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Abstract

Nonlinearities are often encountered in the analysis and processing of real-world signals. In this paper,
we introduce two new structures for nonlinear signal processing. Thenew structures simplify the analy-
sis, design, and implementation of nonlinear filters and can be applied to obtain more reliable estimates
of higher-order statistics. Both structures are based on a two-step decomposition consisting of a linear
orthogonal signal expansion followed by scalar polynomial transformations of the resulting signal co-
efficients. Most existing approaches to nonlinear signal processing characterize the nonlinearity in the
time domain or frequency domain; in our framework any orthogonal signal expansion can be employed.
In fact, there are good reasons for characterizing nonlinearity using more general signal representations
like the wavelet expansion. Wavelet expansions often provide very concise signal representation and
thereby can simplify subsequent nonlinear analysis and processing. Wavelets also enable local nonlinear
analysis and processing in both time and frequency, which can be advantageousin non-stationary prob-
lems. Moreover, we show that the wavelet domain offers significant theoretical advantages over classical
time or frequency domain approaches to nonlinear signal analysis and processing.

1 Introduction
Nonlinear signal coupling, mixing, and interaction play animportant rôle in the analysis and processing of

signals and images. For instance, harmonic distortions andintermodulations indicate nonlinear behavior in

amplifiers and faulty behavior in rotating machinery. Nonlinearities also arise in speech and audio process-

ing, imaging, and communications. Nonlinear signal processing techniques are commonly applied in signal

detection and estimation, image enhancement and restoration, and filtering.

In this paper, we develop a new approach to nonlinear signal processing based on thenonlinear sig-

nal transformation(NST) depicted in Figure 1. Here, a length-� signal vector� is first expanded in an

orthonormal signal basis
�� � � � � � � �� 	

to produce the vector of coefficients
� � � � � � � �� �

. These signal

coefficients are then combined in nonlinear processing nodes � , which are simple�-th order polynomial

operations, to form the�-th order nonlinear coefficientsof the signal� � 
� � � � � � � �� �

. Concisely, we

denote the NST of Figure 1 by the operator�� � � �� � .�
This work was supported by the National Science Foundation,grant nos. MIP–9701692 and MIP–9457438, the Office of Naval

Research, grant no. N00014–95–1–0849, and DARPA/AFOSR, grant no. F49620-97-1-0513.
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Figure 1:Nonlinear signal transformation (NST)�� � � �� � . The front end processing (expansion in terms of the
basis��	 
) is linear; the back end processing (by� from (1) or (2)) is nonlinear.

The NST framework encompasses two new structures, each corresponding to a different choice for

the scalar processing nodes� in Figure 1. Product nodescompute different�-fold products of the signal

coefficients at each node:

� �� � � � � � � �� 
 � � � �� �� � � � � �� �
(1)

Summing nodesraise linear combinations of the coefficients to the�-th power:

� �� � � � � � � �� 
 �
�� ���� � �� �� ��

� �
(2)

(Although the outputs of the product and summing nodes are not equivalent, we will see that they both

produce similar NSTs.)

We will prove that an NST architecture with����� �� 

processing nodes can generateall possible�-th

order nonlinear interactions between the various signal components, with the strengths of these interac-

tions reflected in the nonlinear signal coefficients� . Therefore, these coefficients can be used for efficient

nonlinear filter implementations, robust statistical estimation, and nonlinear signal analysis.

The NST framework is flexible, because it does not rely on a particular choice of basis
��� 	. Tradition-

ally, nonlinear signal analysis has been carried out in the time or frequency domains. For example, if the��� 	 are the canonical unit vectors, or delta basis, then the components of� represent�-th order interactions

between different time lags of the signal� (see Figure 3(a)). If the
��� 	 make up the Fourier basis, then�

represents the�-th order frequency intermodulations (see Figure 3(b)). Inthis paper, we will emphasize the

wavelet basis[7], whose elements are localized in both time and frequency. Wavelet-based NSTs represent

the local�-th order interactions between signal components at different timesand frequencies (see Figure

3(c)). ¿From a practical perspective, this can be advantageous in problems involving non-stationary data,

such as machinery monitoring [6] and image processing [20].From a theoretical perspective, we will show

that the wavelet domain provides an optimal framework for studying nonlinear signals and systems.

We will consider several applications of NSTs in this paper.NSTs provide an elegant structure for the

Volterra filter that simplifies filter analysis, design, and implementation. Applications of Volterra filters
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include signal detection and estimation, adaptive filtering, and system identification [15, 25]. The output of

a Volterra filter applied to a signal� consists of a polynomial combination of the samples of�. We will

show that every�-th order Volterra filter can be represented by simple linearcombinations of the nonlinear

signal coefficients� . NSTs are also naturally suited for performinghigher-order statistical signal analysis

[17]. For example, in the time or frequency domains, the expected values of the nonlinear signal coefficients

� are simply values of a higher-order moment or higher-order spectrum. We will argue that the wavelet

domain provides an alternative, and optimal, representation for higher-order statistical analysis.

The paper is organized as follows. First, we introduce the NST framework. Second, we investigate the

advantages offered by a wavelet basis formulation instead of classical time or frequency domain formula-

tions. Specifically, in Section 2, we provide a brief introduction to the theory of tensor spaces, which are

central to the NST and its analysis. In Section 3, we show thatboth the product and summing node NSTs

provide a complete representation of all possible�-th order nonlinear signal interactions. Then using the

theory of tensor norms and Gordon-Lewis spaces, we examine the issue of choosing a signal basis for NSTs.

In particular, we exploit the special properties of the wavelet basis to show in Section 4 that wavelet bases

are, in a certain sense, optimal for nonlinear signal analysis and processing. Section 5 applies the theory to

three nonlinear signal processing applications. Section 6offers a discussion and conclusions.

2 Tensor Spaces
In this Section, we provide a brief introduction to the theory of tensor spaces, which provide an elegant

and powerful framework for analyzing NSTs. The theory of tensor spaces will be used to establish the

completeness of NSTs and to assess the merits of different basis transformations.

2.1 Finite-dimensional tensor spaces
First, some notation forIR

�
(we will deal exclusively with real-valued signals in this paper). All vectors will

be assumed to be columns and will be denoted using bold lowercase letters; for example,� � 
� � � � � � � �� �

.

Bold uppercase letters will denote matrices. Define the inner product
�� � � � �� �
 � .

Given a collection of� -dimensional, real-valued vectors
�� � � � � � � �� 	, with �� � 
� � �� � � � � � �� �� �
 ,

the �-fold tensoror Kronecker product[4, 28] � � 	 �� � � �� produces a vector composed of all possible

�-fold cross-products of the elements in
�� � � � � � � �� 	. We can also interpret the tensor� as an amorphous

�-dimensional array with elements
� � ������� � � � � �� � � � � �� �� . The�-fold tensor product of a vector� with

itself is denoted by� �� 
 and contains all�-fold cross-products of the elements in� .

The span of all�-th order tensors generates the�-th ordertensor space� � �IR� 

[28]. For example, if

� � �, then

� � �IR� 
 ��
��
�
���� � �� � �� � �� � �� � IR

� �� � ���� �
(3)

Practically speaking,� � �IR� 

is simply the spaceIR

� �
.
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A tensor� � � � �IR� 

is symmetric[28] if for every set of indices

�� � � � � � � �� 	 and for every permuta-

tion
�� ��
 � � � � �� �� 
	 from the set� of permutations of

�� � � � � � � 	
we have


� � ������� � 
�� ��� ������� �� � � (4)

Any tensor� � � � �IR� 

can be symmetrized by averaging over all possible permutations of the indices,

forming � �� 
 ��
�
� � �� 	
 
�� ��� ������� �� � � (5)

The subspace of� � �IR� 

containing all�-th order tensors satisfying (4) is termed the�-th ordersymmetric

tensor space� � �IR� 

. The dimension of� � �IR� 


is ����� �� 

, the number of�-selections from an�

element set. Throughout the sequel, we will set� � ����� �� 

.

2.2 Example
To illustrate the above ideas, consider the tensor space� � �IR� 
 and the symmetric tensor space� � �IR� 
. For

example, let
� � 

 � � 
 � �
 � � � 
� � � �� �
 � IR�. Then� �� ��� � 

 �� � � 
 ��� � 
 �� � � 
 � �� �
 � � � �IR� 
.

