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Abstract

In this paper, we propose a general framework for studying a class of weighted highpass filters. Our framework,
based on a multiscale signal decomposition, allows us to study a wide class of filters and to assess the merits of each.
We derive an automatic procedure to optimally tune a filter tothe local structure of the image under consideration.
The entire algorithm is fully automatic and requires no parameter specification from the user. Several simulations
demonstrate the efficacy of the proposed algorithm.
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1 Introduction

Recognition of image features depends on the local level andcontrast in the neighborhood of the feature. One of

the primary steps in recognition isedgeor boundary extraction. To aid in this task it is often desirable to enhance

the image detail and edges using a highpass filtering scheme.Unfortunately, highpass filtering also amplifies noise

present in the image.

The local intensity affects the eye’s sensitivity to noise in images. Specifically, the visual system is much less

sensitive to noise in bright areas of an image than it is in dark areas. This observation is commonly referred to as

Weber’s Law [2]. In view of Weber’s Law, an image enhancementfilter can avoid degrading noise amplification

by sharpening dark regions of an image less than bright regions. One very simple method to accomplish this is to

weight the amount of highpass filtering proportional to the local mean. This gives rise to a class of nonlinear image

enhancement filters known asmean-weighted highpass filters[4,9].

Empirical evidence also suggests that the visual system is less sensitive to noise in the edges or highly structured

regions of an image. This effect is known asmasking by structure[7]. The masking effect implies that noise am-

plification due to highpass filtering is less noticable in highly structured areas of an image. Therefore, a reasonable

approach to improve highpass filtering enhancement is to weight the output of the highpass filter proportional to the

output of a local edge detector. This idea has led to nonlinear edge-weighted highpass filters[1,8].

One limitation of existing weighted highpass filters is thatthe filter structure is fixed. This means that thescaleof

the local mean or edge detector is fixed. Hence, the user must specify a local neighborhood for the mean or explicitly

define what is meant by a local edge. Also, these algorithms typically require user specified weighting parameters and

often threshold the nonlinear highpass image in an ad hoc fashion.

In this paper, we propose a general framework for studying the class of weighted highpass filters based on a

multiscale signal decomposition. In order to find the best weighted highpass filter for a given image, we project a

linear highpass filtered version of the image onto a subspaceof multiscale weighted highpass filtered images. Each

weighted highpass filtered image in the subspace provides a degree of enhancement tempered by the suppression

of the highpass amplification in dark or homogeneous regionsof the original image. Projecting the linear highpass

filtered version onto this subspace produces a linear combination of weighted highpass filtered images that match

the important image details, while suppressing excessive noise amplification in dark or homogeneous regions. In

effect, this design method produces the optimal weighted highpass filtered image that balances the trade-off between

enhancement and noise amplification.

The paper is organized as follows. In Section 2, we review previous work on weighted highpass filters and discuss

some of the limitations of existing methods. We also give a brief review of multiscale analysis. Section 3 introduces

a novel weighted highpass filter based on multiscale analysis. Several simulations demonstrate the efficacy of the
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proposed filter in Section 4. Conclusions are drawn in Section 5.

2 Previous Work

2.1 Unsharp Masking: A standard method of image enhancement isunsharp masking[2, p. 249]. In unsharp

masking, the original image is enhanced by subtracting a signal proportional to a smoother version of the original

image. Equivalently, a signal proportional to a highpass filtered version of the original image can be added to the

original. Let
�

denote a linear highpass filter, let� � � � � � be an image, and consider the enhanced image� � � 	 � � 

Adding the highpass filtered image to the original enhances or emphasizes edges and detail in the image. Alternatively,

suppose we have a blurred image� and a linear restoration filter� . We may consider the difference between� and

the restored� � as a highpass filter, that is,
� � � � � � � . With this notation, linear deblurring can also be viewed as

a form of unsharp masking.

