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Abstract

Nonlinearities are often encountered in the analysis and processing ofaddlsignals. In this paper,
we introduce two new structures for nonlinear signal processingn@tvestructures simplify the analy-
sis, design, and implementation of nonlinear filters and can be appliedaim ohore reliable estimates
of higher-order statistics. Both structures are based on a two-step gesiion consisting of a linear
orthogonal signal expansion followed by scalar polynomial transéitions of the resulting signal co-
efficients. Most existing approaches to nonlinear signal processing chaadter nonlinearity in the
time domain or frequency domain; in our framework any orthogonakdigxpansion can be employed.
In fact, there are good reasons for characterizing nonlinearity using reaera signal representations
like the wavelet expansion. Wavelet expansions often provide vergismsignal representation and
thereby can simplify subsequent nonlinear analysis and processing. Walsteenable local nonlinear
analysis and processing in both time and frequency, which can be advantagrouosstationary prob-
lems. Moreover, we show that the wavelet domain offers significant thearativantages over classical
time or frequency domain approaches to nonlinear signal analysis and pngcess

1 Introduction

Nonlinear signal coupling, mixing, and interaction playiaaportant role in the analysis and processing of
signals and images. For instance, harmonic distortionsraadnodulations indicate nonlinear behavior in
amplifiers and faulty behavior in rotating machinery. Noakrities also arise in speech and audio process-
ing, imaging, and communications. Nonlinear signal preitestechniques are commonly applied in signal
detection and estimation, image enhancement and restoratid filtering.

In this paper, we develop a new approach to nonlinear sigmalegsing based on thmnlinear sig-
nal transformation(NST) depicted in Figure 1. Here, a length-signal vectorx is first expanded in an

orthonormal signal basiéby, ..., by} to produce the vector of coefficients:, ..., 8,]7. These signal
coefficients are then combined in nonlinear processing sygdehich are simple:-th order polynomial
operations, to form the-th order nonlinear coefficientsf the signald = [6;,...,0x]7. Concisely, we

denote the NST of Figure 1 by the operafgy: x — 6.

*This work was supported by the National Science Foundagi@mt nos. MIP-9701692 and MIP-9457438, the Office of Naval
Research, grant no. N00014-95-1-0849, and DARPA/AFOSRt go. F49620-97-1-0513.



Figure 1: Nonlinear signal transformation (NSF), : x — 6. The front end processing (expansion in terms of the
basis{b;}) is linear; the back end processing @pyrom (1) or(2)) is nonlinear.

The NST framework encompasses two new structures, eacbspording to a different choice for
the scalar processing nodgsn Figure 1. Product nodesompute different.-fold products of the signal
coefficients at each node:

n(ﬁla"'aﬁm) = /311512an (1)

Summing nodeise linear combinations of the coefficients to thth power:

n(B,--:Pm) = (Zagﬂj) : )
j=1

(Although the outputs of the product and summing nodes arequivalent, we will see that they both
produce similar NSTs.)

We will prove that an NST architecture wif**"~!) processing nodes can generatiepossiblen-th
order nonlinear interactions between the various signaipmments, with the strengths of these interac-
tions reflected in the nonlinear signal coefficie@tsTherefore, these coefficients can be used for efficient
nonlinear filter implementations, robust statisticalrastiion, and nonlinear signal analysis.

The NST framework is flexible, because it does not rely on tiquéar choice of basigb,}. Tradition-
ally, nonlinear signal analysis has been carried out inithe or frequency domains. For example, if the
{b;} are the canonical unit vectors, or delta basis, then the ooeris o# represent.-th order interactions
between different time lags of the signal(see Figure 3(a)). If thé¢b,;} make up the Fourier basis, thén
represents the-th order frequency intermodulations (see Figure 3(b)}his paper, we will emphasize the
wavelet basi$7], whose elements are localized in both time and frequeWavelet-based NSTs represent
the localn-th order interactions between signal components at diftetimesand frequencies (see Figure
3(c)). ¢From a practical perspective, this can be advantesge problems involving non-stationary data,
such as machinery monitoring [6] and image processing [2@m a theoretical perspective, we will show
that the wavelet domain provides an optimal framework fodging nonlinear signals and systems.

We will consider several applications of NSTs in this papé¢®Ts provide an elegant structure for the
Volterra filter that simplifies filter analysis, design, and implementatidpplications of Volterra filters
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include signal detection and estimation, adaptive filggramd system identification [15, 25]. The output of
a \olterra filter applied to a signal consists of a polynomial combination of the samplescofWe will
show that every:-th order Volterra filter can be represented by simple lireanbinations of the nonlinear
signal coefficient®. NSTs are also naturally suited for performiniggher-order statistical signal analysis
[17]. For example, in the time or frequency domains, the etqubvalues of the nonlinear signal coefficients
@ are simply values of a higher-order moment or higher-orgecsum. We will argue that the wavelet
domain provides an alternative, and optimal, represemtdtir higher-order statistical analysis.

The paper is organized as follows. First, we introduce th@& K&mework. Second, we investigate the
advantages offered by a wavelet basis formulation instéathssical time or frequency domain formula-
tions. Specifically, in Section 2, we provide a brief introtion to the theory of tensor spaces, which are
central to the NST and its analysis. In Section 3, we showlib#t the product and summing node NSTs
provide a complete representation of all possilith order nonlinear signal interactions. Then using the
theory of tensor norms and Gordon-Lewis spaces, we exaimiriegue of choosing a signal basis for NSTs.
In particular, we exploit the special properties of the Wwelvbasis to show in Section 4 that wavelet bases
are, in a certain sense, optimal for nonlinear signal aisagsd processing. Section 5 applies the theory to
three nonlinear signal processing applications. Sectioffies a discussion and conclusions.

2 Tensor Spaces

In this Section, we provide a brief introduction to the theof tensor spaces, which provide an elegant
and powerful framework for analyzing NSTs. The theory ofstamspaces will be used to establish the
completeness of NSTs and to assess the merits of differeigt fhansformations.

2.1 Finite-dimensional tensor spaces

First, some notation fdR™ (we will deal exclusively with real-valued signals in thiaper). All vectors will
be assumed to be columns and will be denoted using bold lasetetters; for example, = [vy, ..., v,]T.
Bold uppercase letters will denote matrices. Define theripreduct(u, v) 2 uly.

Given a collection ofrn-dimensional, real-valued vecto{s'1, ..., v,}, with vy, = [v1,. .. ,um,k]T,
the n-fold tensoror Kronecker producf4, 28] 7 = @j_, v; produces a vector composed of all possible
n-fold cross-products of the elements{m, ..., v,}. We can also interpret the tenspras an amorphous
n-dimensional array with elements, . ;. = v;;1---v;,n. Then-fold tensor product of a vector with
itself is denoted bw(™) and contains alh-fold cross-products of the elementsvin

The span of alh-th order tensors generates th¢h ordertensor spacd™(IR™) [28]. For example, if
n = 2, then

L
T?(R™) = {Zuj@wj: uj,vjelRm,L21}. ®3)
j=1

Practically speakingl™ (IR™) is simply the spac&R™".