We can also interpret� as a 2-d array:

� � ��
 �
� 
 �� � 
 ���
 � � � 
 � �� � �

(6)

The symmetrized tensor

� �
 
 � � � �IR� 
 is given by� �� 
 � ���
 � ��
 
�� �
� 
 �� � �
 ��� � 
 � � �
���
 ��� � 
 �� � 
�� 
 ��� � �

(7)

2.3 Continuous-time tensor spaces
In practice, we work with the finite-dimensional tensor spaces associated with finite duration, discrete-time

signals. However, in order to assess the merits of various signal bases (Fourier versus wavelet, for example)

it is useful to consider the situation in continuous-time (infinite-dimensional) signal spaces. We will see that

here the wavelet basis offers a significant advantage over the Fourier basis. Hence, we may infer that these

advantages carry over into high sample rate discrete-time signal spaces.

We now consider the construction of continuous-time tensorspaces. Let� be a signal space. The�-th

order tensor space� � �� 

is the space generated by the span of all�-fold tensor products of signals in�

[8]. For example, if� � �, then

� � �� 
 ��
��
�
���� � �� � �� � �� � �� � � �� � ���� �

(8)

If � � � � � are one-dimensional functions of a parameter�, then� � � is canonically identified with the

two-dimensional function� �� � � �� 
 � � �� �
 � ��� 
.
To rigorously study continuous-time tensor spaces, we mustequip� � �� 


with a tensor norm[8]. First,

we assume that the space� is itself equipped with a norm — for example,� � �� �IR

. The norm on
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� can induce a norm on� � �� 

in a number of ways. Focusing on

��
spaces, consider thenatural tensor

norm��
, which is generated by the standard one-dimensional

��
norm. We equip the algebraic tensor space�� �IR
� �� �IR


with ��
and let

�� �IR
��� �� �IR

denote the completion of this space. Roughly speaking,

��
is a tensor norm that acts like the standard two-dimensional

��
norm. In fact, the normed tensor space�� �IR
 ��� �� �IR


is isometric to the space of� -integrable two-dimensional functions
�� �IR � IR



. We will

rejoin continuous-time tensor spaces in Section 4, where westudy the performance of tensor wavelet bases

from an approximation-theoretic perspective.

3 Complete NSTs
In this section, we show that the transformation�� � � �� � , pictured in Figure 1, provides a complete

representation of all possible�-th order nonlinear signal interactions. More precisely, every �-th order mul-

tilinear functional of the samples of the signal� is expressible as a linear functional of the nonlinear signal

coefficients� . Practical implications of completeness are that an�-th order NST is capable of realizing

every possible�-th order Volterra filter of� and can capture all possible�-th order signal interactions nec-

essary to compute higher-order statistical quantities such as the moments and cumulants of�. We focus our

attention primarily on sampled, finite duration signals. Using the theory of finite-dimensional tensor spaces,

we equate the completeness of the NSTs to a spanning condition in a tensor space.

3.1 Criterion for completeness
Definition 1 Let �� � � �� � be fixed. If for every signal� � IR

�
and tensor� � � � �IR� 


there exists a

collection of real numbers
�� � 	��� �, � � ����� �� 


, such that

���� �� �������� � � � ������� � � � � � � � �� �
��
�� � � � �� � (9)

then the transformation�� is acomplete�-th order NST.

In words, a complete NST can represent every�-th order multilinear functional of the signal samples as a

linear functional of the nonlinear signal coefficients� .

Using the theory of tensor spaces, the completeness property is easily described. Note that the tensor

� �� 
 contains every product of the form� � � � � � � �� � � � � � � � � � � �� � � �
(10)

In tensorial notation, we can rewrite the multilinear function on the left side of (9) as the inner product���� �� �������� � � � ������� � � � � � � � �� (11)

Furthermore, since� �� 
 is a symmetric tensor, we can assume without loss of generality that	 � � � �IR� 

.

We now show that both the product node and summing node NSTs are complete.
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3.2 Product node transformation
The product node NST is computed as follows. The coefficients

� � � � � � � ��
of the orthogonal expansion are

simply the inner products of the basis vectors
�� � � � � � � �� 	

with the signal vector�; that is,
�� � ��� � � �.

The coefficients� output at the second, nonlinear stage are given by all�-fold products of the
��� 	�� � � (see

(1)). The output of the product node NST�� is thus

��� 	��� � � �� � � � � � � �� � � � � � � � � � � �� � � 	 �
(12)

Tensor products simplify the description of the product node NST. First note that products of the form� � � � � � � ��
in (12) can be expressed, using standard tensor product identities [4], as

� � � � � � � �� � �� � � � � � � � � �� �� � � � �
� ��� � � � �� � � �� 
� �

(13)

Next, since the ordering of the
� � � � � � � �� does not affect the product value, we can symmetrize (13)

� � � � � � � �� �
�� �� ��� � � � �� �� � � �� 
� �

(14)

Now consider the collection of symmetric tensors��
�
� �� ��� � � � �� �� � � � � � � � � � � �� � � ��� �

(15)

Applying each of these tensors to the signal tensor� �� 
 produces the
��� 	��� � defined in (12). Hence, the

linear combination� ��� � �� �� of Definition 1 is given by

���� �� ������ �� � � � ������� �� �� ��� � � � �� �� � � �� 
� �
(16)

where we have used a multi-indexing scheme on the
�� � 	 for notational convenience. Comparing this

expression to (9) and (11), we make the identification

	 � ���� �� ������ �� � � � ������� � �� ��� � � � �� �� �
(17)

It follows from (17) and Definition 1 that the product node NSTis complete if the following condition

is satisfied:

Span

��
�
� �� ��� � � � �� �� � � � � � � � � � � �� � � ��� � � � �IR� 
 �

(18)

This is in fact the case.

Theorem 1 [28] Let
��� 	�� � � be a basis (orthonormal basis) forIR

�
. Then the� � ����� �� 


symmetric

tensors(15) form a basis (orthonormal basis) for� � �IR� 

.

Thus, the product node structure affords a complete NST, provided
��� 	�� � � is a basis forIR

�
.
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3.3 Summing node transformation
Recall that the summing node nonlinearities (2) raise linear combinations of the

�� � � � � � � �� 	
to the�-th

power. For the�-th output
�� , we can write

�� ��
�� ���� � �� �� �� ��

�
�

�� ���� � �� �� ��� � � ���
� � � � � � � � � �� �

(19)

We can interpret (19) as weighting the connection between the � -th basis element and the�-th summing

node with the gain�� �� (see Figure 1).

We can also write (19) as

�� �
� ���� � �� �� � � � ��� � ��� � � �� �

(20)

with �� ��
���� � �� �� � � � � � � � � � � �� (21)

a linear combination of the original basis vectors. Equivalently, by collecting the basis (column) vectors into

the matrix� � 
� � � � � � � �� �
and defining�� � 
� � �� � � � � � �� �� �
 , we can write

�� � � �� � � � � � � � � �� �
(22)

If the basis vectors
�� � 	

are viewed as functions with a single “bump” (for example, the delta basis in the

time domain, the Fourier basis in the frequency domain, or the wavelet basis in either domain — see Figure

3), then the vectors
��� 	 will be functions with multiple “bumps.” In this alternative representation, the

summing node NST provides an extremely simple structure forgenerating arbitrary�-th order nonlinear

signal interactions. As we see from Figure 2, this representation consists of two decoupled subsystems:

1. an overcomplete set of� � ����� �� 

linear filters

��� 	��� � that control both the dynamics and com-

ponent mixing, followed by

2. a set of trivial monomial nonlinearities��
� .

In Section 5.2, we will apply this representation of the summing node NST to the Volterra filter implemen-

tation problem. The filter bank representation not only leads to a simple and effective representation for the

computation of a filter output, but also provides insight into the dynamics of the filter.