2.2 Weighted Highpass Filters: The enhanced or restored image� may be undesirable if noise in the original

image � is amplified by
�

. Weber’s Law and the masking effect [2] suggest the following nonlinear approach to

image enhancement. Let denote a linear filter that is tuned to a specific type of local image feature. By “local”

we mean that the output image � at the point� � � � � depends only on the local neighborhood of� about � � � � � . By

“tuned” we mean that�  � � � � � � � is large if a local image feature, such as an edge or region of high intensity (high

local mean), is near� � � � � in � . A weighted highpass filter is defined by the mapping

� � � � � � �� �
W � � � � � � � � �� �  � � � � � � � � � � � � � � � � � � � 
 (1)

Here, �  � � � is the image formed by raising every point � � � � � � in the image � to the� -th power. The image�  � � �
“weights” the highpass filtered image

� � pointwise according to the strength of the local features associated with

 . For instance, if corresponds to a local mean, then
�

W � is roughly proportional the output image obtained by

applying
�

only in regions with high local mean [4,9]. If is a local edge-detector, then
�

W � is proportional to the

output image obtained by applying
�

only in regions where an edge is detected [1,8].

2.3 Limitations of Previous Work: One important drawback to the mean-weighted and edge-weighted filters

previously studied in [1, 4, 8, 9] is that the filter scale is fixed. Hence, such filters may only be appropriate for image

detail at a fixed scale. Our idea is to wed the ideas of multiscale analysis and weighted highpass filters to produce

an optimal filter that automatically adjusts the filter to thelocal detail of the image at hand. Before discussing our

method, we briefly review the multiscale analysis of images.

2.4 Signal Characterization Using Multiscale Edges: The notion of multiscale signal analysis is motivated

by the need to detect and characterize the edges of small and large objects alike. In an image, different structures give

rise to edges at varying scales — small scales correspond to fine detail and large scales correspond to gross structure.

In order to detect all image edges, one must study the image ateach scale. Multi-scale image processing tools include
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scale space, pyramid algorithms, and wavelet transforms.

In this paper, we will follow the approach of Mallat and Zhong, who use the scales of the wavelet transform to

characterize the important edges in an image (see [3] for more information on the wavelet transform). Consider first

the analysis of continuous images. To analyze such images, we employ a smoothing function� , a wavelet function� ,

and an infinite number of scales. The functions� and� proposed in [3] are depicted in Figure 1.

Smoothed versions of the image� are obtained by convolution with� in both � and � directions. Larger scales

(smoother images) are obtained by dilating� . Dilation of � by factors of two halves the resolution each time as we

move up through scales. We denote the smoothed image at scale� � by � � � � . Note that� � � � � .

Edge and detail information in� is obtained by convolution with� . Detail information at larger scales is obtained

by dilating � . At scale� � we have three detail images:� 	� � � , � 
� � � , and� �� � � , where the superscripts� ,  , and �
denote the horizontal, vertical, and diagonal (both horizontal and vertical) applications of� , respectively.

To analyze discrete images, we use an undecimated two-channel filterbank with discrete analysis filters� and�
and a range of scales� limited by the number of pixels in the image. In general,� � � � for an � � � image.

(See [3] for more information on the discrete wavelet transform. In particular, Tables I and II in [3] provide the filters

� and� corresponding to� and� of Figure 1.

In [3] it is shown that the modulus maxima of the wavelet transform provide a nearly complete characterization

of an image. Mallat and Zhong characterize the image edges atscale� � by the local maxima of

� � � � � � � � � �
�

�� 	� � � � � � � � � � 	 �� 
� � � � � � � � � � 
 (2)

3 Optimal Weighted Highpass Filters

In this section, we utilize local edge and local mean information carried by the smooth and detail images at varying

scales to develop a class of weighted highpass filters. Our goal is to choose the best weighted highpass filter for a

given image.

3.1 Multiscale Mean-Weighted Filters: We can easily formulate the mean-weighted highpass filter inthe mul-

tiscale framework. Pointwise multiplication of the highpass image
� � with � � � � � � � yields a� 	 � st order1 weighted

highpass filter with response strongest in regions where thelocal mean (at the scale� � ) is large. Adjusting the scale

� � is equivalent to adjusting the size of the local neighborhood used to compute the mean. We thus have the following

collection of mean-weighted highpass filtered images:

� � � � � � � � � � � � � � � 
 
 
 � � � � � � � 
 
 
 � � � 
 (3)

The exponent� controls the relative weighting in light and dark regions; increasing� tends to emphasize areas of

peak intensity. The scale bound� limits the range of scales used for local feature detection.� acts as a regularization

1The product of a linear filter and a� th order filter is a� � � st order filter.
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parameter: a small value of� gives maximum regularization by focusing the filters on onlyvery local features, while

a large value allows the filters to incorporate more global, gross structure at the expense of less regularization. In

practice, the choice of� is problem-dependent, but prior information may suggest a resonable choice depending on

which types of features are dominant in the image under study. Experience has shown (see Section 4 below) that

reasonable values for� lie in the range� � � � � .