Atensorr € T™(IR™) is symmetrid28] if for every set of indiceqi1, ..., 4, } and for every permuta-
tion {w(1),...,w(n)} from the set? of permutations of1,...,n} we have

Tityesin: = Tig(1)yemsies(n) @

Any tensorr € T"(IR™) can be symmetrized by averaging over all possible pernousitdf the indices,
forming

1

A

S(T) = m Z Tiw(l):""iw(n)' (5)
T weN

The subspace @™ (IR™) containing alln-th order tensors satisfying (4) is termed th¢h ordersymmetric
tensor spaceés”™(IR™). The dimension ofS™(IR™) is (™7 1), the number ofi-selections from ann
element set. Throughout the sequel, we will et ("+7~1),

2.2 Example

To illustrate the above ideas, consider the tensor sSPa¢R?) and the symmetric tensor spas®IR?). For
example, letn = [u1, ug]T,v = [v1, vo]? € IR2. Thent £ u®@v = [u1v1, u1v2, ugv1, ugve]l € T2(IR2).
We can also interpret as a 2-d array:

U1v1r U112
U2V1  U2V2

The symmetrized tensat(7) € S?(IR?) is given by

S) = vty = l (uwz?%m)/? (u1vg;l-2:}¢22v1)/2 ] (7)

2.3 Continuous-time tensor spaces

In practice, we work with the finite-dimensional tensor gsaassociated with finite duration, discrete-time
signals. However, in order to assess the merits of varigueakbases (Fourier versus wavelet, for example)
it is useful to consider the situation in continuous-tim#ifiite-dimensional) signal spaces. We will see that
here the wavelet basis offers a significant advantage oedrdlrier basis. Hence, we may infer that these
advantages carry over into high sample rate discrete-tignalsspaces.

We now consider the construction of continuous-time tespaces. Left’ be a signal space. Theth
order tensor spacg™(X) is the space generated by the span ofdibld tensor products of signals il
[8]. For example, ifh = 2, then

L
T?(X) £ {ijeayj: xj,yjex,Lz1}. (8)
7j=1

If z,y € X are one-dimensional functions of a parametghenz ® y is canonically identified with the
two-dimensional functiorz(t1,t2) = z(t1) y(t2).

To rigorously study continuous-time tensor spaces, we ewsp7™(X') with atensor norn{8]. First,
we assume that the spadeis itself equipped with a norm — for exampl&, = L,(IR). The norm on
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X can induce a norm o™ (X’) in a number of ways. Focusing dp, spaces, consider thratural tensor
normA,, which is generated by the standard one-dimensifpalorm. We equip the algebraic tensor space
Ly(R) ® Ly (IR) with Ay, and letZ, (IR) ®a, Ly (IR) denote the completion of this space. Roughly speaking,
A, is a tensor norm that acts like the standard two-dimensibpalorm. In fact, the normed tensor space
Ly(R) ®a, Ly(IR) is isometric to the space pfintegrable two-dimensional functiords, (IR x IR). We will
rejoin continuous-time tensor spaces in Section 4, wherstudy the performance of tensor wavelet bases
from an approximation-theoretic perspective.

3 Complete NSTs

In this section, we show that the transformatiBp : x — 8, pictured in Figure 1, provides a complete
representation of all possibteth order nonlinear signal interactions. More preciselgrgn-th order mul-
tilinear functional of the samples of the signais expressible as a linear functional of the nonlinear digna
coefficients@. Practical implications of completeness are thatah order NST is capable of realizing
every possible:-th order Volterra filter ok and can capture all possibleth order signal interactions nec-
essary to compute higher-order statistical quantitieh ssc¢he moments and cumulantsxofWe focus our
attention primarily on sampled, finite duration signalsiridshe theory of finite-dimensional tensor spaces,
we equate the completeness of the NSTs to a spanning caonlitéotensor space.

3.1 Ciriterion for completeness
Definition 1 Let F,, : x — @ be fixed. If for every signat € IR™ and tensorh € T"(IR™) there exists a
collection of real number§ay }¥_,, N = (™*71), such that

n
Z i ..pin Ty * @i, = Z ay, O, 9
1<i1<...<in<m k=1

then the transformatioi}, is acompleten-th order NST.

In words, a complete NST can represent euveityr order multilinear functional of the signal samples as a
linear functional of the nonlinear signal coefficiefts

Using the theory of tensor spaces, the completeness pydpeztsily described. Note that the tensor
x(") contains every product of the form

Tiy * e T4, 1<y, 0y <M. (10)
In tensorial notation, we can rewrite the multilinear fuonton the left side of (9) as the inner product

Z Riy,.in @iy * - T4, (11)

1<i1 <. <in<m

Furthermore, since(™) is a symmetric tensor, we can assume without loss of getyetiadith € S™(R™).
We now show that both the product node and summing node N&Tanplete.



3.2 Product node transformation

The product node NST is computed as follows. The coefficiénts. ., 5,,, of the orthogonal expansion are
simply the inner products of the basis vectfts, . .., b, } with the signal vectox; that is,3; = (bj, x).
The coefficient®) output at the second, nonlinear stage are given hy-tdld products of the 3;}72, (see
(2)). The output of the product node N7, is thus

{Oe}3por = {Bi B+ 1<ii <...<in<m}. (12)

Tensor products simplify the description of the productendST. First note that products of the form
Biy -+ B, in (12) can be expressed, using standard tensor produditided], as

Biy -+ Bi,, = (biy,x) -+ (bj,,x) = <ébiﬂx(")>- (13)
j=1

Next, since the ordering of thg, . . . , i, does not affect the product value, we can symmetrize (13)

Biy B, = <8 <® bi].>, x<”>>. (14)
j=1

Now consider the collection of symmetric tensors

7j=1

Applying each of these tensors to the signal teng8t produces thg 6y }2_, defined in (12). Hence, the
linear combinatiory"X_, ay, 6 of Definition 1 is given by

> Qiy,...sim <3 (é bij> ; X(n)> ) (16)
j=1

1< <.oKin <m

where we have used a multi-indexing scheme on{ig} for notational convenience. Comparing this
expression to (9) and (11), we make the identification

h = > i, s(é bij> . (17)
P

1<i1<..<in<m

It follows from (17) and Definition 1 that the product node N&8Tomplete if the following condition
is satisfied:

Span{S(@ bz-j) 1< <. <6, < m} = S™"(R™). (18)
7j=1

This is in fact the case.

Theorem 1 [28] Let {b;}72; be a basis (orthonormal basis) f&R™. Then theN = (m+n=1) symmetric
tensorg(15) form a basis (orthonormal basis) féi" (R™).

Thus, the product node structure affords a complete NSViged {b;}7 ; is a basis folR™.
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3.3 Summing node transformation
Recall that the summing node nonlinearities (2) raise fim@abinations of thg 31, . .., 8, } to then-th
power. For thek-th outputé;,, we can write

n

0, = (Z%kﬂj) = (Z%’,k(bj,X)) , k=1...,N. (19)
j=1 j=1

We can interpret (19) as weighting the connection between-th basis element and theth summing
node with the gaim,; , (see Figure 1).

We can also write (19) as

m n
O = <Z @ik bi X> = (fk, x)", (20)
j=1
with
m
f = > aixb;, k=1,...,N (21)
j=1
a linear combination of the original basis vectors. Eq@mtl, by collecting the basis (column) vectors into
the matrixB = [by, ..., by,] and definingay = a1k, ..., am k]’ , we can write
fk, :Bak, k}:l,...,N. (22)

If the basis vectorgb;} are viewed as functions with a single “bump” (for example tlelta basis in the
time domain, the Fourier basis in the frequency domain, ®mtavelet basis in either domain — see Figure
3), then the vectorgfy} will be functions with multiple “bumps.” In this alternagvrepresentation, the
summing node NST provides an extremely simple structurgyémerating arbitrary:-th order nonlinear
signal interactions. As we see from Figure 2, this repregimt consists of two decoupled subsystems:

1. an overcomplete set &f = (™*"~1) linear filters{fy } 7, that control both the dynamics and com-
ponent mixing, followed by

2. a set of trivial monomial nonlinearitigs)™.