We now show that the summing node NST is complete. Using tensorial notation, we can write (20) as�� � �� �� 
� � � �� 
 �. Following Definition 1, the linear combination� ��� � �� �� � � ��� � � � �� �� 
� � � �� 
 � �
Comparing this expression to (11), we make the identification

	 �
��
�� � �� � �� 
� �

(23)
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Figure 2: Filter bank realization of the summing node NST. By combining the basis vectors as in(21), we can
decompose an arbitrary summing node NST into a parallel cascade of a redundant set of linear filters��� 
����, each
followed by a simple monomial nonlinearity���� .

and it follows that this NST is complete if

Span�� �� 
� 	
�
�� � � � � �IR� 
 �

(24)

We will provide three different constructions for completesumming node NSTs. The first is valid for

arbitrary nonlinear order� . (For the proof, see Appendix A.)

Theorem 2 Fix 
 � IR, �
 � �� �
, 
 �� 
. Set�� � 
� , � � 
 � � � � � �. Form the collection of� � ����� �� 


length-� vectors
��� 	��� � according to

��� 	��� � �
��
�
� �� � � � � � � �� �
 �

���� � �� � � � �� � �
 � � � � � � 	��� �
(25)

Then, with
��� 	��� � employed in(19) or (22), the condition(24) holds, and the corresponding summing

node NST is complete.

This construction generates a class of filters�� �� 
� 	
�
�� � sufficiently rich for their tensor products to

generate all possible�-th order interactions of the basis vectors. While the definition of the combination

vectors
��� 	��� � in (25) is a notational nightmare, their structure is actually quite simple. Consider an

example with� � �, � � �, and
 � �. Since� � �, the multi-index�� can take the values
�
 � � � �	,

with corresponding� �� values
�� � � � � 	. The

��� 	�� � � in each�� vector must sum to� � �, so the entries

in each�� will consist of all 1s except for either the single value 4 or apair of 2s. There are� � ��� 
 � �
combinations of�-vectors with these nonzero coefficients:

� � � 
� � ��
 � �� � 
� � ��
 � �� � 
� � � �

�� � 
� � ��
 � �� � 
� � ��
 � �� � 
� � ��
 �

These coefficients can be interpreted either as
��

weights�� �� to be employed in (19) and Figure 1 or as the

combination factors in (22) that generate six different filters for use in Figure 2. In either case, a complete

NST results. In Section 5, we consider a cubic example with� � �.
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Since Theorem 2 generates�� vectors with no zero entries, each
�� filter will have � “bumps.” Larger

values of the
 parameter, however, lead to a simple interpretation of the
��� 	. For example, choosing


 � �
 in the� � �, � � � construction above yields

� � � 
�

 � ��
 � � � � 
� �

 ��
 � � � � 
� � �

�

�� � 
�
 �
 ��
 � � � � 
�
 � �
�
 � � � � 
� �
 �
�
 �

Thus, the
��

channel in Figure 2 will create a quadratic interaction between the signal component lying

primarily in the
� �

direction and itself, while the
�� channel will create a quadratic interaction between signal

components lying primarily the
� �

and
� � directions. This reasoning cannot be carried on ad infinitum, since

in the limit as
 � � , a numerically ill-conditioned system results. It could also be tempting to simply

subtract 1 from each weight vector above; however, this destroys an important symmetry condition used to

prove Theorem 2.

For quadratic summing node NSTs (� � �), we have a very simple alternative construction that clearly

reveals the underlying dynamical interaction. In this construction, each filter
�� equals either a single basis

vector or a combination two basis vectors, and the squared output of each filter generates all necessary

coupling between different basis elements. The following result is proved in Appendix B.

Theorem 3 Set� � � and form the collection of� � ��� �
�



length-� vectors

��� 	��� � according to

��� 	��� � �
�

� � � � � � � �� �
 �

���� � � � � � � � � � �
 � �	� �
(26)

(Each�� is an� -vector with entries of
�

or 
, and each has at most� non-zero entries.) Then, with
��� 	��� �

employed in(19) or (22), the condition(24)holds, and the corresponding second-order summing node NST

is complete.

To complete our study of the summing node NST, we provide a direct construction of a complete set of

filters
��� 	��� � that bypasses the choice of basis

�� � 	
. Interestingly, randomly generating the filters

��� 	��� �
produces a complete summing node NST. For the proof, see Appendix C.

Theorem 4 Let
��� 	��� � be a collection of� � ����� �� 


independent and identically distributed observa-

tions from anIR
�

–valued probability density. Then, with probability one,(24) holds and the corresponding

summing node NST is complete.

Finally, note that the above constructions for the filters
��� 	��� � do not depend on the signal length� .

Hence, these constructions can be extended to separable continuous-time spaces.

3.4 Relating the product and summing node structures
It should be noted that the summing node transformation is different from the product node transformation.

While both transformations are complete, under the conditions stated previously in this Section, the non-

linear signal coefficients� are, in general, different for the two structures. However,the coefficients of the
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two structures can be related by a simple linear transformation. Form�
 � �� �� 
� � � � � � � �� 
� �
and let�


be a matrix whose columns are the� � ����� �� 

tensors�

� �
	 �� � � � �� � � � � � � � � � � � �� � � 	. The

summing node nonlinear signal coefficients are given by

� ��� � �� �� 
 � (27)

while the product node coefficients are given by

� 	
�� � �� �� 
 � (28)

Since both of these representations are complete, the Moore-Penrose pseudoinverses [1]�
 and�
 exist

and satisfy� �� 
 � � 
 � ��� � �
 � 	
�� . Thus, the vectors� ��� and� 	
�� are related by

� 	
�� � ��
 � ��� �
(29)

� ��� � ��
 � 	
�� � (30)

One advantage of the product node structure is that it produces an orthogonal transformation in the

symmetric tensor space, whereas the summing node transformation is never orthogonal. While the product

node structure may provide a more efficient representation,the summing node structure has a much simpler

and elegant implementation in terms of a redundant filter bank. In Section 5, we will see that this is useful

in certain problems.

4 NSTs in the Wavelet Domain

4.1 Choice of NST Basis
The previous Section has shown that complete NSTs can be derived from any orthonormal signal basis

� � ��� 	�� � �. For example,� may be a delta, Fourier, or wavelet basis [7]. Figure 3 illustrates the

relationships and differences between these three different choices.

Classical approaches to nonlinear signal processing and analysis are based in the time or Fourier domain.

However, in this section we argue that there are significant advantages to wavelet-based methods. Heuris-

tically speaking, one expects that wavelet-based approaches may provide more robust tools for nonlinear

signal processing. This expectation is partly based on the well known compression and regularity properties

of the wavelet transform [26]. Furthermore, as illustratedin Figure 3, the wavelet transform provides a joint

time-frequency signal analysis, providing added flexibility in comparison to strictly time or frequency based

approaches. Unfortunately, it is difficult to quantify benefits of wavelets in a discrete-time setting.

In order to assess the potential advantages of wavelet-based nonlinear signal processing, we will com-

pare the characteristics of NST designed with time, frequency, and wavelet bases in continuous-time

(infinite-dimensional) signal spaces. In this setting, we will show that the wavelet basis offers significant

advantages over the classical signal bases for nonlinear signal processing. It can be inferred that these

advantages carry over into high sample rate discrete-time signal spaces.
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Delta basis

TIME FREQUENCY

Fourier basis

TIME FREQUENCY

Wavelet basis

TIME FREQUENCY

Figure 3:Comparison of different bases��	 
 for nonlinear signal processing. The choice of basis employed in the
linear front end of the NST of Figure 1 determines in which domain we represent signal interactions. Consider a
second-order NST, which generates squares� �	 and cross-products� ��	 of the signal coefficients. We illustrate two
basis elements� � and�	 from three different bases, in both the time domain and the frequency (squared magnitude)
domain. In the delta basis, each�	 is a unit pulse, so�	 is simply a sample of the signal. The corresponding NST
represents coupling between different time lags of the signal. In the Fourier basis, each�	 is a sinusoid, so�	 is a
Fourier coefficient of the signal. The corresponding NST represents intermodulations between different frequencies.
In the wavelet basis, each�	 is localized in both time and frequency simultaneously, so�	 measures the time-frequency
content of the signal. The corresponding NST represents coupling betweendifferent localized wavelet atoms.
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4.2 The wavelet transform
Thewavelet transformis an atomic decomposition that represents a real-valued continuous-time signal� ��

in terms of shifted and dilated versions of a prototype bandpass wavelet function� ��
 and lowpass scaling

function� ��
 [7, 16]. For special choices of the wavelet and scaling function, the atoms

�� �� ��
 �� ��� �� � �
��� � � �� � � � � � ZZ

� � � �
(31)

�� �� ��
 �� ����� � �
��� � � �� (32)

form an orthonormal basis, and we have the signal representation [7, 16]� ��
 � �
�


 � �� �� ��
 � ������ �
�

� � �� �� �� ��
 � (33)

with � � �� �� � � ��
 �� �� ��
 	� and 
 � �� � � ��
 �� �� ��
 	�. The wavelet coefficients
�� � �� 	 and scaling

coefficients
�
 � 	 comprise the wavelet transform. For a wavelet centered at time zero and frequency
�,

� � �� measures the content of the signal around the time�� � and frequency��� 
� (equivalently, scale� ).

