAx[l3 < (1+ds) x5

for all vectorsx with support of sizeS or less,||x||o < S.

If the matrix A satisfies the RIP with,s < 1, then it can 1 E
be shown that solving the following, optimization problem K Z]E[akil Qkiy *** Qhip Qhjy Ohja " * Q]
k=1
Xlgg}v [%[lo subject tO\/—EAX =Yy (3) and because each of the products in (1) has a unique form, it

_ _ _ ~ follows that two or more of the variables appears in just once
yields an estimatg& that equalsx if ||x[|o < S. However, this in the expectation above. Without loss of generality;leand

approach quickly becomes computationally intractablehas t;, denote the indices of these variables. Then, the expestatio
problem sizeN grows. The landmark result of compressedan be written as:

sensing is that, under some technical conditions /therite- K
rion in the optimization in (3) can be relaxed to &nnorm 1 ZE[ak' IE[an, E[ans, - - anipanj, - W]
(which corresponds to solving a linear program) [4]-[6]eTh K= 7 " e w
theorem below is a good representative of the compress§
sensing framework [15].

Theorem 2 (Cangk): Assume the matriA satisfies the
RIP with do¢ < v/2 — 1 and let xg be the unique vector
in RY that is equal tox € R on its largestS values
and zero elsewhere. Then, the solutieh of the following
¢, optimization problem:

(rj1ce theay; are independent and symmetric random vari-
ables,E[ax;] = 0 so the summation is zero and each off-
diagonal term has zero mean. [ ]

The lemma above has two key implications for our mea-
surements. First, it implies that the expectation of theasgu
of each measurement is equal to the norm of the vector:

o : 1. Elu] = ||xf3 -
min [X[|; subject to—=Ax =y 4)
XERY VK Second, it shows that the sum of the squares of measurements
satisfies is also equal to the norm in expectation:
* 1
[x* = x|[1 < e1flx = x5y E[lyl3] = EXTE [ATA]x = |x|3%.
« X — X391 . . . . .
[x* —x[2 < 02% There are many input distributions that satisfy the assump-
- tions of Lemma 1. We will assume from here forward that
for some positive constants and c;. the inputs are independent and identically distributeici ().

For a full proof, see Theorem 1.2 in [15]. For extensions toyrthermore, for practical and theoretical reasons, we wil
cases where the measurements are contaminated with ngisume that the input distribution is bounded. This is parti
see, for example, [13]. ularly natural in the systems biology setting motivating ou
Corollary 1: If the vectorx has at mostS non-zero entries jnvestigation. Also, as we will see, nonlinear interacsidead
and the matrixA satisfies the RIP withios < v/2 — 1, then o heavy-tailed distributions which are difficult to coritfor
the solutionx™ of (4) is exactly equal tex. unbounded distributions. With these considerations indmin
Thus, if we can demonstrate the matAxsatisfies the RIP, it suffices to consider binary symmetric input distribugon
we can apply the tools of compressed sensing to efficientfyiroughout the rest of the paper, we will consider i.i.d.Litsp
infer the unknown coefficients. with distributionP(ay; = 1) = P(ag; = —1) = 1/2.
This distribution satisfies the requirements of Lemma 1
and so the norm of the output vectgr will eventually
The RIP enforces that the norms all sparse vectors &gnverge to the norm of the input vectar To bound the
approximately preserved by the measurement matrix. Asta figymber of measurements required for the RIP to hold with
step, we will show that our measurements preserve the nogm appropriate constant, we need to characterize how quickl
In expectation. + 3" uf concentrates to its mean. Without loss of generality,

V. INITIAL OBSERVATIONS



let us assume thdkx||» = 1. Then we need to quantify how based on GerSgorin’s Disk Theorem. The second attackesppli

quickly % > uj concentrates about its mean valuelofln a recent result for heavy-tailed restricted isometries [B7].

the standard compressed sensing formulation, the eleméefte third method uses results from the theory of Rademacher

of the measurement matrix are drawn i.i.d. according ©haos. None of these attacks yields the optimal RIP bounds

a subgaussian distribution. In that case each measureniardll situations, so our ultimate statement is a combimatib

satisfiesP(|uj — 1| > t) < exp(—ct), for a constant > 0, the bounds derived from the three different approaches.