3.2 Multiscale Edge-Weighted Filters: We define the detail modulus as

�� � � � � � � � � � �
�

�� 	� � � � � � � � � � 	 �� 
� � � � � � � � � � 	 �� �� � � � � � � � � � 
 (4)

Our experiments have shown that� � � � � � provides better results for our application than
� � � � , possibly because it

treats edges at different orientations more fairly. Pointwise multiplication of the highpass image
� � with � � � � � � �

produces a� 	 � st-order weighted highpass filter tuned to edges at the scale� � — an edge-weighted highpass filtered

image. The multiscale analysis produces a set of edge-weighted highpass filters; each is tuned to edges at a prescribed

scale:
� �� � � � � � � � � � � � � 
 
 
 � � � � � � � 
 
 
 � � � 
 (5)

Increasing the exponent� tends to localize the weighting to areas where the detail modulus has local maxima.

3.3 Optimal Filter Design: Multiscale analysis provides a suite of weighted highpass filters, (3) and (5), suitable

for image enhancement. The question now becomes: Which one is best for a given image? Even more generally, we

may consider the collection of filtered versions of�

� � �
��
� ��

� � �

	�
� � � 
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � �� � (6)

with arbitrary real coefficients
�

 � � � � � � � � � . The collection

� �
is simply the subspace of weighted highpass filtered

images spanned by (3) and (5). The collection
� �

is quite general. In particular, it can model any nonlinear filter

scheme involving polynomial combinations of the original image pixels.

We now propose an automatic procedure for choosing the best filtered image in
� �

for a given image. The idea

is very straightforward. By design, all of the filtered images in
� �

are highpass enhanced yet also suppress noise in

smooth or low intensity regions. However, each of these enhanced images was obtained using filters tuned to structures

at a different scale. Weighted highpass filters at one scale may be preferable to others depending on the signal and

noise structure. More generally, a combination of weightedhighpass filtered images may be preferable to any one.

We would like to choose the “best” weighted highpass filteredimage from all possibilities. Ideally, the best

weighted highpass filter provides the same level of enhancement as the linear highpass filter in regions of high intensity

or in regions around a local edge, while reducing noise amplification in other areas. Hence, our objective is to preserve

as much signal detail as possible in the weighted highpass filtered image. However, due the conflicting requirements

of enhancement and noise suppression, different weighted highpass filters provide varying degrees of enhancement.
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We advocate finding the weighted highpass filtered image thatis closest to the linear highpass filtered image.

The underlying principle behind this approach is that, by design, none of the weighted highpass filtered images can

“match” the amplified noise component of the linear highpassfiltered image. However, there is a best weighted

highpass filtered image that comes closest to matching the desired enhancement of true image detail.

Mathematically, we pose this task as follows. We assume thata simple linear highpass filtered image
� � would be

optimal if no noise were present. Therefore, the optimal weighted highpass filtered image is the image in
� �

closest to
� � (see Figure 2). The optimal weighted highpass filtered image

�
opt� is the projection of the linear highpass filtered

image onto the subspace spanned by the set of weighted highpass filtered images. We can compute the optimal image

by adjusting the filter parameters
�

 � � � � � � � � � . Specifically, we have

�
opt� � arg � � ��

W

� � � � � � � � � � � � �	 � (7)

where we have chosen the Frobenius norm for computational convenience.