Wavelet transforms of sampled signals can be computed extremely efficiently using multirate filter bank

structures [7, 16].

Recently, it has been shown that noise removal, compression, and signal recovery methods based on

wavelet coefficient shrinkage or wavelet series truncationenjoy asymptotic minimax performance charac-

teristics and, moreover, do not introduce excessive artifacts in the signal reconstruction [10]. The explanation

for this exceptional performance lies in the fact that wavelet bases areunconditional basesfor many signal

spaces.

A basis
��� 	 for a Banach space� is unconditional if there exists a constant� 
 � such that

�����
���� � �� �� �� ������ � �

�����
���� � �� �� �� ������ �

(34)

for every finite set of coefficients
�� � � � � � � �� 	 and every set of multipliers

��� � � � � � �� 	 of � �
. The notion

of unconditionality is important intransform domainsignal processing for the following reason. If we

represent a signal� � � in terms of the basis
��� 	, i.e., � � � � �� ��, then one can perform transform

domain processing by applying attenuation coefficients
�� � 	

to the coefficients
��� 	

:

�� � �� �� � �� 
 �� � �� � � � � �
(35)

If the basis is unconditional for the space� , then, using (34), for any set of attenuation coefficients the norm

of the processed signal
�� can be bounded in terms of the norm of the original signal

��� �� � � �� �� �
(36)

The unconditional nature of the wavelet basis is crucial to wavelet-domain processing, because it guar-

antees that the norm of the processed signal will not “blow up” when wavelet coefficients are discarded or

12



reduced in magnitude. Because the wavelet basis is an unconditional basis for many signal spaces, includ-

ing the
��

, Sobolev, Bounded Variation, Besov, and Triebel spaces [16], this guarantee holds under a wide

variety of different signal norms. (The same guarantee doesnot hold for the Fourier basis, for example.)

Obviously, this result has significant implications for signal processing.

The attractive properties of the continuous-time wavelet basis carry over to high-dimensional sampled

signal spaces as well. Even though all bases for finite-dimensional signal spaces are unconditional, including

Fourier and wavelet bases, and all finite-dimensional normsare equivalent, the constants that relate different

finite-dimensional norms are extremely dependent on the dimension. These constants can, in general, grow

in an unwieldy manner as we move to higher and higher sample rates (dimensions). The fact that the

underlying infinite-dimensional basis is unconditional limits how large the constants grow and consequently

guarantees that practical, finite-dimensional wavelet domain processing algorithms will be well behaved

under a wide variety of performance measures (all finite-dimensional�� norms,
� 
 � 
 � , for example).

As mentioned above, wavelets form unconditional bases for adiverse variety of signal spaces. However,

for NSTs, tensor spaces are the natural framework to consider. Hence, we wish to establish the uncondi-

tionality of tensor product wavelet bases. Using the theoryof tensor norms and a result from the theory of

Gordon-Lewis spaces, we will show that the tensor product ofan unconditional basis is again an uncon-

ditional basis for a tensor space equipped with an appropriate
��

norm. This result proves that the tensor

product of a wavelet basis is an unconditional basis for manytensor spaces of interest. Hence, wavelet-

based NSTs inherit the remarkable properties associated with wavelet domain processing. To the authors’

knowledge, this is a new result.

It should be noted that the tensor wavelet basis is quite different from the multidimensional wavelet

basis obtained via multiresolution analysis [7, 14, 16]. Toillustrate the differences, consider the case for

functions� �� � � �� 
 of two dimensions. Given a one-dimensional wavelet basis
��� �� ��
	� � ��� �� ��
	� �� �� ,

the two-dimensional tensor wavelet basis consists of products of all possible pairs of wavelets and scaling

functions:

� �����
 �
���� �� �� � 
	� � ��� �� �� � 
	� �� ��� � ���� �� ��� 
	� � ��� �� ��� 
	� �� ��� (37)

� ��� �� � �� � 
 �� ��� ��� 
	� � ��� �
�� �� ��� ��� � �� � �� � 
 �� ��� ��� 
	� � �����

�
�� �� ��� ��� �� � �� �
 �� � ��� ��� 
	� � ����� �

�� �� � �� ��� ��� � �� � �� � 
 �� � ��� ��� 
	� � ����� �
(38)

The tensor basis contains, for example, elements measuringcoarse scale (low frequency) information in

one direction and fine scale (high frequency) information inthe other. To compute the tensor wavelet

expansion of a multidimensional function, we simply operate on each coordinate axis separately using a

one-dimensional wavelet transform. Neumann and von Sachs have shown that tensor wavelet bases are

natural for multidimensional signal estimation applications in signal spaces having differing degrees of

smoothness in different directions [18]. In contrast, a multiresolution wavelet basis consists of products of
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(a) (b)

Figure 4:Graphical depiction of the elements of the two-dimensional multiresolution and tensor wavelet bases. The
aspect ratios of the tiles correspond roughly to the size of the “regions of support” of the basis elements. (a) The
multiresolution wavelet basis consists only of products of pairs ofwavelets and scaling functions from the same scale;
hence all tiles have the same aspect ratio. (b) The tensor wavelet basis consists of products of pairs of wavelets and
scaling functions from all possible scales; hence many different aspect ratios result. (Strictly speaking, these mosaics
illustrate the organization of thecoefficientsobtained upon expanding onto these bases. Nevertheless, there is a direct
correspondence between the size of a coefficient tile and the size of the region of support of the associated basis
elements: Basis functions broad in one direction result in fewer expansion coefficients in that direction and hence a
narrower tile.)

all possible pairs of wavelet and scaling functionsat the same scale:

��� �� � � ��� �� � �� � 
 �� ��� ��� 
	� � ���
� �� �� ��� �� � �� � 
 �� ��� ��� 
 � �� �� � �� �
 �� ��� ��� 
 � �� �� � �� � 
 �� ��� ��� 
	� � ��� � (39)

In Figure 4 we illustrate the differences between these bases graphically.

4.3 Unconditional bases for
��

tensor spaces
Let

��� 	 be a basis for
�� �TT


, with TT � IR. It follows from the classical result of Gelbaum and Gil de

Lamadrid [13] that the tensor basis
��� � �� 	 is a basis for the tensor space

�� �TT
 ��� �� �TT

, with ��

the natural norm. However, this does not guarantee that the tensor product of an unconditional basis is

an unconditional basis for the tensor space. We now show thatthis is indeed the case. (We will work

only with second-order tensor spaces for notational convenience; the extension to�-th order tensor spaces�� �TT
 ��� � � � ��� �� �TT

is straightforward.)

First we state a result due to Pisier [24]. Let� and� be Banach spaces with unconditional bases
�� � 	

and
��� 	 respectively. Let

�
be a norm on the tensor space� � � such that given any two linear operators

� � � � � and� � � � � , the tensor product
� � � is a bounded linear operator on� � � equipped

with norm
�

. If this condition holds, then
�

is called auniform norm. Let� �� � denote the completion of

� � � with respect to
�

.

Theorem 5 [24] Let
�� � 	 and

��� 	 be unconditional bases for the Banach spaces� and� , respectively.

Let
�

be a uniform norm for the tensor space� �� � . Then
�� � � �� 	 is an unconditional basis for� �� �

if and only if� �� � is a Gordon-Lewis (GL) space.
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Before we can apply this result to
�� �TT
 ��� �� �TT


, we must ensure that��
is a uniform tensor nown.

To this end, we employ a result due to Beckner.

Theorem 6 [3] Let
� � � be a linear mapping from�� � �TT
 �� � � � �TT
�

to ��� �TT
 ��� �� �TT
�
. If� � � � � � � , then

�� � � � � �� � �� �
.