In Section 5.2, we will apply this representation of the stimgmode NST to the Volterra filter implemen-
tation problem. The filter bank representation not only $stda simple and effective representation for the
computation of a filter output, but also provides insighoitite dynamics of the filter.

We now show that the summing node NST is complete. Using tethgmtation, we can write (20) as
), = <f,§"),x(”)>. Following Definition 1, the linear combinatioms_, ay 6 = SN | ay <f,§"),x(”)>.
Comparing this expression to (11), we make the identificatio

N
h= Y apf”, (23)
k=1



f () O

Figure 2: Filter bank realization of the summing node NST. By combining thesbasctors as irff21), we can
decompose an arbitrary summing node NST into a parallel cascade of a retisetdaiinear filters(f, }~_,, each
followed by a simple monomial nonlinearity)™.

and it follows that this NST is complete if
N
Span{f,g”)}k:1 = S™(R™). (24)

We will provide three different constructions for complet@mming node NSTs. The first is valid for
arbitrary nonlinear ordet. (For the proof, see Appendix A.)

Theorem 2 Fix p € R, |p| # 1, p # 0. Sety, = p", r = 0,...,n. Form the collection ofV = (™+71)
lengthsn vectors{a }_, according to

{agtp=1 = {[711,---,7lm]T! Y li=n, le{O,---,”}}- (25)
j=1

Then, With{ak}szl employed in(19) or (22), the condition(24) holds, and the corresponding summing
node NST is complete.

This construction generates a class of filtt%f%")}kN_l sufficiently rich for their tensor products to
generate all possible-th order interactions of the basis vectors. While the dédimiof the combination
vectors{a; }&_, in (25) is a notational nightmare, their structure is adyuglite simple. Consider an
example withm = 3, n = 2, andp = 2. Sincen = 2, the multi-indexi; can take the valuef0, 1, 2},
with correspondingy;, values{1,2,4}. The{l;}7*, in eachay, vector must sum ta = 2, so the entries
in eachay, will consist of all 1s except for either the single value 4 qadr of 2s. There are = (5) = 6
combinations oB-vectors with these nonzero coefficients:

a;=[4117, ay=[141", az=[14]"
a,=1[221]7, as=[212]", ag=[122].

These coefficients can be interpreted eitherSaweightsa, ; to be employed in (19) and Figure 1 or as the
combination factors in (22) that generate six differenéfgtfor use in Figure 2. In either case, a complete
NST results. In Section 5, we consider a cubic example with 3.
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Since Theorem 2 generatag vectors with no zero entries, eafhfilter will have m “bumps.” Larger
values of thep parameter, however, lead to a simple interpretation of{¢. For example, choosing
p = 10 in them = 3, n = 2 construction above yields

a;=[100 1 1T, ay=[1100 1)7, az=[1 1 100]7
a;=[10 10 1T, az=[10 1 10]", ag=[1 10 10].

Thus, thef; channel in Figure 2 will create a quadratic interaction leetvthe signal component lying
primarily in theb, direction and itself, while th& channel will create a quadratic interaction between signal
components lying primarily thb; andb,, directions. This reasoning cannot be carried on ad infiniginte

in the limit asp — oo, a numerically ill-conditioned system results. It couldabe tempting to simply
subtract 1 from each weight vector above; however, thigogstan important symmetry condition used to
prove Theorem 2.

For quadratic summing node NSTrs £ 2), we have a very simple alternative construction that tlear
reveals the underlying dynamical interaction. In this ¢argdion, each filtef, equals either a single basis
vector or a combination two basis vectors, and the squargalibof each filter generates all necessary
coupling between different basis elements. The followegptt is proved in Appendix B.

Theorem 3 Setn = 2 and form the collection aV = (™) lengthsn vectors{a, }1_, according to

{ak};cVZI = {h/la v an]T : ZIY’L < 27 Yi € {0’ 1}} . (26)

i=1
(Eachay, is anm-vector with entries of or 0, and each has at mogton-zero entries.) Then, wita } Y,
employed in(19) or (22), the condition(24) holds, and the corresponding second-order summing node NST
is complete.

To complete our study of the summing node NST, we provideectizonstruction of a complete set of
filters {f}, }2_, that bypasses the choice of baiis }. Interestingly, randomly generating the filteis }2_,
produces a complete summing node NST. For the proof, seendipp€.

Theorem 4 Let{f;}1_, be a collection ofV = (™*7~1) independent and identically distributed observa-
tions from anR™—valued probability density. Then, with probability o24) holds and the corresponding
summing node NST is complete.

Finally, note that the above constructions for the filtffis}_, do not depend on the signal length
Hence, these constructions can be extended to separalileuowrs-time spaces.

3.4 Relating the product and summing node structures

It should be noted that the summing node transformatiorffisrdint from the product node transformation.
While both transformations are complete, under the camitistated previously in this Section, the non-
linear signal coefficient8 are, in general, different for the two structures. Howetleg, coefficients of the
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two structures can be related by a simple linear transfoomatFormF7 = [fl(”), e ,f](\?)] and letPT
be a matrix whose columns are the= (m*7-1) tensors{S( i1 b,-].) 1< <...<q, < m} The
summing node nonlinear signal coefficients are given by

Osum = Fx(n)’ (27)
while the product node coefficients are given by
Oproa = Px™. (28)

Since both of these representations are complete, the Mtemmse pseudoinverses B{ and P! exist
and satisfyx(™) = Ft Oz = PT 0r0q. Thus, the vectorg,m, andé,,.q are related by

eprod = PFT esuma (29)

Osum = FPT eprod- (30)

One advantage of the product node structure is that it pesdan orthogonal transformation in the
symmetric tensor space, whereas the summing node traraformis never orthogonal. While the product
node structure may provide a more efficient representati@summing node structure has a much simpler
and elegant implementation in terms of a redundant filtekb&mSection 5, we will see that this is useful
in certain problems.

4 NSTsin the Wavelet Domain

4.1 Choice of NST Basis
The previous Section has shown that complete NSTs can beaddriom any orthonormal signal basis

B = {b;}]L,. For example B may be a delta, Fourier, or wavelet basis [7]. Figure 3 ithtss the
relationships and differences between these three diffeteices.

Classical approaches to nonlinear signal processing atgsismare based in the time or Fourier domain.
However, in this section we argue that there are significduamatages to wavelet-based methods. Heuris-
tically speaking, one expects that wavelet-based appesagtay provide more robust tools for nonlinear
signal processing. This expectation is partly based on gibkvown compression and regularity properties
of the wavelet transform [26]. Furthermore, as illustrateBigure 3, the wavelet transform provides a joint
time-frequency signal analysis, providing added flexipiin comparison to strictly time or frequency based
approaches. Unfortunately, it is difficult to quantify bétseof wavelets in a discrete-time setting.