The optimal filter
�

opt is unique and can be computed in a simple fashion. First let



� � � � vec� �� � � � � � � � � � � � � � � vec� � � � � � � � � � � � � � vec� � � � � (8)

where “vec” is the operator that forms a column vector from a matrix by stacking its columns. Since the Frobenius

norm coincides with the vector� -norm, (7) can be rewritten as

� opt � arg � � � � � � ���
��

� � �

	�
� � � 
 � � � 


� � � 	 � � � � � � � � � � ���
�
� 
 (9)

It is clear that the optimal filter is specified by the� � � parameters
�

 � � � � and

� � � � � � . Now define the matrix� �
� 
 � � � � 
 
 
 � 


� � 	 � � � � � � 
 
 
 � � � � 	 � and the parameter vector� � �

 � � � � 
 
 
 � 
 � � 	 � � � � � � 
 
 
 � � � � 	 � � 
 The optimal filter

parameters are given by

� opt � arg � � �
� � �� � � � � � � � � � �� � � � � � � � � � � � 
 (10)

The optimal weighted highpass image, in vectorized form, isgiven by

� opt � � � opt 
 (11)

Note that we may pose the optimization over any subspace spanned by a subset of the edge-weighted and/or

mean-weighted filtered images.

3.4 Local Adaptive Weighting: The optimal weighted highpass filter described in the previous section is tuned to

each individual image. This tuning is a global optimizationover the entire image. However, the scale of local structure

may differ within the image itself. Consequently, no singlescale, nor weighted highpass filter, is locally optimal at all

points in the image.
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In this section, we briefly describe an adaptive filter that optimally adjusts its weighting coefficients at each point

in the image. A related idea is considered in [5] to improve the performance of the weighted highpass filter proposed

in [1]. The adaptive algorithm is more computationally intensive, but can provide significant improvements over the

non-adaptive optimal weighted highpass filter described inthe previous section. The adaptive algorithm computes the

optimal filter at the point� � � � � by considering the error between weighted and linear highpass filtered images only in

a local neighborhood around� � � � � rather than by considering the total error over the entire image. The procedure for

the adaptive filter algorithm is straightforward; we give a brief description below.

We again consider the collection of weighted highpass filters
� �

defined in (6). However, rather than computing

the globally optimal filter according to (7), at each point� � � � � in the image we compute a locally optimal filter as

follows. First, let� � � � � � denote a local neighborhoodabout� � � � � in the image and let� � � � � � � � � denote the Frobenius

matrix norm restricted to the neighborhood� � � � � � . That is, for images� and�

� � � � � �� � � � � � �
�

� � � � �
� � � � � � �

� � � � � � � � � � � � � � � � 
 (12)

We will use the same notation for the vector 2-norm when working with vectorized versions of the images. Now at

each point in the image, the optimal filter parameters are obtained by solving

� opt � � � � � � arg � � �
� � �� � � � � � � � � � �� � � � � � 
 (13)

Using these optimal parameters, the output of the locally optimal weighted highpass filter at the point� � � � � is given

by
�

opt � � � � � � � � � � � � � opt � � � � � � (14)

where� � � � � � is the row vector

	 �� � � � � � � � � � 
 
 
 � �� � � � � � � � � �
	

� � � � � � � � � � � 
 
 
 � � � � � � � � � � � �
	 



 (15)

4 Simulations

In this section we present several examples to illustrate the performance and flexibility of the both the global and

adaptive multiscale optimal weighted highpass filters.

4.1 Edge-Weighted Enhancement: We consider two examples of image enhancement. The originalimages are

shown in Figure 3(a) (blurred Lenna image), and Figure 4(a) [PET (Positron Emission Tomography) brain image].2

The � � � � � � � Lenna image was blurred through convolution with the kernel � �
�
�

� � �
� � �
� � �

�
� with � � � . The

� � � � � � � PET image was blurred also through � , with � � � .

2Courtesy of Col. Brian W. Murphy, Center For Positron Emission Tomography, State University of New York at Buffalo.
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The key feature in these examples is that both images are processed by exactly the same optimal weighted high-

pass filter algorithm — with no tweaking of parameters to handle the drastically differing image structures. First, the

images are enhanced using a linear highpass filter
�

whose convolution mask is given by

� � � 
 �
�
�

� � � � �
� � �

� � � � �

�
� 
 (16)

The linearly enhanced images, shown in Figures 3(b) and 4(b), are computed by� � � 	 � � .

The space of edge-weighted highpass filtered images considered in both cases is

Span
� �� � � � � � � � � � � � 
 
 
 � � � 
 (17)

The optimal weighted filter parameters for the Lenna image are � opt � � 
 � � � � � � 
 � � � � � 
 � � � � � 
 � � � � 
 � � � � where the

ordering is
� �� � � � � � � � � � � � 
 
 
 � � � . The globally optimal nonlinear enhancement of the Lenna isshown in Figure

3(c). Note that the optimal combination of the weighted highpass filtered images involves negative coefficients — parts

of the image are both “built up” and “chipped away” by the component filters in order to optimize the enhancement.