It remains only to verify that
�� �TT
 ��� �� �TT


is a GL space. For our purposes it suffices to note the

following [9]: �� �TT � TT



is a GL space, for
� � � � � �

(40)

Since
�� �IR
 ��� �� �IR


is isometric to
�� �IR � IR



, it follows that

�� �TT
 ��� �� �TT

is also a GL space.

Combining these results, we have shown the following:

Theorem 7 Let
��� 	 be an unconditional basis for

�� �TT

,
� 
 � 
 � . Then

��� � �� 	 is an unconditional

basis for
�� �TT
 ��� �� �TT


.

We have excluded the case� � �
, since

� � �TT

does not admit unconditional bases [16]. However,

more can be said for the subspace of
� � �TT


having unconditional wavelet expansions — the Hardy space� � �TT

. It follows easily from Theorem 7 that the tensor product of an unconditional basis for

� � �TT

is

an unconditional basis for the product space
� � �TT � TT



. This fact is well-known [16]. (Also, recall that�� �TT
 � �� �TT


,
� 
 � 
 � ). There are many other tensor spaces of interest, includingtensor spaces

constructed from Sobolev, Besov, and Triebel spaces. Ongoing work is aimed at assessing the performance

of tensor wavelet bases in such spaces.

5 Applications
In this section, we study three applications of NSTs. We firstinvestigate NST-based estimation of correlation

functions using the product node architecture and the wavelet basis. Wavelet domain representations of

higher-order correlations can be much more efficient than Fourier or time domain representations. In the

second application, we demonstrate that the summing node NST is capable of realizing arbitrary Volterra

filters. Finally, we examine the potential of truncated wavelet expansions for nonlinear system identification.

5.1 Correlation analysis
The product node NST is well-suited for correlation and higher-order statistical analysis. The�-th order

correlation of a random vector� are given by E
�� �� 
� [2]. If � is zero-mean, then the second-order correla-

tion E
�� ��
� is simply a vectorized version of the covariance matrix of� , while the third-order correlation

E
�� ��
� is a vectorized version of the third-order cumulant of�.

It is often advantageous to study the higher-order signal correlations in domains other than time. For

example, the�-th order spectrum results from applying the Fourier transform, denoted by� , to � and

15



(a) (b)

Figure 5: Data from an acoustic emission experiment. (a) Emission from a typical trial. (b) Overlay of data from
twenty trials.

computing E
���� 
 �� 
�. The�-th order spectrum measures�-fold correlations between different sinusoidal

components of the signal.

If � denotes the wavelet transform, then E
��� � 
 �� 
� represents the�-th order correlations in the

wavelet domain. Because wavelets better match many real-world signals, wavelet domain representations

of higher order correlations can be much more efficient — concentrating the dominant correlations in fewer

coefficients — than Fourier or time domain representations.This claim is supported by the fact that tensor

products of wavelet bases provide unconditional bases for awide variety of tensor spaces (as shown in

Section 4.3).

Now let us examine the product node NST. Let� denote the orthonormal basis used in the first stage of

the structure. The output� of the product node transformation of a random vector� produces all possible

�-th order interactions of this vector in the� domain. If follows that the expected value of the nonlinear

signal coefficients� produces the�-th order correlations of the process� in the� domain. In fact, E
� �
contains every unique correlation in E

���� 
 �� 
�.
Now suppose we are given�

� �
independent and identically distributed (iid) vector observations

� � � � � � � �� . We wish to estimate the�-th order correlations of the underlying process. We can estimate

these correlations in the� domain by computing the product node NST of each observation�� � �� �� ��
and then averaging the resulting nonlinear signal coefficients. We estimate E
� � by

�
� ��� � � �� .

We have applied this technique to the problem of acoustic emission signal processing, which is compli-

cated by the complex emission patterns generated by irregularities in the acoustic medium. Such problems

arise, for example, in laser optoacoustic tomography for cancer diagnostics. Correlation analyses can aid

in illuminating the nature of optoacoustic irregularitiesin human organs, such as the breast [22]. In the

following experiment,� � �
 independent acoustic emission trials were performed in thesame medium.

Emission data for the trials is plotted in Figure 5.

We computed the second-order correlations (� � �) of this data using product node NSTs based in

the time, frequency, and wavelet domains. The Daubechies-6wavelet basis was used in this study [7].

Histograms of the correlation magnitudes were computed foreach case and are shown in Figure 6. To

quantitatively assess the efficiency of the time, frequency, and wavelet domain representations, the entropy
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Figure 6:Histograms of the second-order (� � �
) correlations of the acoustic emission signals from Figure 5 in three

different basis representations. (a) Histogram of time-domain correlation magnitude, entropy� � � �
��

. (b) His-
togram of frequency-domain correlation magnitude, entropy� � � ���. (c) Histogram of wavelet-domain correlation,
entropy� � 	�
�. To better illustrate both the peakiness and rapid decay of the wavelet-domain correlation, we plot
only the first few bins of the histograms on a logarithmic vertical scale.

of each histogram was computed. The wavelet-domain histogram has a much lower entropy than the time-

and frequency-domain histograms, which indicates that thewavelet-domain analysis is more efficient at

representing the second-order correlations of the acoustic emission data. Hence, this experiment corrobo-

rates theoretical results showing that unconditional bases are optimal for signal compression [10]. Efficient

wavelet-based representations can provide more robust andreliable estimates of the higher-order statistics

and could provide better insight into the complicated non-stationary correlation structure of the data.

5.2 Volterra filtering
In this Section, we consider Volterra filter realizations based on the NST. We show that a complete�-th order

NST is capable of realizing every�-th order Volterra filter. In particular, the summing node transformation

leads to an elegant filter bank representation.

The output of a homogeneous�-th order Volterra filter applied to a signal� � 
� � � � � � � �� �

is given

by [15] � � ���� �� ������ �� � � � ������� � � � � � � � �� � (41)

The filter output� is simply an�-th order multilinear combination of the samples� � � � � � � �� . The set of

weights� is called the�-th orderVolterra kernel. Note that while (41) computes only a single output value

given � input values, the extension to online processing of infinite-length signals is straightforward. To

treat the input signal� �, we simply set� � � 
� � � � � � � � ���� ��

, with � thememory lengthof the filter. The

output of (41) is then� �, a nonlinearly filtered version of� �.
Since (41) is identical to the multilinear functional (9) appearing in Definition 1, it follows that every�-th

order Volterra filter can be computed as a linear combinationof the nonlinear signal coefficients� � �� �� 
.
As shown in Section 3, both the product node and summing node structures are capable of computing a

complete�-th order signal transformation. The summing node structure is particularly interesting in this

application, because it allows us to represent every�-th order Volterra filter using the simple filter bank of

Figure 7. Key to this scheme is thatthe overcomplete linear transformation, rather than the nonlinearities,

manage the signal coupling prescribed by the overall Volterra filter. Therefore, this new representation
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Figure 7:Volterra filter realization using a summing node NST.

greatly simplifies the analysis, synthesis, and implementation of Volterra filters.1

Volterra filter realizations of this type are often referredto asparallel-cascade realizations[23]. Previ-

ous work on parallel-cascade designs has relied on complicated numerical optimizations to construct kernel-

specific sets of linear filters and, hence, each distinct Volterra filter requires its own unique parallel-cascade

realization [5, 23]. In contrast, the summing node NST can represent every�-th order Volterra filter simply

by adjusting the output weights
��� 	��� �. The linear filters

��� 	��� � of the summing node structure remain

the same for every Volterra kernel. Hence, the summing node structure is auniversal structurefor homoge-

neous Volterra filtering. Nonhomogeneous Volterra filters can also be implemented with the summing node

structure by following each linear filter with an�-th degree polynomial nonlinearity instead of the homo-

geneous�-th order monomial. Moreover, if the Volterra kernel� is low-rank, then it can be represented

exactly with a smaller subset (� 
 � ) of orthonormal basis vectors [21]. Therefore, low-rank systems can

be implemented with a far smaller filter bank.2

The weights
�� � 	 corresponding to a specific Volterra filter with kernel� can be computed by solving

a system of linear equations. Let	 be a vectorized version of� ordered to correspond to the Kronecker

product in (11). According to (23), the Volterra kernel generated by the summing node NST is given by� ��� � � � � �� 
� . Therefore, to represent the Volterra filter with kernel	 we chose the weights
��� 	 so that� ��� � � � � �� 
� � 	. The proper weights are readily obtained by solving this system of linear equations.