In order to assess the potential advantages of wavelettresdinear signal processing, we will com-
pare the characteristics of NST designed with time, frequeand wavelet bases in continuous-time
(infinite-dimensional) signal spaces. In this setting, vk show that the wavelet basis offers significant
advantages over the classical signal bases for nonlingaalsprocessing. It can be inferred that these
advantages carry over into high sample rate discrete-tignalsspaces.
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Delta basis

TIME FREQUENCY

Fourier basis

|

TIME FREQUENCY
Wavelet basis

wff T T~

TIME FREQUENCY

Figure 3: Comparison of different baséb;} for nonlinear signal processing. The choice of basis employed in the
linear front end of the NST of Figure 1 determines in which domain weesepnt signal interactions. Consider a
second-order NST, which generates squﬁl}eand cross-products; 3; of the signal coefficients. We illustrate two
basis elements; andb; from three different bases, in both the time domain and the frequequagi@d magnitude)
domain. In the delta basis, eabh is a unit pulse, s@; is simply a sample of the signal. The corresponding NST
represents coupling between different time lags of the signal. In thedfdiasis, each; is a sinusoid, s@; is a
Fourier coefficient of the signal. The corresponding NST representsiatirations between different frequencies.
In the wavelet basis, eat¥] is localized in both time and frequency simultaneouslyj,smeasures the time-frequency
content of the signal. The corresponding NST represents coupling betivtzant localized wavelet atoms.
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4.2 The wavelet transform

Thewavelet transfornis an atomic decomposition that represents a real-valuetincmus-time signat ()
in terms of shifted and dilated versions of a prototype basdwavelet functiogy(¢) and lowpass scaling
function ¢(t) [7, 16]. For special choices of the wavelet and scaling fon¢the atoms

viat) £ 297927t —k),  jkeZ j<J (31)

dur(t) = 277 g(27t k) (32)

form an orthonormal basis, and we have the signal repragan{a, 16]

J
o(t) = Y updsp(t) + D D wiptik(t), (33)
k j=—00 k
with wjx = [2(t);,(t)dt andug = [z(t) psx(t) dt. Thewavelet coefficient§w;;} andscaling
coefficients{u, } comprise the wavelet transform. For a wavelet centeredreg fiero and frequencyp,
wj,;, measures the content of the signal around the fifdeand frequency2 7 f, (equivalently, scalg).
Wavelet transforms of sampled signals can be computedneelyeefficiently using multirate filter bank
structures [7, 16].

Recently, it has been shown that noise removal, compresaimh signal recovery methods based on
wavelet coefficient shrinkage or wavelet series truncagiojoy asymptotic minimax performance charac-
teristics and, moreover, do not introduce excessive atsifa the signal reconstruction [10]. The explanation
for this exceptional performance lies in the fact that wavbhses aranconditional basefr many signal
spaces.

A basis{z;} for a Banach spac# is unconditional if there exists a constat< oo such that

L L
> eiciz > eiciz
=1 =1

for every finite set of coefficientsc;, ..., ¢z} and every set of multiplier§e;, . .., er,} of £1. The notion
of unconditionality is important inransform domainsignal processing for the following reason. If we

<C ; (34)

X

X

represent a signat € X in terms of the basi§z;}, i.e.,z = Y, ¢z, then one can perform transform
domain processing by applying attenuation coefficiénts} to the coefficientdc; }:

T = Z (m; ¢;) 2, |m;| < 1. (35)
i
If the basis is unconditional for the spa&e then, using (34), for any set of attenuation coefficiengsrbrm
of the processed signalcan be bounded in terms of the norm of the original signal

I1Zl|lx < Cllz|lx- (36)

The unconditional nature of the wavelet basis is crucial awelet-domain processing, because it guar-
antees that the norm of the processed signal will not “blotwupen wavelet coefficients are discarded or
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reduced in magnitude. Because the wavelet basis is an uitiooati basis for many signal spaces, includ-
ing the L, Sobolev, Bounded Variation, Besov, and Triebel spacef {8 guarantee holds under a wide
variety of different signal norms. (The same guarantee doé$old for the Fourier basis, for example.)
Obviously, this result has significant implications forrsdjprocessing.

The attractive properties of the continuous-time wavetatidcarry over to high-dimensional sampled
signal spaces as well. Even though all bases for finite-dsineal signal spaces are unconditional, including
Fourier and wavelet bases, and all finite-dimensional nema£quivalent, the constants that relate different
finite-dimensional norms are extremely dependent on themwsion. These constants can, in general, grow
in an unwieldy manner as we move to higher and higher sampds dimensions). The fact that the
underlying infinite-dimensional basis is unconditionatiis how large the constants grow and consequently
guarantees that practical, finite-dimensional waveletaomprocessing algorithms will be well behaved
under a wide variety of performance measures (all finiteesigonal, norms,1 < p < oo, for example).

As mentioned above, wavelets form unconditional basesdarease variety of signal spaces. However,
for NSTs, tensor spaces are the natural framework to cansitience, we wish to establish the uncondi-
tionality of tensor product wavelet bases. Using the thedgnsor norms and a result from the theory of
Gordon-Lewis spaces, we will show that the tensor produ@nofinconditional basis is again an uncon-
ditional basis for a tensor space equipped with an appttepfia norm. This result proves that the tensor
product of a wavelet basis is an unconditional basis for ntangor spaces of interest. Hence, wavelet-
based NSTs inherit the remarkable properties associatibdwaivelet domain processing. To the authors’
knowledge, this is a new result.

It should be noted that the tensor wavelet basis is quitergifit from the multidimensional wavelet
basis obtained via multiresolution analysis [7, 14, 16].illlestrate the differences, consider the case for
functionsz(t;, t2) of two dimensions. Given a one-dimensional wavelet bésig; (t) }x U {¢; k() } i<k
the two-dimensional tensor wavelet basis consists of mtsdef all possible pairs of wavelets and scaling
functions:

Biewor = ({$sp(t) b Uin(t)}jcar) © ({60m(t2)he ULeinlt2)}j<an) (37)

{1y (t1) Brkes (B2) Yy ey U ( U %50 (t1)¢J,k2(t2)}k1,k2>

J1<J

U( U {¢J,k1(t1)wjz,k2(t2)}k1,kz> U ( U {’(/)jl,kl(tl)¢j2,k2(t2)}k1,k2)- (38)

J2<J J1,j2<J
The tensor basis contains, for example, elements meastwgnge scale (low frequency) information in
one direction and fine scale (high frequency) informatiorth@ other. To compute the tensor wavelet
expansion of a multidimensional function, we simply operah each coordinate axis separately using a
one-dimensional wavelet transform. Neumann and von Saaws $hown that tensor wavelet bases are
natural for multidimensional signal estimation applioas in signal spaces having differing degrees of
smoothness in different directions [18]. In contrast, atiragolution wavelet basis consists of products of
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(a) (b)

Figure 4: Graphical depiction of the elements of the two-dimensional multiréiesiand tensor wavelet bases. The
aspect ratios of the tiles correspond roughly to the size of the “regibsupport” of the basis elements. (a) The
multiresolution wavelet basis consists only of products of paivgaMelets and scaling functions from the same scale;
hence all tiles have the same aspect ratio. (b) The tensor wavelet basstsongiroducts of pairs of wavelets and
scaling functions from all possible scales; hence many different aspedt ragiolt. (Strictly speaking, these mosaics
illustrate the organization of ttmoefficientsobtained upon expanding onto these bases. Nevertheless, there is a direct
correspondence between the size of a coefficient tile and the size of tha tégapport of the associated basis
elements: Basis functions broad in one direction result in fewer expagsiefficients in that direction and hence a
narrower tile.)

all possible pairs of wavelet and scaling functi@she same scale:

Bruti = {07k (t1) Gk (82) F o o

U U {05k (81) bk (t2)s bk (1) Wby (B2) s ks (1) Vjiks (82) Y, - (39)

Y

In Figure 4 we illustrate the differences between theseshaiaphically.

