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Abstract

In this paper, we propose a general framework for studyingssof weighted highpass filters. Our framework,
based on a multiscale signal decomposition, allows us ttystwvide class of filters and to assess the merits of each.
We derive an automatic procedure to optimally tune a filteholocal structure of the image under consideration.
The entire algorithm is fully automatic and requires no pater specification from the user. Several simulations
demonstrate the efficacy of the proposed algorithm.
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1 Introduction
Recognition of image features depends on the local levelcantrast in the neighborhood of the feature. One of
the primary steps in recognition eéxigeor boundary extraction To aid in this task it is often desirable to enhance
the image detail and edges using a highpass filtering scheimi@rtunately, highpass filtering also amplifies noise
present in the image.

The local intensity affects the eye’s sensitivity to noisemages. Specifically, the visual system is much less
sensitive to noise in bright areas of an image than it is ik daeas. This observation is commonly referred to as
Weber’'s Law [2]. In view of Weber's Law, an image enhancenfédtdr can avoid degrading noise amplification
by sharpening dark regions of an image less than bright megi®ne very simple method to accomplish this is to
weight the amount of highpass filtering proportional to theal mean. This gives rise to a class of nhonlinear image
enhancement filters known agean-weighted highpass filtd¥s 9].

Empirical evidence also suggests that the visual systeasgsdensitive to noise in the edges or highly structured
regions of an image. This effect is known mssking by structurg/]. The masking effect implies that noise am-
plification due to highpass filtering is less noticable inthgstructured areas of an image. Therefore, a reasonable
approach to improve highpass filtering enhancement is tghwéihe output of the highpass filter proportional to the
output of a local edge detector. This idea has led to nonliegge-weighted highpass filtdds 8].

One limitation of existing weighted highpass filters is ttinet filter structure is fixed. This means that foaleof
the local mean or edge detector is fixed. Hence, the user ipesifys a local neighborhood for the mean or explicitly
define what is meant by a local edge. Also, these algorithpisally require user specified weighting parameters and
often threshold the nonlinear highpass image in an ad hbidias

In this paper, we propose a general framework for studyiegcthss of weighted highpass filters based on a
multiscale signal decomposition. In order to find the besghied highpass filter for a given image, we project a
linear highpass filtered version of the image onto a subspaoriltiscale weighted highpass filtered images. Each
weighted highpass filtered image in the subspace providegeed of enhancement tempered by the suppression
of the highpass amplification in dark or homogeneous regidrise original image. Projecting the linear highpass
filtered version onto this subspace produces a linear catibmof weighted highpass filtered images that match
the important image details, while suppressing excessiigeramplification in dark or homogeneous regions. In
effect, this design method produces the optimal weightgtgass filtered image that balances the trade-off between
enhancement and noise amplification.

The paper is organized as follows. In Section 2, we reviewipts work on weighted highpass filters and discuss
some of the limitations of existing methods. We also giveiaflveview of multiscale analysis. Section 3 introduces

a novel weighted highpass filter based on multiscale armlySeveral simulations demonstrate the efficacy of the



proposed filter in Section 4. Conclusions are drawn in Sed&io

2 PreviousWork

2.1 Unsharp Masking: A standard method of image enhancementrisharp masking@, p. 249]. In unsharp
masking, the original image is enhanced by subtracting @asigroportional to a smoother version of the original
image. Equivalently, a signal proportional to a highpagsrgld version of the original image can be added to the
original. LetH denote a linear highpass filter, |gtz, y) be an image, and consider the enhanced ingagef + H f.
Adding the highpass filtered image to the original enhancesphasizes edges and detail in the image. Alternatively,
suppose we have a blurred imag@nd a linear restoration filtek. We may consider the difference betwegand

the restored? f as a highpass filter, that i, f = Rf — f. With this notation, linear deblurring can also be viewed as
a form of unsharp masking.

