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ABSTRACT
Network topology inference is a topic of ongoing interest,
as researchers continue to try to identify the topology of the
internet, other networks, and our own networks for mainte-
nance purposes. In this paper we explain why a simple al-
gorithm based on network co-occurrence measurements and
a Markov random walk model for routing enables perfect
topology reconstruction, despite the seeming model mismatch
to real network routing. We show that topology measure-
ment and inference based on this model allows detection of
routing bugs, misconfiguration, or even routers that deliber-
ately misreport routing data.

1. INTRODUCTION
Network topology identification has been studied exten-

sively because of a great need for precise topology infor-
mation in networks. In Internet measurement there are two
main approaches: direct measurement using configuration
files, traceroutes, or routing monitors (see Section 2), or in-
direct inference methods using measurements of packet traf-
fic, such as delays and losses of packets [10, 11, 23], or co-
occurences [17, 22]. The direct and indirect approaches are
complementary. Direct approaches are preferred for layer-3
topology measurement, but often cannot see layer-2 topol-
ogy. That issue is being compounded by the increasing
deployment of technologies such as Multi-Protocol Label
Switching (MPLS) that effectively hide the layer-3 topology.
Indirect inference approaches have the potential to see topo-
logical structure that is hidden from direct measurements.
Perhaps most importantly, these methods involve data-path
packets rather than control-plane announcements; thus indi-
rect inference can establish topology from the point of view
of actual traffic and at a time-resolution commensurate with
this traffic. Therefore, these methods have the promise to be
able to rapidly detect problems that are hidden from more
conventional control-plane measurements.

Despite their potential utility, indirect methods have not
been widely utilized in real networks. In this paper we focus
on a newly proposed method for topology inference– Net-
work Inference from Co-Occurrences (NICO) [22]. Many
indirect methods are limited to tree-like networks, and NICO

overcomes this limitation. Additionally, topology identifica-
tion methods often adopt simplifying models that do not nec-
essarily reflect the true behavior of the underlying network.
The NICO inference algorithm is not an exception; it mod-
els packet routing as a Markov random walk on the network
graph. While this modeling assumption facilitates inference,
it is markedly at odds with the deterministic routing strate-
gies used in the vast majority of networks. The surprising
thing is that this model results in exact reconstructions for
shortest-path networks. A key contribution of this paper is
to resolve this apparent contradiction mathematically.

We go further to show that NICO1 will work for any net-
work which uses a nested routing policy, wherein every sub-
route of a chosen route is also a route chosen by the policy.
Shortest-path routing is a nested routing policy. In shortest-
path routing, we know that if a shortest path route which
traverses in order nodes ABCD then the paths AB, BC, CD,
ABC, and BCD are all shortest-path routes as well. Under
certain restrictions, BGP also produces nested routes.

NICO is designed for a particular type of topology iden-
tification problem where the input data are “co-occurences”:
an unordered set of network nodes that were active during
a single communication event. Formally, we define a co-
occurrence or route-set as the set of nodes along a route,
where we omit the sequence or ordering of these nodes. Co-
occurrences would arise from collecting samples of the same
packet at multiple routers without having access to the order
of those routers. These kinds of measurements are also rel-
evant to biological network inference problems [19] and the
reconstruction of sentences from bags-of-words [29].

In the context of the Internet, this problem formulation
is becoming more relevant. Hash-based packet sampling
would allow one to see the same packets as they transit
the network, but without TTLs we cannot see the ordering.
TTLs may be missing in flow level aggregates, or where key
elements of the topology don’t decrement TTLs, as may hap-
pen in layer 2 or MPLS networks.

1It is important to note that in [22], “NICO” refers to an EM algo-
rithm for jointly estimating P and route-set orderings. In this paper
we are using NICO to refer simply to the philosophy of using the
maximum likelihood ordering of a route-set, given the transition
matrix P or an estimate of P , to infer topology.
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NICO uses collections of co-occurrence measurements to
construct the topology of the network. Reconstruction of the
network is perfectusing these data. Even when the Markov
random walk parameters are also estimated from the data,
we demonstrate (Section 5.1) that NICO’s topology estimate
has 0% missing links and typically < 3% false alarm links.

NICO can also be used to debug routing information. For
instance, suppose a router claims that an ordered set of nodes
ABCD is a route. The main result of this paper (Theorem 1)
provides an immediate check whether the route is valid.
Thus NICO could be used with multiple datasources, for in-
stance BGP route announcements and AS-traceroutes [21],
in order to detect prefix hijacking or other such divergences
between data- and control-plane views of routes.