As an example, consider the implementation of a homogeneousthird-order (� � �) Volterra filter using

the summing node NST. Let� � ��� 	�� � � be an orthonormal basis forIR
�

. For example,� could be

the delta, Fourier, or wavelet basis. We design the filters
�� � � � � � ��

, � � ����� 

, for the summing node

transformation using the construction of Theorem 2. Referring to the Theorem, we take
 � � and hence

� � � � � � � � � � � � � � � �� � �
. Each filter

�� , � � � � � � � �� , is a linear combination of the basis vectors:�� � ��� , with �� a vector with elements in the set
�� � � � � � �	. Each�� consists of all 1s except for either

a single
�
, a 2 paired with a 4, or three 2s. Raising the output of each filter to the third power generates third-

order interactions between the different distinct components of the input signal represented by the basis

1The canonical representation of the Volterra filter (41) is of limited utility, due to the inherent difficulty in interpreting the
multidimensional kernel� (particularly when� � �).

2Using thetensor product basis approximationto the low-rank kernel [21], we can represent the kernel exactly with a filter bank
consisting of�

��� ��� � 	 

filters, with � 	 �

the rank of the kernel�. This is particularly useful if the kernel is known to satisfy
certain constraints (for example, smoothness, bandlimitedness).
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vectors. Taken together, these filters collaborate to generate all possible third-order nonlinear interactions of

the signal.

Different types of interactions are produced depending on the choice of basis. The delta basis produces

interactions between different time samples of the signal.The Fourier basis yields frequency intermodu-

lations, whereas the wavelet basis produces interactions between wavelet atoms localized in both time and

frequency. The fact that wavelet tensor bases are unconditional bases for many tensor spaces suggests that

wavelets may provide a more parsimonious representation for Volterra filters than time- or frequency-domain

representations.

5.3 Nonlinear System Identification
One common application of Volterra filters is nonlinear system identification [12, 15, 21]. To illustrate the

use of the tensor wavelet basis in this context, consider thefollowing problem. Assume that we observe the

input and output of a nonlinear system defined by the bilinearoperator� ��
 �
� �� � ��� � �� � � �� 
 � �� � � �
 � �� � �� 
 	� � 	�� � (42)

This type of quadratic nonlinearity arises in the analysis of audio loudspeakers, for example [12]. We assume

that both the input and output signals are sampled, resulting in the following discrete-time Volterra system�� �
��� �� � � � � �� � ��� ���� � (43)

The discretized kernel� � �� can be estimated from the input and output samples using correlation techniques.

However, in real applications only a finite number of samplesare available and often additive noise is present

in the observations. Consequently, the kernel estimates obtained from short data records are “noisy”.

Noise can be removed from a kernel estimate by processing theestimate in the Fourier or wavelet do-

main. Because the Fourier and wavelet bases often provide a concise representation of the kernel, in many

cases the separation of the true kernel from the noise can be carried out very easily in these domains. Specif-

ically, the noise in a “raw” kernel estimate can be removed bytruncating a Fourier or wavelet expansion of

the estimate. In the following example, we will show that wavelet-domain noise removal can outperform

Fourier-domain processing.

To illustrate this point, we simulate the identification of the nonlinear system (43) with the quadratic

kernel � depicted in Figure 8(a). This kernel was obtained from actual measurements on an audio loud-

speaker [12]. In our simulation, we treat this kernel as an “unknown” model we wish to identify. Using an

iid zero-mean, unit-variance Gaussian input sequence� to “probe” the system, we computed the outputs�
according to (43) (with no additive observation noise). In total, we generated�


 input and output mea-

surements and, from these two sequences, identified the kernel using the following correlation estimator.

Note that

E 
� � � � � � �
� � � � �� � � � �� �� � � � �

� � � �� � � �� � � (44)
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Letting �� �� denote the sample average estimate of E
� � � � � �, we have the following estimator for the

Volterra kernel3 �
� � �� �

��
�

�
�
�
�� �� � ���� � � �� ��� � � � ��

� �� �� � � �� � � (45)

While the simple correlation estimator (45) converges to the true kernel, with only a finite number of

data the resulting estimate is typically very noisy due to the variability of the sample correlation estimator

about the true correlation values. A simple noise removal procedure is based on expanding this “raw” kernel

estimate in an orthonormal basis and then discarding the small terms of this expansion (which presumably

correspond to noise and not signal). Let��� � 	 denote the coefficients of the raw estimate
�
� in the basis

expansion. Then the coefficients��� � 	 of the truncated series kernel estimate
�
� can be expressed in terms of

a hard threshold applied to the coefficients��� � 	
�� � �

���
��

�� � � ���
�� � ��� � 



 � ���
�� � ��� 
 
 � (46)

with 
 the threshold level. Many choices for the threshold value are possible; usually
 is chosen based on

some estimate of the noise level in the data. The better the basis “matches” the true kernel, the more efficient

this procedure will be at noise removal. In our experiment, we expanded the raw estimate in the wavelet

and Fourier tensor bases and then discarded the terms in the expansions whose coefficient magnitudes fell

below the threshold value
 � �� ��� �� � 
 � , with
�

the standard deviation of the noise and� � � �
�� the

dimension of the discretized kernel. This threshold choiceis suggested in [11] as a probabilistic upper bound

on the noise level. In practice,
�

must be estimated from the raw kernel estimate
�
�. However, since we had

access to the true kernel in this simulation, we computed
�

directly from the difference between the true

kernel and the raw estimate. Figure 8(c) and (d) show the estimates that result from hard thresholding in the

wavelet domain and Fourier domain, respectively. Wavelet-based truncation provides a much better kernel

estimate than both the original raw estimate (b) and the truncated Fourier expansion estimate (d). In fact,

the Fourier-based method oversmooths the estimate and results in a worse mean-squared-error (MSE) than

that of the original raw estimate. This simulation demonstrates the utility of wavelet-based representations

for the analysis of real-world nonlinear systems.

6 Conclusions
In this paper, we have developed two new structures for computing �-th order NSTs. The product and

summing node NSTs, while simple, can represent all�-th order nonlinear signal interactions. Both transfor-

mations have an elegant interpretation in terms of tensor spaces. The product node NST yields an orthogonal

transformation in the tensor space, and thus it is especially well-suited to estimation problems. The summing

3The estimator
�� is derived as follows. Let	
 �
 � 
 �� � �


 �. Setting	
 �
 � � � 
 �
 � � � � � �� and re-arranging gives�� 
 �
 �	 
 �
 � � � �� �� . Summing over� produces�� 
 � 
 �
 � � 
 	 
 �
 � � � � � � �� and hence

��� � � 
 	 
 �
 � � 
 � 
 �
 . A simple

substitution then yields� 
 �
 � �	 
 �
 �
��� � � � 	 � �� � ��. The estimator

�� 
 �
 is obtained by substituting the sample cross-moments�
 �
 for the true moments	
 �
 . The estimator
�� 
 �� , � �� � , is obtained in a similar fashion.
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(a) (b)

(c) (d)

Figure 8:Nonlinear system identification using tensor bases. Estimates of the quadratic Volterra kernel of an audio
loudspeaker obtained using thresholding in a tensor basis expansion.(a) True kernel� [12]. (b) Raw estimate

�
�

obtained using(45), MSE=0.20. (c) Estimate
�
� obtained through a truncated Daubechies-8 wavelet expansion of

�
�,

MSE=0.15. (d) Estimate
�
� obtained through truncated Fourier expansion of

�
�, MSE=0.40. The wavelet estimator

provides a more faithful estimate than the Fourier estimator, which oversmooths.
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node NST results in a redundant filter bank structure naturalboth for analyzing and interpreting nonlinear

interactions and for designing efficient implementations.Not only does the summing node architecture sug-

gest new, efficient algorithms for nonlinear processing, italso decouples the processing into linear dynamics

and static nonlinearities. Hence, this new framework for nonlinear analysis and processing may provide new

insights into the inner workings of nonlinear systems.