2.2 Weighted Highpass Filters. The enhanced or restored imagenay be undesirable if noise in the original
image f is amplified byH. Weber's Law and the masking effect [2] suggest the follguonlinear approach to
image enhancement. Létdenote a linear filter that is tuned to a specific type of lonmge feature. By “local”
we mean that the output imadef at the point(z, y) depends only on the local neighborhoodfaodéibout(z, y). By
“tuned” we mean thatl f(z, y)| is large if a local image feature, such as an edge or regiomgbf intensity (high

local mean), is nedfz, y) in f. A weighted highpass filter is defined by the mapping

f@,y) = Huf(z,y) € |Lf(@, ) Hf(e,y), p> 1. (1)

Here,|L f|? is the image formed by raising every poif (z, y) in the imagel f to thep-th power. The imagél f|?
“weights” the highpass filtered imagé f pointwise according to the strength of the local feature®eiated with

L. For instance, ifl, corresponds to a local mean, th&R, f is roughly proportional the output image obtained by
applyingH only in regions with high local mean [4,9]. K is a local edge-detector, théf, f is proportional to the
output image obtained by applyirfg only in regions where an edge is detected [1, 8].

2.3 Limitations of Previous Work: One important drawback to the mean-weighted and edge-vesidtiters
previously studied in [1, 4, 8, 9] is that the filter scale i®fix Hence, such filters may only be appropriate for image
detail at a fixed scale. Our idea is to wed the ideas of mulgsaaalysis and weighted highpass filters to produce
an optimal filter that automatically adjusts the filter to tbeal detail of the image at hand. Before discussing our
method, we briefly review the multiscale analysis of images.

2.4 Signal Characterization Using Multiscale Edges: The notion of multiscale signal analysis is motivated
by the need to detect and characterize the edges of smakageddbjects alike. In an image, different structures give
rise to edges at varying scales — small scales corresponuktdéitail and large scales correspond to gross structure.

In order to detect all image edges, one must study the imagpchtscale. Multi-scale image processing tools include



scale space, pyramid algorithms, and wavelet transforms.

In this paper, we will follow the approach of Mallat and Zhomgho use the scales of the wavelet transform to
characterize the important edges in an image (see [3] foeimformation on the wavelet transform). Consider first
the analysis of continuous images. To analyze such imagesmploy a smoothing functiaf a wavelet function),
and an infinite number of scales. The functignasnd:> proposed in [3] are depicted in Figure 1.

Smoothed versions of the imageare obtained by convolution with in bothz andy directions. Larger scales
(smoother images) are obtained by dilatiigDilation of ¢ by factors of two halves the resolution each time as we
move up through scales. We denote the smoothed image atédafes,; f. Note thatS; f = f.

Edge and detail information ifiis obtained by convolution witky. Detail information at larger scales is obtained
by dilatingz. At scale2’ we have three detail image8t’”, f, W2, f, andW, f, where the superscripts v, andd
denote the horizontal, vertical, and diagonal (both hariaband vertical) applications af, respectively.

To analyze discrete images, we use an undecimated two-ehfilterbank with discrete analysis filteksand g
and a range of scalek limited by the number of pixels in the image. In gene@l, < N foran N x N image.
(See [3] for more information on the discrete wavelet transt In particular, Tables | and Il in [3] provide the filters
h andg corresponding t@ andzs of Figure 1.

In [3] it is shown that the modulus maxima of the wavelet tfanma provide a nearly complete characterization

of an image. Mallat and Zhong characterize the image edgasab#2’ by the local maxima of

My, [(e,y) = \JIWS 1 (2, 9) 2+ W5, F(,0) 2 2)

3 Optimal Weighted Highpass Filters

In this section, we utilize local edge and local mean infdiaracarried by the smooth and detail images at varying
scales to develop a class of weighted highpass filters. Calrigdo choose the best weighted highpass filter for a
given image.