2. BACKGROUND
It is tempting to think that a well organized network oper-

ator will “just know” her network topology. However, much
of the work on topology measurement was pioneered by net-
work operators. In the complex, dynamic IP environment it
is critically important to measure your network.

There are two main streams of research on network topol-
ogy measurements and inference. The first concerns direct
measurements. There are several possible approaches:
• configs: Configuration files control most aspects of a

router, and so contain much information about the IP layer,
and can be used to extract topologies [12, 13, 20]. How-
ever, privileged access is required to obtain such files.

• route monitors: participate in the distributed computa-
tions of routing protocols to information about the network
topology, examples being OSPF [25,26], IS-IS [1,15], and
BGP [2, 3]. These data can provide up to date informa-
tion, but are also limited by the degree of privilege of the
observer and the number of viewpoints available.

• traceroute: is a standard tool for estimating routes through
an IP network [8,9,16,27,28]. Well known problems (non-
atomicity, aliasing, sampling bias, e.g., see [6, 18]) plague
traceroute measurements.

Limitations of the above approaches are that they focus on
the IP layer, and in the first two cases the methods are pred-
icated on correct operation of the network protocols and
routers, which may be what we wish to discover (e.g. two
routing protocol outages that crashed large parts of major
networks for hours are described in [4,5,24]). Moreover, the
control plane and data plane can diverge substantially [7].

2.1 Topology Identification using NICO
Indirect inference techniques don’t use specific IP prop-

erties and thus have access to topological aspects that are
hidden at layer 3. Most importantly, these methods involve
data-path packets rather than control plane measurements;
thus indirect inference can establish topology from the point
of view of actual traffic.

The NICO approach [22] assumes that route-sets arose
from a Markov random walk described by a node-to-node
probability transition matrix P . Thus, the probability of a

particular ordering of nodes is the product of the transition
probabilities for that ordering, times the probability of start-
ing at the initial node.

Using this model, and given a co-occurrence or route-set,
we calculate a likelihood of each of the n! orderings, given
P or an estimate of P . Then for our inferred topology, we in-
sert edges into the graph using the one most likely ordering.
If we repeat this process for many co-occurrence measure-
ments, we will get a more and more complete picture of the
graph.

As we readily acknowledge, no real network manages
packet traffic according to a Markov random walk model.
Yet, we show that the model allows us to correctly infer
topology in shortest-path networks or other networks that
have a nested routing policy. This apparent paradox is part
of the reason NICO is an interesting approach.

3. NOTATION
In this paper we consider a directed graph with no self-

loops which represents a routing network: G = (N , E),
where the nodes of the graph N represent the set switches or
routers in the network, and the edges of the graph E represent
the directed links between the routers in the network. We
write the adjacency matrix of the graph A, where Aij = 1
iff (i, j) ∈ E . We will talk of a network or a graph synony-
mously.

We define a path or route through either graph as a se-
quence of nodes connected by edges. Again we define a
route-set or co-occurrence as the set of nodes along a route,
where we omit the sequence or ordering of these nodes.

We define a link-route incidence matrix R(ij) for the route
between nodes (i, j), which will be a N ×N binary matrix,
where R(i,j)

km = 1 indicates that the nodes k,m occur in that
sequence in the route between nodes i, j. If we take tij as
the traffic from node i to node j, then the traffic weighted
average of these matrices

∑
ij tijR(ij) = D, a matrix of the

link loads between nodes where there is a link.
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Figure 1: Example network 1. The dashed line shows the
route between A and B.

Figure 1 shows a simple example network with three
nodes and directional link weights given. The shortest paths
in this network are obvious, but shown in the figure for clear
exposition. Given such a network and routing, and tij = 1
for all node pairs, then an example of a link-route incidence
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matrix, and the link traffic matrix is

R(AB) =




0 0 1
0 0 0
0 1 0



 , D =




0 0 2
0 0 2
2 2 0



 ,

where dij denotes the number of times the link from i to j is
used (replacing indices with their alphabetic equivalent).

From D we can derive a row-stochastic transition matrix
P for the whole network by normalizing each row of the
matrix (dividing each row by its sum). In the example shown
in Figure 1

P =




0 0 1
0 0 1
1/2 1/2 0



 ,

i.e. we create a Markov chain where the probability of going
from node A to B (or vice versa) is zero (all packets from A
or B goto C), but the probability of going from C to A and B
are equal at 1/2.

We also use submatrices. For an unordered set of nodes
X , PX indicates the submatrix which contains rows and
columns of nodes in X . The permutation matrix ΠX is such
that ΠXPXΠT

X is the submatrix of P containing the rows
and columns associated with the nodes in X , permuted ac-
cording to some conjectured ordering.