and from this tail bound it can be shown that the sum con- A natural question to ask is whether the pattern of sparsity,

centrates rapidly enough that onf{log(N/S) measurements and hence the dependencies and tail behavior, has a reetl effe

are required. on the problem in practice. The simulation results depiated
The binary symmetric distribution is subgaussian, but b&ig. 1 suggest that the dependencies have a significant impac

cause of the nonlinear interactions the distributionudf as The simulations show that Gram matrices corresponding to

defined in (1), can have much heavier tails. The tail behavibigher order multilinear functions tend to have smaller min

is intimately connected to the pattern of sparsity. Unlike t imum eigenvalues, which suggests that more measurements

usual linear sparsity models, in the multilinear settinfedent will be needed for higher order problems.

sparsity patterns lead to different tail behaviors, depend

on the amount of interaction and dependency in the terms

involved. The following lemma characterizes the extremfes o 025
the tail behavior. A more refined analysis will be carried out _
later in Section VIII. 0.2y finear
Lemma 2: Letw a multilinear function of the form (1) and ©

let aq,...,ap be ii.d. binary symmetric random variables. T 0.15 ’
Assume||x|ls = 1 and let 7 denote the set of indices on o
which the coefficients;,;,...;, are non-zero. Then there exists D o1
a constantc > 0 such that for sufficiently large positive g '

supP(|u2—1| > 1) > exp (—ctl/D) 0.05 P

T

. 2

1171_fP(|u =1 >1t) <exp(—ct) . 0 ‘ . |

50 100 150
Proof: Let |T| = S < N, the cardinality of 7. For support size S

the first bound, supposg consists of all D-tuples in the set

; o ; 1/D ; éig 1. Comparison of minimum eigenvalues of Gram matricesaa
1< < <ip<S » Where for convenience we assum unction support size5. Each curve depicts the smallest minimum eigenvalue

thatS/P is an integer. In a sense, this is the most dependeBéerved in o independent draws & x S Gram matrices generated By
configuration of anS_sparseD-“near form. Furthermore, independent vectors. Three different types of vectors amepared: vectors

assume that each non-zero coefficient takes the &0 with S i.i.d. binary symmetric random entries (solid), with eetriequal to
all pairwise-products of- /S i.i.d. binary symmetric variables (dash-dot),

that||x|l2 = 1. The probability thafu®? — 1| > S — 1 is lower and with entries equal to all third order products -of S1/3 i.i.d. binary
bounded by symmetric variables (dashed).

2 —svb 1/D .
P(lu” =12 5—-1) 22 = exp(=5"/P 1n(2)) VI. RIP FROM GERSGORIN S THEOREM

as this is the probability that; = --- = ag1,;p = 1. For In this section, we will show how to get RIP constants
the second bound, assume that each non-zero coefficient haghétrarily close ta0 if the number of measuremenksS scales
completely unique set of indices, . .., i,; i.e., no two non- like 5?1log N. We follow the proof strategy used by Haugstt
zero coefficients have a single index value in common. In thid. to establish the RIP for Toeplitz matrices [8]. L&-}%AR
case, the products;, - - - a;,, associated with the non-zero cobe the submatrix formed by taking the columns g A
efficients are i.i.d. Thus, is equivalent to a weighted sum ofwith indices in the seR c {1,2,...,N}. The Gram matrix

i.i.d. binary symmetric random variables and is conseduenpf _AR is Gr = AT TAR. |f we can show that the
subgaussian with talP (juf — 1| > t) < exp (—ct), for some elgenvalues olGx lie in the range[l — ds,1 + dg] for all
¢ >0, as desired [16]. B subsetsR of size S, |R| = S, then the matrix must satisfy

Lemma 2 shows that the tails of/a-linear form can range the RIP with constanis. Hauptet al. bound the eigenvalues
from subgaussian to arbitrarily heavy-tailed, dependind ysing Gersgorin’s Disc Theorem which is reproduced below.
Heavier tails generally translates into slower conceiutnat Theorem 3 (Gerdgorin): LeB = {g} be an$ x S real-

about the mean, which presents challenges for the spagg@ied matrix. Then, each eigenvaliglies in the following
recovery problem. Standard RIP bounds are not appllcablergp,ge

our situation due to the nonlinear dependencies. Therefore
we present three different attacks on our problem borrowing Ae € [Qu - Z |9eml, gee + Z |92m|]
ideas from other approaches. The first and simplest appisach m#e m#L