3.1 Multiscale Mean-Weighted Filters. We can easily formulate the mean-weighted highpass filtdreérmul-
tiscale framework. Pointwise multiplication of the higlsgamager f with |S,; f|? yields ap + 1st ordet weighted
highpass filter with response strongest in regions wheréottad mean (at the scal¥) is large. Adjusting the scale

27 is equivalent to adjusting the size of the local neighbothuged to compute the mean. We thus have the following

collection of mean-weighted highpass filtered images:

{|52]f|pr:j:17...7-]7p:17...7P}. (3)

The exponenp controls the relative weighting in light and dark regiomsyreasing tends to emphasize areas of

peak intensity. The scale bourdimits the range of scales used for local feature detecticacts as a regularization

The product of a linear filter andh order filter is a + 1st order filter.
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parameter: a small value dfgives maximum regularization by focusing the filters on ordyy local features, while

a large value allows the filters to incorporate more globadsg structure at the expense of less regularization. In
practice, the choice of is problem-dependent, but prior information may suggessamable choice depending on
which types of features are dominant in the image under stiaperience has shown (see Section 4 below) that
reasonable values fof lie in the rangel < .J < 4.

3.2 Multiscale Edge-Weighted Filters: We define the detail modulus as

Dy (2, y)] = \/IIVQ’Zf(x,y)|2+ (W3 f (2, y) 2+ W5 fz,) | (4)

Our experiments have shown th&l,; f| provides better results for our application théh; f, possibly because it
treats edges at different orientations more fairly. Poiséwmultiplication of the highpass imadéf with | D,; f|?
produces @ + 1st-order weighted highpass filter tuned to edges at the 8¢alean edge-weighted highpass filtered
image. The multiscale analysis produces a set of edge-tegidiighpass filters; each is tuned to edges at a prescribed
scale:

{|DyfIPHf : j=1,...,J, p=1,...,P}. )
Increasing the exponepttends to localize the weighting to areas where the detailutuschas local maxima.
3.3 Optimal Filter Design: Multiscale analysis provides a suite of weighted highpdiesdi (3) and (5), suitable
for image enhancement. The question now becomes: Whictsdryest for a given image? Even more generally, we

may consider the collection of filtered versionsfof

J P
Cr= { SN i Do FIPHf + 8|S0 fIP Hf } , (6)
j=1p=1
with arbitrary real coefficient§a; ,,, 3;,}. The collectiorC; is simply the subspace of weighted highpass filtered
images spanned by (3) and (5). The collectignis quite general. In particular, it can model any nonlineiéerfi
scheme involving polynomial combinations of the origimabige pixels.
We now propose an automatic procedure for choosing the litesedi image irC; for a given image. The idea
is very straightforward. By design, all of the filtered imageC are highpass enhanced yet also suppress noise in
smooth or low intensity regions. However, each of these eeddimages was obtained using filters tuned to structures
at a different scale. Weighted highpass filters at one scalelm preferable to others depending on the signal and
noise structure. More generally, a combination of weiglhigthpass filtered images may be preferable to any one.
We would like to choose the “best” weighted highpass filteéradge from all possibilities. Ideally, the best
weighted highpassfilter provides the same level of enhaaneas the linear highpass filter in regions of high intensity
or in regions around a local edge, while reducing noise dioglion in other areas. Hence, our objective is to preserve

as much signal detail as possible in the weighted highpass=fil image. However, due the conflicting requirements

of enhancement and noise suppression, different weiglidéxqbass filters provide varying degrees of enhancement.
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We advocate finding the weighted highpass filtered imageishelbsest to the linear highpass filtered image.
The underlying principle behind this approach is that, bgigie, none of the weighted highpass filtered images can
“match” the amplified noise component of the linear highpdtsed image. However, there is a best weighted
highpass filtered image that comes closest to matching tieedeenhancement of true image detail.

Mathematically, we pose this task as follows. We assumetkiabple linear highpass filtered imafef would be
optimal if no noise were present. Therefore, the optimabiesd highpass filtered image is the imagé€ jrclosest to
H f (see Figure 2). The optimal weighted highpass filtered infédgg is the projection of the linear highpass filtered
image onto the subspace spanned by the set of weighted Bigfilbered images. We can compute the optimal image

by adjusting the filter parametefs; ,,, 3, }. Specifically, we have

oplf - arg D’lln Hwa Hf”F? (7)

where we have chosen the Frobenius norm for computationakogence.