4. THE PROBLEM AND ITS SOLUTION
Now we can precisely define the problem of interest:

given an unordered node-set for some route across a net-
work, and the matrix P , can we find the correct ordering
for the route-set to reconstruct the original route? We call
this the “route-ordering” problem, and it turns out the an-
swer is yes with very general conditions. The correctly or-
dered route can then be used to reconstruct the topology.
NICO [22] provides a mechanism to estimate P , but in this
section we consider P to be known.

The following theorems depend on subsets of these three
conditions, which we list together for exposition purposes.

C1. The routers in the network of interest all use the same
nested routing policy. A nested routing policy is one
which will choose routes for which every subpath is
also a chosen route.

C2a. There are no Multiple Equal-Cost (MEC) paths in the
network.

C2b. If there are MEC paths in the network, the routing
policy is shortest path and the path-cost metric is hop
count. Ties must be broken in a deterministic way so
that the routing remains nested.

C3. The first node in the true route is known. Denote it xs.

Condition C1 is a familiar characteristic of shortest-path
routing, summarized by saying “shortest paths are made up
of shortest paths.” However, nested routing is more general.

For instance, other types of routing such as n-stratified short-
est paths (using distributive route map functions) can create
nested routing policies [14].

Conditions C2a and C2b are alternative conditions. In
what follows, when we refer to Condition C2, it means that
either C2a or C2b must hold. Condition C3 is natural in
many problems; we are often enquiring about a route be-
tween a particular source and destination.

We start by giving several interesting results which will
pave the way and provide intuition for Theorem 1.

LEMMA 1. Under C1 and C2a, for any set of correctly
ordered nodes, Xc = (x1, · · · , xn), the entries of the matrix
Pxixj for j > i + 1 will be zero.

Proof: We proceed by contradiction. Suppose that some
entry Pxkxl is non-zero for l > k + 1. Recall that a non-
zero value in the (xk, xl)th entry of P implies that traffic
flows from node xk to node xl in some route R. This in turn
implies that the chosen routing path between xk and xl in
route R is the direct link between them. But we assumed
that Xc is correctly ordered according to the policy; so since
in nested routing all sub-routes of Xc must also be routes
chosen by the policy, (xk, xk+1, . . . , xl) must also be the
chosen routing path from xk to xl. Since there are no paths
of equal cost, this is a contradiction.

LEMMA 2. Under C1 and C2b the conclusion of Lemma
1 holds.

Proof: As in Lemma 1 suppose that some entry Pxkxl

for l > k + 1 is non-zero. Again, Pxkxl > 0 implies
that there is a direct link from k to l. C2b says that rout-
ing is done by minimum hop routing, and so the subroute
(xk, xk+1, · · · , xl) for l > k + 1 must cost more than the
direct, single hop route (xk, xl), which is a contradiction.

These lemmas prove a simple fact: the matrix P has zeros
where there isn’t a link (or the link is unutilized). In nested
routing networks, the position of these zeros has structure
we can leverage. Where we might naively try to check all n!
permutations of the nodes on a route, instead, we can elim-
inate the vast majority because they have zero probability.
The following results codify this intuition.

DEFINITION 1. The score for an ordered route-set Xo is
defined as

∏
(i,j)∈Xo

Pij .

In NICO, scores of this form are associated with likeli-
hood functions of particular orderings, and have been used
to decide which ordering to prefer. Ideally the highest score
would indicate the correct ordering, though this does not
hold in general for any routing procedure.

However, a zero score does mean that an ordering is im-
possible, and we shall exploit this fact in what follows.

LEMMA 3. Assume C1 and C2, then any node permuta-
tion Π of co-occurence X with positive score will have ma-
trix ΠPXΠT in lower Hessenberg form with zeros on the
diagonal.
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Proof: Without loss of generality consider the set of
nodes X = (1, 2, . . . , n). Take P̃ = ΠPXΠT , the permuta-
tion of PX corresponding to a new ordering of X . Positive
score for the ordering can only be attained when P̃ij > 0 for
all (xi, xj) on the path. From Lemmas 1 and 2 we know that
under conditions C1 and C2, P̃ij > 0 only if j > i + 1, and
moreover P̃ii = 0 for all i because there are no self-loops
in the graph. This is the definition of a lower Hessenberg
matrix with zeros on the diagonal.

The implication is that, for some permutation Π, if the ma-
trix ΠPXΠT is not lower Hessenberg, then the score of the
ordering captured by Π is zero. We next consider the num-
ber of possible permutations resulting in a lower-Hessenberg
matrix, and show that there are at most 2n−1 possible order-
ings rather than the n! that we might naively expect.

LEMMA 4. Under C1 and C2, there are at most 2n−1

permutations of a route-set X = (x1, · · · , xn) that have a
non-zero score.