NSTs are not constrained to a fixed choice of basis. However, we have shown that wavelet bases provide

an optimal framework for NSTs in the sense that wavelet tensor bases are unconditional for many important

tensor spaces. Because the wavelet basis provides a more concise representation of many real-world signals,

more robust estimates of higher-order moments/cumulants/spectra and Volterra kernels may be obtained via

the wavelet representation as compared to time- or frequency-domain approaches.

Finally, we have focused on the classical
��

tensor spaces in our theoretical analysis of wavelet-domain

nonlinear processing. However, new results in the statistical literature suggest that more general spaces such

as Besov and Triebel spaces are extremely useful for characterizing real-world signals [10]. Therefore, an

important avenue for future work will be to extend the results of this paper to these more general settings,

possibly using the results of [27]. Another issue currentlyunder investigation is the relationship between

polynomial-based processing (higher-order statistics, Volterra filters) and other important types of nonlinear

processing that use sigmoidal (neural networks), threshold (wavelet shrinkage) [10], or weighted highpass

nonlinearities [20]. The results of this paper could serve as a link between these important areas of nonlinear

signal processing.

A Proof of Theorem 2
To prove the Theorem, we must show that the set

��� 	��� � generated by (22) and (25) satisfies (24). That is,

we must show that the tensors�� �� 
� 	 span the symmetric tensor space� � �IR� 

. Recall that each filter

��
has the form �� �

���� � �� �� �� � (47)

with �� � 
� � �� � � � � � �� �� �
 . Now consider

� �� 
� �
�� ���� � �� ���� ���

� 


� ���� �� ������ �� �� � �� � � � ��� �� � � � � � � � � � �� �
(48)

With � denoting the set of permutations of the set
�� � � � � � � 	

, we can write

� �� 
� � ���� �� ������ �� �� � �� � � � ��� �� � �� 	
 � �� ��� � � � � � � �� �� �� �
(49)

According to Theorem 2.6 in [28], the collection of tensors��� 	
 � �� ��� � � � � � � �� �� � � � � � � � � � � � �� � � �
(50)
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is a basis for� � �IR� 

. Let

��� 	��� �, � � ����� �� 

, denote these basis vectors, and set

� � 
� � � � � � � �� �
 .

Then, from (49), we can write � �� 
� � ��� � (51)

with
�� an� � �

column vector containing all degree-� monomials in the� � �� � � � � � �� �� coefficients. Next,

define

� � �� �� 
� � � � � � � �� 
� � � �� �
(52)

with
� � 
� � � � � � � �� �. �

is an � � � matrix and, since
�

is a basis for� � �IR� 

, it follows that

Span�� �� 
� 	
�
�� � � � � �IR� 


if and only if
�

is invertible.

The remainder of the proof shows that the invertibility of
�

is guaranteed if the Vandermonde matrix

� �
�
�����

� � � � � �� � � � � � ��
...

...
� � � ...� � �� � � � � ��

�
����	 (53)

is invertible.

First, we show that
� � 

 � �� 

 , with 
 a full rank matrix defined as follows. Consider the weights� � �� � � � � � �� �� . Form a vector of products of these weights using the Kronecker product:

�� �

�
�������

�
� � ����� ��

...��� ��

�
������	
�

�
�������

�
�� ����� ��...��� ��

�
������	
� � � � �

�
�������

�
�� ����� ��

...��� ��

�
������	
�

(54)

Note that every monomial in
�� is included in the vector�� . Define the matrix
 as the map

 � �� �� �� .

Note that
 is full rank and does not depend on�.

Now consider
� �� 
, the � -fold tensor product of the Vandermonde matrix

�
. Each row of

� �� 

corresponds to a particular monomial form (� ��� �� � � � � ��� �� , for example). Each column of

� �� 
 corresponds

to a particular set of weights (
� �� � � � � � � �� �
 � �� from (25), for example). Now consider

 � �� 

. The

action of


on the left extracts the rows of

� �� 
 corresponding to degree-� monomials. Applying
 on

the right extracts the columns of
� �� 
 corresponding to the specific weights in the� vectors defined in (25).

Therefore,
� � 

 � �� 

. The special construction of the vectors

��� 	��� � in (25) should now be clear:

The values�� � 
� �� � � � � � � �� �

correspond to the powers in one of the monomials� ��� �� � � � � ��� �� , and hence

by applying
 to both sides of
� �� 
 we select the�-th order monomials with the values corresponding to

the weights in the vectors
��� 	��� �.

We now claim that taking�� � 
� , � � 
 � � � � � �, �
 � �� �
, 
 �� 
, in (53) implies that

�
is invertible.

Note that with this choice
�

is real-symmetric and invertible. It follows that
� �� 
 is also real-symmetric

and invertible. Therefore, since
 has full rank,
� � 

 � �� 

 is also real-symmetric and invertible.4

This completes the proof. �
4If 
 is not invertible, then there exists a vector� such that�� 
� � �. This implies the existence of� � �� such that

�� �
�� �� � � and hence�

�� �
has a zero eigenvalue, contradicting the assumption that�

�� �
is invertible.
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B Proof of Theorem 3
We must show that Span�� ��
� 	

�
�� � � � � �IR� 
 �

Following the proof of Theorem 2, we have

� ��
� � ��� � (55)

with
�� an� �� column vector containing all degree� monomials in the elements of�� � 
� � �� � � � � � �� �� �


and �� ��
� � � � � � � ��
� � � �� �
(56)

with
� � 
� � � � � � � �� �

. It follows that Span�� ��
� 	
�
�� � � � � �IR� 


if and only if
�

is invertible.

To show that
� � � exists in this case, let us take a closer look at the columns of

�
. Recall that each

column of
�

is denoted by
�� and is generated by computing all cross-products between the elements of��

(Each�� is an� -vector with entries of
�

or 
, and each has at most� non-zero entries). Consider first the

columns
�� that correspond to�� vectors with a single non-zero entry. These columns also contain a single

non-zero entry. For example, if�� �� � �
and�� �� � 
 (

� �� � ), then
�� has a single non-zero entry in the

position corresponding to the monomial��� �� � �
. There are a total of� such columns, each with a single�

in a unique location corresponding to such an product. Clearly, these columns are linearly independent of

one another, as each has a single non-zero entry in a different location. Now consider the columns
�� that

correspond to�� vectors with a two non-zero entries. If�� � �� � �
, ��� �� � �

, and�� �� � 
 �� �� � � � ��), then

the column
�� has non-zero entries in the location corresponding the cross-product�� � �� ��� �� . Note that

since no other� � (� �� �) will have non-zero values in both the
� �

and
�� position, the corresponding

� � will

be zero in the associated cross-product location. Therefore, all
�� are linearly independent. This completes

the proof. �
One might wonder whether this construction using binary weights can be extended to higher orders

� � �. Unfortunately, the answer is negative. As we move to higherorders, we require more diversity in

the weights used to form the linear filters
��� 	. Hence, we require a more complicated construction such as

that of Theorem 2.

C Proof of Theorem 4
Recall that the summing node decomposition is complete if and only if for every	 � � � �IR� 


there exist�� � 	��� � such that

	 �
��
�� � �� � �� 
� �

(57)

Here,	 is symmetric and hence contains repeated elements. Also, vectors such as
� �� 
� contain repeated

products. To avoid such redundancies, define the vectors
�
	 and

��� �� 
� � from which repeated elements in

the original vectors	 and�� �� 
� 	 have been discarded. For example, if� � � and
�� � 

 � � 
� �
 , then both


 �
� and
�
 � occur in
� ��
� . In this case

�� ��
� � 

 �� � 
 �
� � 
 ��
�


. In general, for nonlinear order� and signal
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length� , the vectors
�
	 and

��� �� 
� � each contain exactly� � ����� �� 

elements. With this notation in

place, (57) can be rewritten as
�
	 �

��
�� � ��

�� �� 
� �
(58)

To guarantee that the summing node structure can represent every 	 � � � �IR� 

, we must have that

Span
��� �� 
� �

�
�� � � IR

�
.

To determine a set of spanning vectors, consider the following argument. Suppose that we randomly

choose the vectors
��� 	 as independent realizations from a common probability distribution. Furthermore,

assume that this distribution has a density (that is, the distribution is absolutely continuous with respect

to Lebesgue measure onIR
�

). Then Span
��� �� 
� �

�
�� � � IR

�
with probability one. This follows from

the following result regarding the invertibility of the�-th order moment matrix of anIR
�

–valued random

vectors.