The optimal filterH,,, is unique and can be computed in a simple fashion. First let

d;, =ved|Dy fI" Hf), sjp=ved|Syf|"Hf), h=vedH f), (8)
where “vec” is the operator that forms a column vector fromadrim by stacking its columns. Since the Frobenius
norm coincides with the vect@rnorm, (7) can be rewritten as

hoy = @rg min H Z Z a;pod;n + 35085 — H . (9)

NecCy

It is clear that the optimal filter is specified by thé P parameterd«;,} and{j;,}. Now define the matrixX =
[di1,...,dsp,s11,...,87p] and the parameter vecter = [ay1,..., 5P, B11,-- .,ﬁLP]T. The optimal filter
parameters are given by

Yo = @rg min || X~y - h|} = (X"X)"'X h. (10)
761&2]1:’

The optimal weighted highpass image, in vectorized forrgjien by
hOpl Xp)/opt (11)

Note that we may pose the optimization over any subspacensgaoy a subset of the edge-weighted and/or
mean-weighted filtered images.
3.4 Local AdaptiveWeighting: The optimal weighted highpass filter described in the previection is tuned to
each individualimage. This tuning is a global optimizatimer the entire image. However, the scale of local structure
may differ within the image itself. Consequently, no singgale, nor weighted highpass filter, is locally optimal &t al

points in the image.



In this section, we briefly describe an adaptive filter thatroglly adjusts its weighting coefficients at each point
in the image. A related idea is considered in [5] to improwvepkrformance of the weighted highpass filter proposed
in [1]. The adaptive algorithm is more computationally imd&e, but can provide significant improvements over the
non-adaptive optimal weighted highpass filter describeéldemprevious section. The adaptive algorithm computes the
optimal filter at the pointz, y) by considering the error between weighted and linear highfilered images only in
a local neighborhood arourid, i) rather than by considering the total error over the enti@gen The procedure for
the adaptive filter algorithm is straightforward; we givereebdescription below.

We again consider the collection of weighted highpass $ilferdefined in (6). However, rather than computing
the globally optimal filter according to (7), at each pojaty) in the image we compute a locally optimal filter as
follows. First, letB(z, y) denote a local neighborhood abgut y) in the image and let: || 5. ,,) denote the Frobenius

matrix norm restricted to the neighborhoBdz, y). That is, forimageg andg

1f=dlben= D>, ) =) (12)

(4,5)€B(z,y)
We will use the same notation for the vector 2-norm when wuagkiith vectorized versions of the images. Now at

each pointin the image, the optimal filter parameters araioétl by solving

FYOPI(‘r? y) = arg,.),é?[;glJP HXP)/ - hHZB(r,y) (13)

Using these optimal parameters, the output of the localtingg weighted highpass filter at the point, y) is given
by
Hopl(xv y) = X(‘r7 y)’)/opt(x7 y)7 (14)

whereX (z, y) is the row vector
[|D1f('r7y)|7 SERE) |D2Jf(‘r7y)|P7 Slf(‘rvy”v SRR |52]f($7y)|P] . (15)

4 Simulations

In this section we present several examples to illustrageptirformance and flexibility of the both the global and
adaptive multiscale optimal weighted highpass filters.

4.1 Edge-Weighted Enhancement: We consider two examples of image enhancement. The origiegles are

shown in Figure 3(a) (blurred Lenna image), and Figure &&T[ (Positron Emission Tomography) brain image].
1 0 1
The 256 x 256 Lenna image was blurred through convolution with the kebpek { 0 a O ] with e = 8. The
1 0 1
128 x 128 PET image was blurred also throutgh with ¢ = 4.

2Courtesy of Col. Brian W. Murphy, Center For Positron EmissTomography, State University of New York at Buffalo.



The key feature in these examples is that both images aregsed by exactly the same optimal weighted high-
pass filter algorithm — with no tweaking of parameters to harite drastically differing image structures. First, the
images are enhanced using a linear highpass filtethose convolution mask is given by

-1 0 -1
H =05 0 4 0. (16)
-1 0 -1
The linearly enhanced images, shown in Figures 3(b) and d(@)omputed by = f + H f.