4.3 Unconditional bases forL, tensor spaces

Let {z;} be a basis fol,(T), with T C IR. It follows from the classical result of Gelbaum and Gil de
Lamadrid [13] that the tensor basjs; ® z;} is a basis for the tensor spa€g(T) ®a, L,(T), with A,
the natural norm. However, this does not guarantee thatetimeot product of an unconditional basis is
an unconditional basis for the tensor space. We now showtligis indeed the case. (We will work
only with second-order tensor spaces for notational caawer; the extension te-th order tensor spaces
Ly(T) ®4a, --- ®a, Ly(T) is straightforward.)

First we state a result due to Pisier [24]. Détand Z be Banach spaces with unconditional bagg$
and{z;} respectively. Letx be a norm on the tensor spa¥ex Z such that given any two linear operators
U:Y—YandV : Z — Z, the tensor produd/ ® V is a bounded linear operator gh® Z equipped
with normc. If this condition holds, them is called auniform norm Let) ®, Z denote the completion of
Y ® Z with respect tax.

Theorem 5 [24] Let{y;} and{z;} be unconditional bases for the Banach spayesnd Z, respectively.

Leta be a uniform norm for the tensor spager,, Z. Then{y; ® z;} is an unconditional basis fQ¥ ®, Z
if and only ifY ®, Z is a Gordon-Lewis (GL) space.
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Before we can apply this result 1g,(T) ®a, L,(T), we must ensure tha,, is a uniform tensor nown.
To this end, we employ a result due to Beckner.

Theorem 6 [3] LetU ® V be a linear mapping fromL,(T) ®a, Lq(T)] to [Ly(T) ®a, Lp(T)]. If
1<g<p<oo then|Ug V] =|Ul[V].

It remains only to verify thal,(T) ®a, L,(T) is a GL space. For our purposes it suffices to note the
following [9]:
L,(T x T)isaGL space, fot < p < oo. (40)

SincelLy(R) ®a, Ly(R) is isometric toL,(R x IR), it follows thatL,(T) ®a, L,(T) is also a GL space.
Combining these results, we have shown the following:

Theorem 7 Let{z;} be an unconditional basis fdi,(T), 1 < p < co. Then{z; ® z;} is an unconditional
basis forL,(T) ®a, Ly(T).

We have excluded the cage= 1, sinceL;(T) does not admit unconditional bases [16]. However,
more can be said for the subspacelefT) having unconditional wavelet expansions — the Hardy space
Hy(T). It follows easily from Theorem 7 that the tensor product ofusmconditional basis fof(T) is
an unconditional basis for the product spa€gT x T). This fact is well-known [16]. (Also, recall that
H,(T) = L,(T), 1 < p < o0). There are many other tensor spaces of interest, inclugingpr spaces
constructed from Sobolev, Besov, and Triebel spaces. @gguork is aimed at assessing the performance
of tensor wavelet bases in such spaces.

5 Applications

In this section, we study three applications of NSTs. Weifiksstigate NST-based estimation of correlation
functions using the product node architecture and the walelsis. Wavelet domain representations of
higher-order correlations can be much more efficient thamiBoor time domain representations. In the
second application, we demonstrate that the summing nodeitN&pable of realizing arbitrary Volterra
filters. Finally, we examine the potential of truncated wetexpansions for nonlinear system identification.

5.1 Correlation analysis
The product node NST is well-suited for correlation and bigbrder statistical analysis. Theth order
correlation of a random vectarare given by I%_x(")] [2]. If x is zero-mean, then the second-order correla-

tion E[x@)] is simply a vectorized version of the covariance matrixpfvhile the third-order correlation

E[x(3)] is a vectorized version of the third-order cumulankof

It is often advantageous to study the higher-order signaktadions in domains other than time. For
example, then-th order spectrum results from applying the Fourier tramaf denoted by, to x and
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(a) (b)

Figure 5: Data from an acoustic emission experiment. (a) Emission from a typie&l ¢b) Overlay of data from
twenty trials.

computing E[(Fx)(”)]. Then-th order spectrum measuredold correlations between different sinusoidal
components of the signal.

If W denotes the wavelet transform, thevﬁ(Wx)(")] represents the-th order correlations in the
wavelet domain. Because wavelets better match many reddhsignals, wavelet domain representations
of higher order correlations can be much more efficient — eotrating the dominant correlations in fewer
coefficients — than Fourier or time domain representatidiss claim is supported by the fact that tensor
products of wavelet bases provide unconditional bases feida variety of tensor spaces (as shown in
Section 4.3).

Now let us examine the product node NST. Betlenote the orthonormal basis used in the first stage of
the structure. The outp@ of the product node transformation of a random vegtq@roduces all possible
n-th order interactions of this vector in td domain. If follows that the expected value of the nonlinear
signal coefficient® produces the:-th order correlations of the processn the B domain. In fact, E9]
contains every unique correlation ir{(IBx)(")].

Now suppose we are givell > 1 independent and identically distributed (iid) vector oliaéons
x1,...,Xp. We wish to estimate the-th order correlations of the underlying process. We camese
these correlations in thB domain by computing the product node NST of each observdijonx; — 0;
and then averaging the resulting nonlinear signal coeffisieVe estimate [B] by ﬁ Ej]‘/il 0;.

We have applied this technique to the problem of acoustisgomn signal processing, which is compli-
cated by the complex emission patterns generated by iagties$ in the acoustic medium. Such problems
arise, for example, in laser optoacoustic tomography faceadiagnostics. Correlation analyses can aid
in illuminating the nature of optoacoustic irregularitisshuman organs, such as the breast [22]. In the
following experiment,M = 20 independent acoustic emission trials were performed irsénee medium.
Emission data for the trials is plotted in Figure 5.

We computed the second-order correlations=f 2) of this data using product node NSTs based in
the time, frequency, and wavelet domains. The DaubechigaM@let basis was used in this study [7].
Histograms of the correlation magnitudes were computeceémh case and are shown in Figure 6. To
guantitatively assess the efficiency of the time, frequeanyg wavelet domain representations, the entropy
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Figure 6: Histograms of the second-order€ 2) correlations of the acoustic emission signals from Figure 5 in three
different basis representations. (a) Histogram of time-domain cornelatagnitude, entropyl = 6.44. (b) His-
togram of frequency-domain correlation magnitude, entiddpy 2.39. (c) Histogram of wavelet-domain correlation,
entropyH = 1.82. To better illustrate both the peakiness and rapid decay of the waveletialoorrelation, we plot
only the first few bins of the histograms on a logarithmic verticals.

of each histogram was computed. The wavelet-domain hetodras a much lower entropy than the time-
and frequency-domain histograms, which indicates thawtheelet-domain analysis is more efficient at
representing the second-order correlations of the aaoastission data. Hence, this experiment corrobo-
rates theoretical results showing that unconditional ase optimal for signal compression [10]. Efficient
wavelet-based representations can provide more robustetiatle estimates of the higher-order statistics
and could provide better insight into the complicated niatignary correlation structure of the data.

5.2 \olterra filtering

In this Section, we consider Volterra filter realizationsdhon the NST. We show that a completth order
NST is capable of realizing evenyth order Volterra filter. In particular, the summing nodansformation
leads to an elegant filter bank representation.