See, for instance, [18] for a proof. Thus, if we can shoalmost surely. For every sparsity level < N and constant
that the diagonal elements of ea€h; are close to one and0 < ¢ < 1, if the number of measurements satisfies
the off-diagonal elements are close to zero, we can edtablis

—2 3 —2
the RIP. These requirements can be checked via Hoeffding's K> C e*Slog” (¢7°5) log N ©)
concentration inequality. then the RIP constants of the matrix A is upper bounded
Lemma 3 (Hoeffding): Lety, vz, ...,vx be independent py ¢ in expectationE[ds] < e.

random variables satisifyin@il < cmax. Then, the probability This is Theorem 70 in [9]. The basic insight behind this resul
that the sumvsym = > _;_, v; deviates from its meaB[vsum s that a union bound argument is not strong enough to estab-

is upper bounded as follows: lish the RIP withS polylog(N) heavy-tailed measurements.
2 The arguments in the proof bound all possible sparsity padte
P( USUM — E['USUM]‘ > t) < 2exp <_W> simultaneously.
MAX

The expectation bound on the RIP constantcan easily
be converted to a bound on the probability tlgt exceeds
some threshold using Markov’'s inequality. This leads us to

We can now prove our first main result.
Theorem 4: If the number of measurements satisfies

K > ¢15%log N the following bound on the number of required measurements
. - _ o to a RIP.
then the matrixA satisfies the RI_P_‘ with probability at least theorem 6: If the number of measuremehtss at least
1 — exp (—c2K/5?) for some positive constants and c,. g g
Proof: From Lemma 1, the expected value of the Gram K =C— log® ( . 2) log(N) (6)
matrix is the identity matrix. Note that since the inputs are Y205 Y205
binary and symmetric, the diagonal elements of the Grafen the matrixA satisfies the RIP with constar with
matrix are exactly equal to: probability at leastl — ~ for some positive constat.
T 1 X Proof: From Lemma 1,+E[ATA] = I so the rows of
2 2 2 ; ; ; : ;
9o = 75 Zail% i, = Z 1=1. A are isotropic. Slnce we generate the inputs independently
i=1 i=1 for each observation, the rows are also independent (i.e. al

Since each off-diagonal element is the sum of binary syrthe dependencies introduced by the multilinear structuee a
metric random variables, we can use Lemma 3 to ga€ross the columns). Applying Theorem 5, we get that the

P (|gem| > t) < 2exp (_KTtZ) By the union bound, RIP constant satisfie€[6s] < e if K satisfies (5). Now,
by Markov’s inequality, the probability that the RIP congta

M M K2 exceedsds is upper bounded by/ds. Settinge = 4ds

P U {lgeml =t} | <2N?exp <_T) completes the proof. [
£=1m#£t Note that if the sparsitys' scales linearly with the problem

Kt2 size N, this bound takes the simpler forilog* ().
< exp (—— +log N + 1) .
2 VIII. RIP FROM TAIL BOUNDS

Therefore, using Theorem 3 and settinfg= ds/S, the  To obtain the RIP based on tail bounds we give a straightfor-
eigenvalues oG are in the range € [1 — ds, 1+ ds] With  ward generalization (to the heavy-tailed situation) of dlwe
probability at leastl — exp (—%‘55 +log N + 1). Therefore, known result for subgaussian tail bounds [7]. The proof is
if K> 2(S2log N + 1) we obtain the desired result. m included in the Appendix. The basic idea is to start Wlth b tai

Although this theorem does not establish the linear depdtund on the measurement vector and apply the union bound
dence on sparsity that we would like, the proof is quite semp{© Pound the number of measurement?vneede_d to get a RIP.
and demonstrates that the number of required measuremenf€Mma 4: Assume that for any € R™ that is S-sparse,
does not depend on the interaction ordebeyond thdog N lIX[lo < S, the sensing matrixA satisfies the following
term which is approximately equal t log M. (c)on%entrlatlon inequality for constants,p > 0 and any

<d< 1
VII. HEAVY-TAILED RESTRICTEDISOMETRIES 1

We now show how a recent result due to Vershynin [9]],P<‘E|AX|§ - IxI3
[17] can be applied to our problem. Vershynin’s result is
an extension of a framework pioneered in earlier work by K > ¢ (§)S(—m/r (1og(N/S))1/p (the number of rows in
Rudelson and Vershynin [17] that developed new bounds far), then A satisfies the RIP with constaditwith probability
random Fourier compressed sensing matrices as well asttiglatt least]l — exp (—cz(6)K*S™).
constants for i.i.d. Gaussian matrices. The main resuttitha Vershynin's bound is within a poly-logarithmic factor of
relevant to our discussion is the following theorem. Slog(N/S), the bound onkK one would have for an i.i.d.