The space of edge-weighted highpass filtered images coadideboth cases is

Spad |[Dy; flHf : j=1,...,4}. 17)

The optimal weighted filter parameters for the Lenna imagear= 0.017 x [0.32, —0.03, —0.09, 1.0]7, where the
ordering is[| Dy, f| Hf, j =1,...,4]. The globally optimal nonlinear enhancement of the Lenrsh@wn in Figure
3(c). Note that the optimal combination of the weighted ppigss filtered images involves negative coefficients — parts
of the image are both “built up” and “chipped away” by the cament filters in order to optimize the enhancement.

The optimal filter parameters for the PET image qgg = 0.033 x [0.67, —0.56, 0.25, 1.0]”. The globally
optimal nonlinear enhancement of the PET image is shownguarEi4(c).

Note that the optimal filters are quite different for the twwages. However, in both cases the resulting nonlinear
filter enhances the detail of the image while reducing thesamplified by the linear highpass filter.
4.2 Adaptive Edge-Weighted Enhancement: In this example, we compare the global optimal weightedrfilte
(11) to the adaptive optimal weighted filter (14). The imadd-igure 5(a) was obtained by first convolving the
256 x 256 bridge image witlb, as above (witlu = 4) and then adding a small amount of white Gaussian noise. The
image was enhanced using the linear highpass filter givetan The linear highpass filter enhancement is shown in
Figure 5(b).

The space of edge-weighted highpass filters consideredsindke is

Spad |Dy; fI°Hf : j=1,...,3}. (18)

The globally optimal edge-weighted highpass filter enhares# is shown in Figure 5(c). The adaptive, local optimal
enhancement based onéx 16 adaptation region is pictured in Figure 5(d). Note that theive algorithm is better
able to adjust to the local structure within the image, yidtretluces the noise that is amplified by the linear highpass
filter in homogeneous regions of the image.

4.3 Optimal Weighted Restoration: In [6], we consider the optimal weighted restoration of arddgd image
with a known blurring function. The results presented therew that our method performs better than conventional

linear restoration in both a visual and squared error sense.



5 Conclusions

We have developed a family of optimal weighted highpassdilb@sed on multiscale analysis. Two significant features
distinguish our method from previous work. First, the fitelo not have a fixed form like previously proposed filters.
Therefore, the filters are capable of matching the struaifitee image at hand. Secondly, the design of the optimal
filter is fully automatic. Previously proposed filters haequired user specified parameters and/or ad hoc thresgoldin
schemes. We have also derived an adaptive filter that autmathagdjusts to varying structure within an image itself.
Simulations have demonstrated that the proposed filteriggewery good results for images with differing local
structure.

There are many possible avenues for future work in this afea.example, multiscale analyses other than that
of [3] may produce better results in certain cases. Also,ayne advantageous to decompose the linear highpass
filtered imageH f at different scales as well. A deeper understanding of thimear filtering concepts presented
here may be gained by noting that weighted highpass filtdongeo the class of nonlinear filters known\aslterra
filters. The theory of Volterra filters should provide insight inketanalysis, implementation, and design of nonlinear
enhancement filters. On a final, more ambitious note, optimeadhted highpass filters could provide a plausible

model for studying masking phenomena in the human visuésys
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Figure 1:Smoothing functiord (dashed) and wavelet (solid) employed in the multiscale decomposition.

set of all images

ot |
set of weighted
highpass images

Figure 2: The projection of the highpass filtered imallg onto the set of all weighted highpass filtered images
defined in (6) yields the optimal weighted highpass filteraedgeH ,,.f .
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Figure 3: Optimally weighted enhancement. (a) Original image (ldrienna). (b) Image enhanced using linear
highpass filter. (c) Image enhanced using optimal edgehieithighpass filter. At left, we show the image; at right,
we show a vertical cross-section through the center of tiagén
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(b)

Figure 4: Optimally weighted enhancement. (a) Original image (PEdomnstruction). (b) Image enhanced using
linear highpass filter. (c) Image enhanced using optimat¢edgighted highpass filter. Note that the nonlinear filtgrin
algorithm employed here is identical to that used in Figure 3
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(d)

Figure 5: Optimal adaptive weighted image restoration. (a) Blurrerlsy image of bridge. (b) Image restored using
linear highpass filter. (c) Image restored using globalltirngl edge-weighted highpass filter. (d) Image restored
using locally optimal adaptive edge-weighted highpass.
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