Lemma 1 [19] If
�

is an IR
�

–valued random vector having a density, thenE ��� �� 
 �� �� 

 � is invertible.

To see how this result relates to the problem at hand, let
�� � �� �� 
� � � � � � � �� 
� �

, and note that the matrix�� ��

can be viewed as the sample�-th order moment matrix of the density for

��� 	��� �. Theorem 1 implies

that the sample moment matrix
�� ��


is invertible with probability one if the number of samples is greater

than� (see Remark 5.2 in [19]). This in turn implies that
�� is full rank and that Span

��� �� 
� �
�
�� � � IR

�
. �
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[2] T. André, R. Nowak, and B. Van Veen, “Low Rank Estimation of Higher Order Statistics,”Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing — ICASSP ’96, Atlanta, GA, May 1996.

[3] W. Beckner, “Inequalities in Fourier Analysis,”Annals of Math., 102, pp. 159-182, 1975.

[4] J. W. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE Trans. Circuits Syst., Vol. 25,
pp. 772-781, 1978.

[5] H.-H. Chiang, C. L. Nikias, and A. N. Venetsanopoulos, “Efficient implementations of quadratic filters,”IEEE
Trans. Acoust., Speech, Signal Proc., vol. 34, pp. 1511-1528, 1986.

[6] K. C. Chou and L. P. Heck, “A multiscale stochastic modelling approachto the monitoring of mechanical
systems,”IEEE Int. Symp. Time-Frequency and Time-Scale Analysis, Philadelphia, pp. 25–27, 1994.

25



[7] I. Daubechies,Ten Lectures on Wavelets, SIAM, 1992.

[8] A. Defant and K. Floret,Tensor Norms and Operator Ideals, Elsevier, 1993.

[9] J. Diestel, H. Jarchow, and A. Tonge,Absolutely Summing Operators, Cambridge University Press, 1995.

[10] D. L. Donoho, “Unconditional bases are optimal bases for data compression and for statistical estimation,”
Applied Comp. Harm. Anal., pp. 100-115, vol. 1, no. 1, Dec. 1993.

[11] D. L. Donoho, “De-noising by soft-thresholding,”IEEE Trans. Inform. Theory, pp. 613-627, vol. 41, no. 3,
May 1995.

[12] W. Frank, “An efficient approximation to the quadratic Volterra kernel and its application in realtime loud-
speaker linearization,”Signal Processing, pp. 97-113, vol. 45, no. 1, 1995.

[13] B. R. Gelbaum and J. Gil de Lamadrid, “Bases of tensor products of Banachspaces,”Pacific J. Math., 11, pp.
1281-1286, 1961.

[14] B. Jawerth and W. Sweldens, “An Overview of Wavelet Based Multiresolution Analysis,”SIAM Rev.,vol.36,
no. 3, pp.377-412, 1994.

[15] V. J. Mathews, “Adaptive polynomial filters,”IEEE Signal Proc. Mag., vol. 8, no. 3, pp. 10-26, 1991.

[16] Y. Meyer,Wavelets and Operators, Cambridge University Press, 1992.

[17] C. L. Nikias and A. P. Petropulu,Higher-Order Spectra Analysis. A Nonlinear Signal Processing Framework,
Prentice-Hall, 1993.

[18] M. H. Neumann and R. von Sachs, “Wavelet thresholding in anisotropic function classes and application to
adaptive estimation of evolutionary spectra,” preprint.

[19] R. Nowak and B. Van Veen, “Invertibility of Higher Order Moment Matrices,”IEEE Trans. Signal Proc., vol.
43, no. 3, pp. 705-708, 1995.

[20] R. D. Nowak and R. G. Baraniuk, “Optimal weighted highpass filters using multiscale analysis,”Proc. IEEE
Southwest Symp. Image Anal. Interpretation, pp. 224-229, San Antonio, 1996.

[21] R. Nowak and B. Van Veen, “Tensor Product Basis Approximations for Volterra Filters,”IEEE Trans. Signal
Proc., vol. 44, no. 1, pp. 36-50, January 1996.

[22] A. Oravesky, personal communication, 1996.

[23] T. M. Panicker and V.J. Mathews, “Parallel-cascade realizations and approximations of truncated Volterra sys-
tems,”Proceedings of the 1996 IEEE Intl. Conf. Acoustics, Speech, and Signal Proc., pp. 1589-1592, Atlanta,
1996.

[24] G. Pisier,Factorization of Linear Operators and Geometry of Banach Spaces, AMS, 1986.

[25] G. L. Sicuranza, “Quadratic filters for signal processing,”Proc. IEEE, vol. 90, p p. 1263-1285, Aug. 1992.
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FIGURE CAPTIONS:

Figure 1: Nonlinear signal transformation (NST)�� � � �� � . The front end processing (projection

onto the basis
��� 	) is linear; the back end processing (by� from (1) or (2)) is nonlinear.

Figure 2: Filter bank realization of the summing node NST. Bycombining the basis vectors as in (21),

we can decompose an arbitrary summing node NST into a parallel cascade of a redundant set of linear filters��� 	��� �, each followed by a simple monomial nonlinearity��
� .

Figure 3: Comparison of different bases
��� 	 for nonlinear signal processing. The choice of basis

employed in the linear front end of the NST of Figure 1 determines in which domain we represent signal

interactions. Consider a second-order NST, which generates squares
� �� and cross-products

� ��� of the

signal coefficients. We illustrate two basis elements
� �

and
�� from three different bases, in both the time

domain and the frequency (squared magnitude) domain. In thedelta basis, each
�� is a unit pulse, so

��
is simply a sample of the signal. The corresponding NST represents coupling between different time lags

of the signal. In the Fourier basis, each
�� is a sinusoid, so

�� is a Fourier coefficient of the signal. The

corresponding NST represents intermodulations between different frequencies. In the wavelet basis, each�� is localized in both time and frequency simultaneously, so
�� measures the time-frequency content of the

signal. The corresponding NST represents coupling betweendifferent localized wavelet atoms.

Figure 4: Graphical depiction of the elements of the two-dimensional multiresolution and tensor

wavelet bases. The aspect ratios of the tiles correspond roughly to the size of the “regions of support”

of the basis elements. (a) The multiresolution wavelet basis consists only of products of pairs of wavelets

and scaling functions from the same scale; hence all tiles have the same aspect ratio. (b) The tensor wavelet

basis consists of products of pairs of wavelets and scaling functions from all possible scales; hence many

different aspect ratios result. (Strictly speaking, thesemosaics illustrate the organization of thecoefficients

obtained upon expanding onto these bases. Nevertheless, there is a direct correspondence between the size

of a coefficient tile and the size of the region of support of the associated basis elements: Basis functions

broad in one direction result in fewer expansion coefficients in that direction and hence a narrower tile.)

Figure 5: Data from an acoustic emission experiment. (a) Emission from a typical trial. (b) Overlay of

data from twenty trials.

Figure 6: Histograms of the second-order (� � �) correlations of the acoustic emission signals from

Figure 5 in three different basis representations. (a) Histogram of time-domain correlation magnitude, en-

tropy
� � � ���. (b) Histogram of frequency-domain correlation magnitude, entropy

� � � ���. (c) His-

togram of wavelet-domain correlation, entropy
� � � ���. To better illustrate both the peakiness and rapid
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decay of the wavelet-domain correlation, we plot only the first few bins of the histograms on a logarithmic

vertical scale.

Figure 7: Volterra filter realization using a summing node NST.

Figure 8: Nonlinear system identification using tensor bases. Estimates of the quadratic Volterra kernel

of an audio loudspeaker obtained using thresholding in a tensor basis expansion. (a) True kernel� [12]. (b)

Raw estimate
�
� obtained using (45), MSE=0.20. (c) Estimate

�
� obtained through a truncated Daubechies-

8 wavelet expansion of
�
�, MSE=0.15. (d) Estimate

�
� obtained through truncated Fourier expansion of�

�, MSE=0.40. The wavelet estimator provides a more faithful estimate than the Fourier estimator, which

oversmooths.
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