Theorem 5 (Vershynin): LeA be a K x N measurement subgaussian sensing matrix. As pointed out in Section V,
matrix whose rows; are independent isotropic random veccertain sparsity patterns in the multilinear forms have no
tors in RY. Assume the entries @& are bounded|a,,,| < 1, dependencies among the terms and thus are equivalentao line

> e||x||g> < exp ( - 60(5)KPS”) .



forms. Vershynin’s bound is not adaptive to the pattern &®®ademacher chaos are non-zero. For eAch 1,2,..., let
sparsity and consequently it is sometimes too conservdtive 7, be the restriction of/ to inputs1,2,..., L:
this section we use Rademacher chaos theory to obtain bounds

Ve i thi - : To=Tn{1,2,...,L}".
that are adaptive in this sense. Before following this more 18

sophisticated approach, we state a simple tail bound based\pte that truncating the infinite series to terms involvingyo

Bernstein's inequ?lity. ) Lk o {a1,...,ar} is equivalent to the multilinear form(L) in (7)
Recall that K~ Ax||3 = K~ > ., uy, where theur  and7; is its coefficient support.
are i.i.d. Rademacher chaos variables (of the formu(@¥/)) Different patterns of sparsity lead to varying degrees of

as defined in (2). In the following sections we will assumgependency among the terms in the chaos. This dependency
(without loss of generality) thatx||; = 1 and thus focus on can pe quantified in terms of the so-calledmbinatorial

_ K
boundP(|K " 37, ui — 1] > ). § ~ dimensiorwhich is defined below following the work of [14],
Lemma 5: Assume that,, ..., ux are ii.d. random vari- [19],
ables of the form (2) withy, ..., ap i.i.d. binary symmetric -~ pefinition 2: We say thaf” has combinatorial dimension
andx is S-sparse. Then «a if there exist positive constants and ¢, and a positive

3 ~ min (3_2,3th’ %) integer M, such that for eachl > Ly,
=P 1 . 170 N (A x Ay % ... x Ap)]

Ay,Az,...,ApC{1,...,.L}P (maxi<;j<p |Aj|)a

1 K

k=1

<Cl

Proof: Note that due to the sparsity and unit norm of
x, each measurement satisfies < ||ay | «|/x|[1 < S. Using and|7z| > c2L°.
Bonami's hypercontractive inequality (see equation (ir2) As shown in the following lemma (see Theorem 1.5 in

[14]), it can be shown tha@E[ui])lM < (4- 1)D/2E[ui] = [19] for a proof), the combinatorial dimension is intimatel
3D/2. By Bernstein’s inequality, we get that connected to the rate at which the chaos concentrates.
K Lemma 6 (Blei-Janson): Letu(L) be a sequence of
P ‘i Zuz _ 1‘ St) < exp (_1 Kt? > Rademacher chaos of ordé? with combinatorial dimension
K — k - - 4 max(32P,tS/3) a. For all t > 2, there exist positive constants and ¢ such

. that the upper tail is lower and upper bounded as follows:
which completes the proof. ]

Using this tail bound in Lemma 4 produces a requirement ofexp (_cth/a) <supP (]u(L)\ > t) < exp (_cgti’/a) .
the form K > C max(3%P Slog(N/S), S%log(N/S)). This is L

similar to the bound obtained via GerSgorin’s Theorem, bytwe assume thallz||> = 1, then it follows that

can be a bit tighter for larger values 6f

exp (— tl/o‘)<s P(lu?(L)—=1] >t) <e (— tl/a)
A. Rademacher Chaos Tail Bounds Xp( “ o 1Llp (‘u( ) ’ )_ AT