The output of a homogeneousth order \olterra filter applied to a signal= [z1,...,z;,]T is given
by [15]
y = > Riy,...pin Tiy *** Tiy.- (41)

1<i1 <. <tn <m
The filter outputy is simply ann-th order multilinear combination of the samples ..., z,,. The set of
weightsh is called then-th orderVolterra kernel Note that while (41) computes only a single output value
givenm input values, the extension to online processing of infil@tegth signals is straightforward. To
treat the input signat;, we simply set; = [z, ..., z;_m11]?, with m thememory lengttof the filter. The
output of (41) is theny;, a nonlinearly filtered version af;.

Since (41) is identical to the multilinear functional (9)aaring in Definition 1, it follows that every-th
order Volterra filter can be computed as a linear combinaifdhe nonlinear signal coefficiengs= F,, (x).
As shown in Section 3, both the product node and summing nivdetwres are capable of computing a
completen-th order signal transformation. The summing node strecisiparticularly interesting in this
application, because it allows us to represent ewetty order Volterra filter using the simple filter bank of
Figure 7. Key to this scheme is thiiie overcomplete linear transformation, rather than thalivearities,
manage the signal coupling prescribed by the overall Vaitdilter. Therefore, this new representation

17



fn ¢y

Figure 7:\olterra filter realization using a summing node NST.

greatly simplifies the analysis, synthesis, and impleniemtaf Volterra filters!

Volterra filter realizations of this type are often refertechsparallel-cascade realization3]. Previ-
ous work on parallel-cascade designs has relied on congaicaumerical optimizations to construct kernel-
specific sets of linear filters and, hence, each distincevdtfilter requires its own unique parallel-cascade
realization [5, 23]. In contrast, the summing node NST cgmasent every.-th order Volterra filter simply
by adjusting the output weightsy; }¥_,. The linear filters(fy }1_; of the summing node structure remain
the same for every Volterra kernel. Hence, the summing ntvdetare is auniversal structurdor homoge-
neous \olterra filtering. Nonhomogeneous Volterra filtens also be implemented with the summing node
structure by following each linear filter with anth degree polynomial nonlinearity instead of the homo-
geneousn-th order monomial. Moreover, if the Volterra kernelis low-rank, then it can be represented
exactly with a smaller subset  m) of orthonormal basis vectors [21]. Therefore, low-rankteyns can
be implemented with a far smaller filter bafik.

The weights{ay} corresponding to a specific Volterra filter with kerietan be computed by solving
a system of linear equations. Lktbe a vectorized version @f ordered to correspond to the Kronecker
product in (11). According to (23), the Volterra kernel gexted by the summing node NST is given by
Ny, akf,gn). Therefore, to represent the Volterra filter with kerhelve chose the weight§ay } so that
Z}f:l akf,g") = h. The proper weights are readily obtained by solving thisesysof linear equations.

As an example, consider the implementation of a homogenéadsorder ¢ = 3) Volterra filter using
the summing node NST. L& = {b;}7", be an orthonormal basis f&R™. For exampleB could be
the delta, Fourier, or wavelet basis. We design the filfgrs. ., fy, N = (m;{?), for the summing node
transformation using the construction of Theorem 2. Refgrio the Theorem, we take = 2 and hence
Y = 1,71 = 2,79 = 4,v3 = 8. Eachfilterf,, k = 1,..., N, is a linear combination of the basis vectors:
f;, = Bay, with a;, a vector with elements in the sgt, 2,4, 8}. Eachay, consists of all 1s except for either
asingles, a 2 paired with a 4, or three 2s. Raising the output of eadhr fitthe third power generates third-
order interactions between the different distinct compismef the input signal represented by the basis

1The canonical representation of the Volterra filter (41)fisimited utility, due to the inherent difficulty in interptiag the
multidimensional kerneb (particularly whemn > 2).

2Using thetensor product basis approximatioa the low-rank kernel [21], we can represent the kerneléixadth a filter bank
consisting of"*7 1) < N filters, withr < m the rank of the kerneht. This is particularly useful if the kernel is known to saisf
certain constraints (for example, smoothness, bandiinéss).
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vectors. Taken together, these filters collaborate to gémet! possible third-order nonlinear interactions of
the signal.

Different types of interactions are produced dependingherchoice of basis. The delta basis produces
interactions between different time samples of the sigii&le Fourier basis yields frequency intermodu-
lations, whereas the wavelet basis produces interactietvgelen wavelet atoms localized in both time and
frequency. The fact that wavelet tensor bases are unconditbases for many tensor spaces suggests that
wavelets may provide a more parsimonious representatidvofterra filters than time- or frequency-domain
representations.

5.3 Nonlinear System Identification
One common application of Volterra filters is nonlinear systidentification [12, 15, 21]. To illustrate the

use of the tensor wavelet basis in this context, considefottmving problem. Assume that we observe the
input and output of a nonlinear system defined by the bilioparator

y(t) = /t bt ta) alt = t) alt — ta) dt deo (42)

This type of quadratic nonlinearity arises in the analysesualio loudspeakers, for example [12]. We assume
that both the input and output signals are sampled, reguitiithe following discrete-time Volterra system

m
Ye = Y hijTp i Th ;. (43)
ij=1
The discretized kernél; ; can be estimated from the input and output samples usinglatan techniques.
However, in real applications only a finite number of samplesavailable and often additive noise is present
in the observations. Consequently, the kernel estimatiesnaldl from short data records are “noisy”.

Noise can be removed from a kernel estimate by processingstiraate in the Fourier or wavelet do-
main. Because the Fourier and wavelet bases often providacse representation of the kernel, in many
cases the separation of the true kernel from the noise caarbedout very easily in these domains. Specif-
ically, the noise in a “raw” kernel estimate can be removedrbgcating a Fourier or wavelet expansion of
the estimate. In the following example, we will show that el@-domain noise removal can outperform
Fourier-domain processing.

To illustrate this point, we simulate the identification b&tnonlinear system (43) with the quadratic
kernel h depicted in Figure 8(a). This kernel was obtained from datusasurements on an audio loud-
speaker [12]. In our simulation, we treat this kernel as arkfiwwn” model we wish to identify. Using an
iid zero-mean, unit-variance Gaussian input sequante“probe” the system, we computed the outputs
according to (43) (with no additive observation noise). dtak, we generated000 input and output mea-
surements and, from these two sequences, identified thelkesimg the following correlation estimator.
Note that

2hii+ > P s i=7

E[YX; X;] = { 2 it (44)
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Letting s; ; denote the sample average estimate ¢f K; X;], we have the following estimator for the
\olterra kernet
~ 5\8ii — — s , 1=
hij = { 3( i V) ! (45)
3 Si,5) P F J.