The optimal filter parameters for the PET image are� opt � � 
 � � � � � � 
 � � � � � 
 � � � � 
 � � � � 
 � � � 
 The globally

optimal nonlinear enhancement of the PET image is shown in Figure 4(c).

Note that the optimal filters are quite different for the two images. However, in both cases the resulting nonlinear

filter enhances the detail of the image while reducing the noise amplified by the linear highpass filter.

4.2 Adaptive Edge-Weighted Enhancement: In this example, we compare the global optimal weighted filter

(11) to the adaptive optimal weighted filter (14). The image of Figure 5(a) was obtained by first convolving the

� � � � � � � bridge image with � as above (with� � � ) and then adding a small amount of white Gaussian noise. The

image was enhanced using the linear highpass filter given in (16). The linear highpass filter enhancement is shown in

Figure 5(b).

The space of edge-weighted highpass filters considered in this case is

Span
� �� � � � � � � � � � � � � 
 
 
 � � � 
 (18)

The globally optimal edge-weighted highpass filter enhancement is shown in Figure 5(c). The adaptive, local optimal

enhancement based on a� � � � � adaptation region is pictured in Figure 5(d). Note that the adaptive algorithm is better

able to adjust to the local structure within the image, yet still reduces the noise that is amplified by the linear highpass

filter in homogeneous regions of the image.

4.3 Optimal Weighted Restoration: In [6], we consider the optimal weighted restoration of a degraded image

with a known blurring function. The results presented thereshow that our method performs better than conventional

linear restoration in both a visual and squared error sense.

7



5 Conclusions

We have developed a family of optimal weighted highpass filters based on multiscale analysis. Two significant features

distinguish our method from previous work. First, the filters do not have a fixed form like previously proposed filters.

Therefore, the filters are capable of matching the structureof the image at hand. Secondly, the design of the optimal

filter is fully automatic. Previously proposed filters have required user specified parameters and/or ad hoc thresholding

schemes. We have also derived an adaptive filter that automatically adjusts to varying structure within an image itself.

Simulations have demonstrated that the proposed filter provides very good results for images with differing local

structure.

There are many possible avenues for future work in this area.For example, multiscale analyses other than that

of [3] may produce better results in certain cases. Also, it may be advantageous to decompose the linear highpass

filtered image
� � at different scales as well. A deeper understanding of the nonlinear filtering concepts presented

here may be gained by noting that weighted highpass filters belong to the class of nonlinear filters known asVolterra

filters. The theory of Volterra filters should provide insight into the analysis, implementation, and design of nonlinear

enhancement filters. On a final, more ambitious note, optimalweighted highpass filters could provide a plausible

model for studying masking phenomena in the human visual system.
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Figure 1:Smoothing function� (dashed) and wavelet� (solid) employed in the multiscale decomposition.

set of weighted
highpass images

set of all images

H    f
opt

H f

Cf

Figure 2:The projection of the highpass filtered image
� � onto the set of all weighted highpass filtered images

� �
defined in (6) yields the optimal weighted highpass filtered image

�
opt� .
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(a)

(b)

(c)

Figure 3: Optimally weighted enhancement. (a) Original image (blurred Lenna). (b) Image enhanced using linear
highpass filter. (c) Image enhanced using optimal edge-weighted highpass filter. At left, we show the image; at right,
we show a vertical cross-section through the center of the image.
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(a)

(b)

(c)

Figure 4: Optimally weighted enhancement. (a) Original image (PET reconstruction). (b) Image enhanced using
linear highpass filter. (c) Image enhanced using optimal edge-weighted highpass filter. Note that the nonlinear filtering
algorithm employed here is identical to that used in Figure 3.
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(a) (b)

(c) (d)

Figure 5:Optimal adaptive weighted image restoration. (a) Blurred,noisy image of bridge. (b) Image restored using
linear highpass filter. (c) Image restored using globally optimal edge-weighted highpass filter. (d) Image restored
using locally optimal adaptive edge-weighted highpass.
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