A homogeneous Rademacher chaos of otler> 1 is a It can be shown that < o < D for order D Rademacher
random variable of the same form as our observations, thatlsaos. For example, in Lemma 2, the worst-case (heaviest)

for any positive integel. tail was generated by a chaos with combinatorial dimension
of @« = D and the best-case (lightest) tail corresponded to a
u(L) = Z @iy @iy Gip, Tivisin (1) gtyation wheren = 1. Those two tails corresponded to the
Ish<ih<<ipsl largest lower bound and smallest upper bound, respectively
wherex;, . ;, are real-valued coefficients afd;,...,ar} possible for a Rademacher chaos of order
are i.i.d. binary symmetric (i.efRademachgrrandom vari-  The Blei-Janson result characterizes the tails of a sin-

ables,P(a; = 1) = P(a; = —1) = 1/2. Note that variablel, gle chaos. We are interested in the tails l6f !||Ax||2 =

is the number of independent variables involved in the chags—1 Zszl u2, where theuy, are i.i.d. and each is an ordér-
and the multilinear functions defined in (1) corresponds tochaos inM variables. The tails of this sum are bounded in
u(M). As shown in Lemma 2, the tails of this random variablghe following lemma.

can be quite heavy or as light as subgaussian, depending opemma 7: Assume thaty,, ¥ = 1,...,K, are ii.d.
the pattern of non-zere;, . i, It turns out that the effect of Rademacher variables of ordd? with combinatorial dimen-
this pattern is well-captured by theombinatorial dimension sion1 < a < D. There exist constants C > 0 such that

of the chaos [14].

K
First, we introduce the notion of a infinite seriesp ‘1 2 ‘ . 2 grl/osl/a
— —1|>t] <C — Kt*, K/t
Rademacher chaos of the form < K ;uk - < Cexp(—emin( ’ )

Z @iy Qiy *** Qip Tiyig-ip 5 The lemma is proved in the Appendix. A key element of the
1<y <--<ip<oo proof is a moment bound for sums of symmetric i.i.d. variable

whereay, as, . .. are i.i.d. Rademacher random variables. Létue to R. Latala [20]. Plugging the tail bounds from Lemma
T C NP be the set of indices on which the coefficients of the and 7 into Lemma 4 yields the following theorem.



Theorem 7:1f the number of measurements satisfies, ~ such thatmingeo, [|[x — g2 < 2 for all x € Br. It can be
. 2 a1 shown that there are choices @f with cardinality at most
K > c1min {S%og(N/5), §%1og®(N/S)} (®) (%)S We now use the union bound to give an upper bound
then the matrixA satisfies the RIP with probability at leaston the probability thatA distorts the length of somg by
1 —exp (—comax {K/S, K'*}). more thang:
Note that in the case. = 1, we have a bound that is strictly
better than the bounds obtained above. The casel may
be common in many applications. For example, in the systems P <{’|AQ|§ - 1’ >¢6/2 for someq € QT})
biology setting we may have pairs of genes interacting with

each other but not with other genes. < Z P (‘HAqH% - 1‘ > 5/2)
IX. EXTENSIONS acer
It is possible in certain cases to obtain a tail bound thasdoe < Z exp(—co(6/2) K"S™)
not depend on the combinatorial dimension of the individual aeQr

Rademacher chaos variables. Consider the (normalized) sum 12\
K~1/25°% (42 —1). This sum can be written as a sum of S (7) exp(—co(0/2)K"S).

the form K —1/2 Zszl vk, Where theyy, are i.i.d. and can be

written as a sum of Rademacher chaos variables of @defp,;g implies that

through2D in KM variables (withM variables contributed

by eachv, in the sum). Observe that the constituent chaos

variables include no interactions between the variables in <1 _ §) <||Aq|.: < (1 + é) 9)
volved in v; andv;, for all i # j. This implies that the 2) - 2

combinatorial dimension of ~'/2 3" v, is less that that

of ug. In fact, asK — oo the combinatorial dimensionfor all q € Qf with probability at least 1 —
of K~1/23," v, tends tol. Suppose that eachy, is S-  (12/6)° exp(—co(5/2)K”S"). To each vectok € By assign
sparse, withS < N a fixed constant. Tak& = cSlog(N/S) a cover vectorqx € Q7 such that||qx — x|z < %- Now,
for some constant > 0. Then it follows from Lemma 6 let 4+ > 0 be the smallest number such thia x|, <
that limpy oo P((K Y230 w] > t) < exp(—cat?), and (1+7)|x|l2 forall x € Br. Assume that (9) holds. By
hencelimy o P(| & S5, v > t) < exp(—c2Kt%). This  the triangle inequality,

tail bound suggests that if the sparsity level is fixed, then
K > cSlog(N/S) measurements will suffice folN suffi-