While the simple correlation estimator (45) converges ®ttine kernel, with only a finite number of
data the resulting estimate is typically very noisy due ®\hriability of the sample correlation estimator
about the true correlation values. A simple noise removatgulure is based on expanding this “raw” kernel
estimate in an orthonormal basis and then discarding thé smas of this expansion (which presumably
correspond to noise and not signal). L{e@} denote the coefficients of the raw estimatén the basis

expansion. Then the coefficienﬁgl} of the truncated series kernel estimatean be expressed in terms of
a hard threshold applied to the coefficielﬁl%}

b, ‘51 ‘ >T
(46)

0, ‘ gl ‘ <,
with 7 the threshold level. Many choices for the threshold valeepassible; usually is chosen based on
some estimate of the noise level in the data. The better ®is taatches” the true kernel, the more efficient
this procedure will be at noise removal. In our experimerd,axpanded the raw estimate in the wavelet
and Fourier tensor bases and then discarded the terms irghastons whose coefficient magnitudes fell
below the threshold value = /2 log(m?) o, with o the standard deviation of the noise ané = 1024 the
dimension of the discretized kernel. This threshold chi@siggested in [11] as a probabilistic upper bound
on the noise level. In practice, must be estimated from the raw kernel estintatélowever, since we had
access to the true kernel in this simulation, we computetirectly from the difference between the true
kernel and the raw estimate. Figure 8(c) and (d) show thmasts that result from hard thresholding in the
wavelet domain and Fourier domain, respectively. Wauedeted truncation provides a much better kernel
estimate than both the original raw estimate (b) and thecated Fourier expansion estimate (d). In fact,
the Fourier-based method oversmooths the estimate anltsresa worse mean-squared-error (MSE) than
that of the original raw estimate. This simulation demaatss the utility of wavelet-based representations
for the analysis of real-world nonlinear systems.

6 Conclusions

In this paper, we have developed two new structures for ctimpuw-th order NSTs. The product and

summing node NSTSs, while simple, can represent-dh order nonlinear signal interactions. Both transfor-
mations have an elegant interpretation in terms of tensaaresp The product node NST yields an orthogonal
transformation in the tensor space, and thus it is espgei@lll-suited to estimation problems. The summing

3The estimatof is derived as follows. Let;; = E[Y X7]. Settingu i = 2 hii + Y, hxx and re-arranging givesh; ; =
pii — », bk Summing over produce2 )" hi; = D pii —my_, hi and henceml—+2 > mii =y hii. Asimple
substitution then yields; ; = (u - m;+2 > uk,k) /2. The estimatoﬁi,i is obtained by substituting the sample cross-moments
si,; for the true momentg; ;. The estimatoh; ;, ¢ # j, is obtained in a similar fashion.
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Figure 8: Nonlinear system identification using tensor bases. Estimates of theatigadblterra kernel of an audio
loudspeaker obtained using thresholding in a tensor basis expar(gpiirue kerneh [12]. (b) Raw estimaté
obtained using45), MSE=0.20. (c) Estimatk obtained through a truncated Daubechies-8 wavelet expansiAQn of
MSE=0.15. (d) Estimaté obtained through truncated Fourier expansiori],oMSEzOAO. The wavelet estimator
provides a more faithful estimate than the Fourier estimator, whiehsowooths.
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node NST results in a redundant filter bank structure nabotd for analyzing and interpreting nonlinear
interactions and for designing efficient implementatiddet only does the summing node architecture sug-
gest new, efficient algorithms for nonlinear processinglsit decouples the processing into linear dynamics
and static nonlinearities. Hence, this new framework fallim@ar analysis and processing may provide new
insights into the inner workings of nonlinear systems.

NSTs are not constrained to a fixed choice of basis. Howewehave shown that wavelet bases provide
an optimal framework for NSTs in the sense that wavelet telbpases are unconditional for many important
tensor spaces. Because the wavelet basis provides a maisempresentation of many real-world signals,
more robust estimates of higher-order moments/cumutpestra and \olterra kernels may be obtained via
the wavelet representation as compared to time- or frequéoimain approaches.

Finally, we have focused on the classi€gltensor spaces in our theoretical analysis of wavelet-domai
nonlinear processing. However, new results in the stadilsiterature suggest that more general spaces such
as Besov and Triebel spaces are extremely useful for cleaiany real-world signals [10]. Therefore, an
important avenue for future work will be to extend the result this paper to these more general settings,
possibly using the results of [27]. Another issue currenthgler investigation is the relationship between
polynomial-based processing (higher-order statistiofig¥a filters) and other important types of nonlinear
processing that use sigmoidal (neural networks), thresfwdvelet shrinkage) [10], or weighted highpass
nonlinearities [20]. The results of this paper could sewsra Bnk between these important areas of nonlinear
signal processing.

A Proof of Theorem 2

To prove the Theorem, we must show that the{$‘@]s,c]\’:1 generated by (22) and (25) satisfies (24). That is,
we must show that the tenso{f,g")} span the symmetric tensor spa£®(IR™). Recall that each filtef;
has the form

m
fk‘ = Za]’,k bj, (47)
j=1
with a;, = a1 4, - - -, amk]T . Now consider
- (n)
5 = ( > aj,kbj)
7j=1
= > Qi k- Qi Dy ® - @by, (48)

1<i1<..<in<m

With © denoting the set of permutations of the §g&t...,n}, we can write

f]gn) = Z Qiy k0 Qg K ( Z biu(l) X biw(n)) . (49)

1<i1 <. <in<m weN

According to Theorem 2.6 in [28], the collection of tensors

{Zbiwu)@“'@biw(n) :1§i1§..-§inﬁm} )
wEN



is a basis foiS™ (R™). Let{sg}~_;, N = (™*7~1), denote these basis vectors, andSset [si,...,s,]”.
Then, from (49), we can write

£ = Suy, (51)
with u; anN x 1 column vector containing all degreemonomials in thex g, . . . , an, , COefficients. Next,
define

F = [fl(”),...,f,gm] = SU, (52)
with U = [uy,...,u,]. U is ann x n matrix and, sinceS is a basis forS™(IR™), it follows that

span{£™1" = sn(R™) if and only if U is invertibl
pan{k }k:I_S (R™) if and only if U is invertible.

The remainder of the proof shows that the invertibilityldiis guaranteed if the Vandermonde matrix

1
v-|. " n (53)
S

is invertible.

First, we show thatl = QT'V (™) Q, with Q a full rank matrix defined as follows. Consider the weights

aik,---,amk. FOrmavector of products of these weights using the Kromepkoduct:
1 1 1
aik a2k Am,k
2 2 2
G = | Yk || %k | @---® | Ymp | . (54)
a?,k ag,k a?n,k)

Note that every monomial iy, is included in the vectat;,. Define the matrxQ as the ma®?” : q;, — uy.
Note thatQ is full rank and does not depend én

Now considerV{™), the m-fold tensor product of the Vandermonde matkx Each row of V(™)
corresponds to a particular monomial formﬁl,,fc e aﬁ,";,k, for example). Each column &f(™) corresponds
to a particular set of weight$,, . .., v,.]7 = a; from (25), for example). Now consid@” V(™ Q. The
action of QT on the left extracts the rows &f(™) corresponding to degreemonomials. ApplyingQ on
the right extracts the columns ®(™) corresponding to the specific weights in tNevectors defined in (25).
Therefore,U = QT'V(™ Q. The special construction of the vectdesy, }_; in (25) should now be clear:
The valuesa, = [v,,,---,v,,] correspond to the powers in one of the mononﬂé‘!g .- aﬁ;’;k, and hence
by applyingQ to both sides oV (™) we select the:-th order monomials with the values corresponding to
the weights in the vectorgay ;.