Cienﬂy |arge_ ||AXH2 S ||‘Aqx||2 =+ ||A(qx - X)”2 (10)
It is poss_i_ble to exte_nd the results for the recovery of <1+ é +(1+7) é (11)
sparse multilinear functions to sparse polynomial funio 2 4

Polynomial functions include auto-interactions not prése

in the multilinear form. These interactions require theunp By assumption,y < §/2 + (1+7)d6/4, ~(1—-46/4) <
distribution to be muilti-level (binary will not suffice) and3s/4, and~y < 1?%44 < §. Plugging this back into (11)
imply that the expectation of the Gram matrRATA] e get||Ax|s < 1+46/24+ (14 6)d/4 < 1+ 06 for all

is not proportional to identity. Instead the expected Grag e B. Similarly, by the reverse triangle inequality, we get
matrix can be arranged in a block diagonal structure. Thigat |Ax[]2 > [|[Adx]l2 — [[A(X — qu)|l2 > 1—6/2 — (1 +

techniques developed in this paper can be used to dgﬁi/;;zl_g_

with this situation and the resulting RIP conditions wileth 0.\ that we have established that RIP holds for a single
depend on the eigenvalue spread of the expected Gram maggnemfr’ we can apply the union bound to show that it holds

over all S-sparse vectors. There atterns with support
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i N eN\S
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(55) (5) ewtat/res)
APPENDIX S g

A. Proof of Lemma 4 <exp | —co(6/2)KPS" + SIn eN +SIn 12

, . S 0

Without loss of generality, we can assume that| = 1.

Let A denote the set of all vectors with-norm of 1 in RY < exp(—ca(8)KPSM) if KP > ¢1(8)S' " log <ﬁ>
whose support is on pattern. Choose a cove@r C Ay S



B. Proof of Lemma 7

Each term in the sum? can be written as the sum of the

we
form
2

2

Up = E Qiy Qi *** Qip Tiyig--ip )

1<i1<ia< - <tp<M
_ 2 2 2 2
= E , a;, @iy Qi Tiigeip + Uk

1<i1 <2< <ip<M
l]|3 + vk

P

where thewv, are the cross-terms of the sum and we have

used the fact that? = 1,7 = 1,..., M. Recall that we are [l
assuming (wlog) thafz||3 = 1. ThereforeP(| & ST, u? —

1 > t) = P(|1 ¢ Yy vkl > ).

The vy, are i.i.d. and symmetrically distributed. Lemma
implies thatP (|vy| > t) < exp (—cot'/®), wherel < a < D
is the combinatorial dimension of the chaos variabjes}.
The moments of sums of i.i.d. symmetric random variable§!
can be bounded using Corollary 2 in [20] which states that
forr > 2 [4]
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K r 1/7‘
E (ka> 5]
k=1
r 1/s o1/ (6]
< sup B (—) (E|vk|”) max (2, E) <s<r 1
1/r r\1/r
<C (\/Kr KV (E v ) . o

Note thatElvi|" < [~ e=et" " ay cT(1 + ar),
whereI' is the gamma function. It follows from Stirling’s
approximation thal'(1 + ar)/" < Cr®, and so we have

The last inequality above follows by showing that for any 3

r>21<a<oo andK > 1, we haveyVKr + KV/"r® <

3V Kr+e*ere. This is established by considering three caseld4]
1) If 2<r <4, thenKY/rre < K1/2pex < 4o=1/2\/p, [15]
2) If K'/7r> < +/Kr, then the claim is trivial.
3) If r > 4 and K'/"r® > /Kr, then K1/2-1/r <

Ta—1/2 < r%, so Kl/r < ,,,2(1/(7‘—2) < ,,,4(1/7‘ < eda
So we have a bound of the form

B (Su)

Markov’s inequality yields

[9]
[10]
1/r

< C'(WEKr+ KY"r)

K

>

k=1

[11]

[12]

< C(WVKr+rY) .

[16]

[17]

K 1/r

D

k=1

(12) [18]

< Cmax{\/ﬁ,r“} .

[19]

[20]

P ivk >t St_T(Cmax{\/E,ro‘})r.

k=1

In both cases the upper bound has the férK7r¢)", for
appropriatey and¢. Takingr = (tK~7e~1)'/¢ in each case

obtain the following bound for large(so thatr > 2):

K
([l 2 0) o (cemn o),
k=1

SubstitutingK¢ for ¢, we get that

K

1

a ka >t | <C'exp (—cmin {Kt2,K1/“t1/0‘}) i
k=1
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