We now claim that taking, = p",r = 0,...,n, |p| # 1, p # 0, in (53) implies thafU is invertible.
Note that with this choicd/ is real-symmetric and invertible. It follows th& (™) is also real-symmetric
and invertible. Therefore, sind® has full rank,U = QTV(™Q is also real-symmetric and invertitfe.
This completes the proof. O

4If U is not invertible, then there exists a vectosuch thatx” Ux = 0. This implies the existence of = Qx such that
yTv{™y = 0 and henc&/ ™ has a zero eigenvalue, contradicting the assumptiorMi¥at is invertible.
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B Proof of Theorem 3
@V
We must show that Spa{rfk }k

L= S?(IR™). Following the proof of Theorem 2, we have

£ = Su, (55)
with u;, anN x 1 column vector containing all degreenonomials in the elements af = [a1 4, . . . , am,k]T
and

[ff”, ... ,f}?] = SU, (56)

with U = [uy, ..., uy]. It follows that Spar{f,gm}:]_1 = S§2(R™) if and only if U is invertible.

To show thafU ! exists in this case, let us take a closer look at the columrs.oRecall that each
column ofU is denoted byi;, and is generated by computing all cross-products betweeeléiments o4y,
(Eachay, is anm-vector with entries ol or 0, and each has at mdainon-zero entries). Consider first the
columnsuy, that correspond tay, vectors with a single non-zero entry. These columns alstagoa single
non-zero entry. For example,df , = 1 anda;; = 0 (i # 7), thenu, has a single non-zero entry in the
position corresponding to the monomaﬁ,l,c = 1. There are a total af such columns, each with a single
1 in a unique location corresponding to such an product. Glghese columns are linearly independent of
one another, as each has a single non-zero entry in a diffieeation. Now consider the columns, that
correspond tay, vectors with a two non-zero entries.df » = 1, a;, x, = 1, anda; ;, = 0 (j # i1, i2), then
the columnuy, has non-zero entries in the location corresponding thesgoomducta;, i a;, . Note that
since no othes; (I # k) will have non-zero values in both thie andi, position, the corresponding; will
be zero in the associated cross-product location. Therefdini, are linearly independent. This completes
the proof. O

One might wonder whether this construction using binarygivsi can be extended to higher orders
n > 2. Unfortunately, the answer is negative. As we move to higinders, we require more diversity in
the weights used to form the linear filtef§; }. Hence, we require a more complicated construction such as
that of Theorem 2.

C Proof of Theorem 4
Recall that the summing node decomposition is completedfanly if for everyh € S™(IR™) there exist

{a}Y, such that

N
h= 3 ot (57)
k=1

Here, h is symmetric and hence contains repeated elements. Alstyrsesuch af,ﬁ”) contain repeated

products. To avoid such redundancies, define the vebi@sd {f,ﬁ")} from which repeated elements in

the original vectordh and{f,g")} have been discarded. For examples i 2 andfy, = [f1, f»]7, then both
fif2 andfy f1 occur inf,g2). In this casef,g2) = [f%, f1f2, f3]T. In general, for nonlinear orderand signal
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lengthm, the vectorsh and f,ﬁ") each contain exactlyv = (™*7~1) elements. With this notation in
place, (57) can be rewritten as

N —
h= Y ot (58)
k=1
To guarantee that the summing node structure can repregent le € S™(IR™), we must have that
— N
Span{f,g")} = R".
k=1

To determine a set of spanning vectors, consider the fatigwirgument. Suppose that we randomly
choose the vectorffy } as independent realizations from a common probabilityritigion. Furthermore,
assume that this distribution has a density (that is, theilolision is absolutely continuous with respect

— N
to Lebesgue measure dR™). Then Spar{f,ﬁ")} — IRY with probability one. This follows from
k=1

the following result regarding the invertibility of the-th order moment matrix of alR™—valued random
vectors.

—~ —T
Lemma 1 [19] If f is anR™—-valued random vector having a density, tVEa[rf(") f(n) ] is invertible.

To see how this result relates to the problem at hand let [fl(”), e ,f](\?)], and note that the matrix
FFT can be viewed as the sampleth order moment matrix of the density fofy, }&_,. Theorem 1 implies
that the sample moment mati7 is invertible with probability one if the number of samplesgireater

—~\N
thanN (see Remark 5.2 in [19]). This in turn implies tiis full rank and that Spa{uf,g")} =RN. O
k=1
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FIGURE CAPTIONS:

Figure 1: Nonlinear signal transformation (NSH;) : x — 6. The front end processing (projection
onto the basigb;}) is linear; the back end processing @®yrom (1) or (2)) is nonlinear.

Figure 2: Filter bank realization of the summing node NSTcBynbining the basis vectors as in (21),
we can decompose an arbitrary summing node NST into a parafieade of a redundant set of linear filters
{£.}1¥_,, each followed by a simple monomial nonlinearty”.

Figure 3: Comparison of different basgbs;} for nonlinear signal processing. The choice of basis
employed in the linear front end of the NST of Figure 1 deteesiin which domain we represent signal
interactions. Consider a second-order NST, which gemarsﬂearesﬁ? and cross-products; 3; of the
signal coefficients. We illustrate two basis elemdnigndb; from three different bases, in both the time
domain and the frequency (squared magnitude) domain. Idetia basis, each; is a unit pulse, sg@;
is simply a sample of the signal. The corresponding NST sgmis coupling between different time lags
of the signal. In the Fourier basis, eabhis a sinusoid, s@; is a Fourier coefficient of the signal. The
corresponding NST represents intermodulations betwdéreatit frequencies. In the wavelet basis, each
b, is localized in both time and frequency simultaneouslygsmeasures the time-frequency content of the
signal. The corresponding NST represents coupling betdifement localized wavelet atoms.

Figure 4:  Graphical depiction of the elements of the twosligional multiresolution and tensor
wavelet bases. The aspect ratios of the tiles corresporghiptio the size of the “regions of support”
of the basis elements. (a) The multiresolution waveletsbasnsists only of products of pairs of wavelets
and scaling functions from the same scale; hence all tiles tiee same aspect ratio. (b) The tensor wavelet
basis consists of products of pairs of wavelets and scalingtions from all possible scales; hence many
different aspect ratios result. (Strictly speaking, thesesaics illustrate the organization of tbeefficients
obtained upon expanding onto these bases. Nevertheless,isha direct correspondence between the size
of a coefficient tile and the size of the region of support @ #dssociated basis elements: Basis functions
broad in one direction result in fewer expansion coefficgénthat direction and hence a narrower tile.)

Figure 5: Data from an acoustic emission experiment. (asBiomn from a typical trial. (b) Overlay of
data from twenty trials.

Figure 6: Histograms of the second-order=£ 2) correlations of the acoustic emission signals from
Figure 5 in three different basis representations. (a)agistm of time-domain correlation magnitude, en-
tropy H = 6.44. (b) Histogram of frequency-domain correlation magnitueleropyH = 2.39. (c) His-
togram of wavelet-domain correlation, entroffy= 1.82. To better illustrate both the peakiness and rapid
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decay of the wavelet-domain correlation, we plot only thet fiew bins of the histograms on a logarithmic
vertical scale.

Figure 7: \olterra filter realization using a summing nodeINS

Figure 8: Nonlinear system identification using tensor bagstimates of the quadratic Volterra kernel
of an audio loudspeaker obtained using thresholding insotdpasis expansion. (a) True kerhglL2]. (b)
Raw estimaté: obtained using (45), MSE=0.20. (c) Estimatebtained through a truncated Daubechies-
8 wavelet expansion of, MSE=0.15. (d) Estimaté obtained through truncated Fourier expansion of
ﬁ, MSE=0.40. The wavelet estimator provides a more faithftineate than the Fourier estimator, which
oversmooths.
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