Proof: From Lemma 3, any permutation with positive
score must maintain that Pxixj for j > i + 1 will be zero.
In general, an ordering Xo may have a non-zero score only
if j ≤ i + 1 and j $= i, so either j = i + 1, i.e., j comes
immediately after i, or j < i, so i comes after j. We can
write these conditions as the following set of rules:

Xo either has x1 directly before x2, OR x1 follows all
nodes.

Xo either has x2 directly before x3, OR x2 follows nodes
x3, · · · , xn.

...
Xo either has node xn−1 directly before node xn, OR

xn−1 follows node xn.
These rules are binary; there are 2n−1 ways to follow the

rules and construct a new ordering Xo. Each choice will
result in a unique ordering with possibly non-zero score, and
all other permutations will have a zero score.

For an illustration of how the proof works, see Figure 2.
Now we have all the pieces to put together our main re-

sult, expressed in Theorem 1. We can see from the proof
of Lemma 4 that adding condition C3 – knowledge of the
source node – restricts the number of permutations with
nonzero score to just one.

THEOREM 1. Under assumptions C1-C3, and given a
route-set X = [x1, . . . , xn], an ordering π = [s, ...] cor-
responds to an ordering for a correct route in the network if
and only if the score of the route

{
xπ(1), xπ(2), . . . , xπ(n)

}

according to the matrix P is nonzero.

Proof: Certainly the forward direction holds: a correct
ordering will correspond to a nonzero score according to P.
For the other direction, since xs must be at the beginning of
the ordering, the binary choices in Lemma 4 are all decided;
at no point can we put xs after any other node. Thus there is
only one choice, the ordering for the correct route.
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Figure 2: Example showing that there are 2n−1 possible re-
orderings of a given route-set.

Figure 2 illustrates the result – the only way to keep xs =
A at the first position is to follow the leftmost path.

COROLLARY 1. Under assumptions C1-C3, and given
an unordered route-set X , if there is only one row of PX

which has a single non-zero entry, then the corresponding
node is the source node xs and the correct ordering can im-
mediately be identified.

Proof: The proof comes directly from the proofs of
Lemma 3 and Theorem 1.

Discussion: The results above are straightforward, but there
is an intriguing duality which results. Consider a clique with
unit weights. All the routes will consist of one hop paths,
and the matrix P would have no zeros, so it will not help us
with route-ordering. However, because the network is fully
connected, all route-sets will have a single pair of nodes, and
so the correct ordering is obvious. As the paths get longer,
the more zeros in P allow us to resolve the order despite the
factorial growth in the number of permutations.

The proofs above are also predicated on knowledge of
P . In practice P must be estimated from co-occurrence
data; our simulations show that if we estimate Dij simply
by counting the number of times nodes i and j co-occur, and
then normalize to get P , we get exact reconstruction.

5. EXAMPLES AND SIMULATIONS
To see more clearly what is meant by the theory, we will

present a few examples, starting with the one illustrated in
Figure 1. Consider the route set {A,B,C}. There are six
permutations of this route set, and Table 1 lays out these
possibilities, along with a calculation of the product of the
corresponding entries of P (shown in the second column).
Note that the two possible routes A-C-B and B-C-A stand
out, and that we cannot discriminate them unless we have
information about the first node in the route.

In Example 1 all of the scores are zero except for the cor-
rect path and its reverse. This happens when routing is sym-
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Score
Ordering Example 1 Example 2
A-B-C 0× 1 = 0 0× 1/4 = 0
A-C-B 1× 1/2 = 1/2 3/7× 4/7 = 12/49
B-A-C 0× 1 = 0 3/4× 3/7 = 9/28
B-C-A 1× 1/2 = 1/2 1/4× 3/7 = 3/28
C-A-B 1/2× 0 = 0 3/7× 0 = 0
C-B-A 1/2× 0 = 0 4/7× 3/4 = 3/7

Table 1: The score calculations of the different orderings of
the route set {A, B,C} for Examples 1 and 2.

metric. Other paths use links that are never seen in the real
network. Nested routing policies that don’t have multiple
equal-cost paths will select a tree of routes from a particular
source, and so regardless of the degree of connectivity of the
network, the link-count matrix for a particular route should
be sparse (having N − 1 non-zero entries for an N ×N ma-
trix), and in fact will be sparse in such a way that the scores
of other orderings will be zero.
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Figure 3: Example network 2, with asymmetric weights (and
hence asymmetric routes).

If the routing weights are not symmetric, many more pos-
sible orderings will have positive score, without information
about the source node. In fact, the permutation with highest
score is not necessarily the correct permutation. To see this,
let us examine Example 2 shown in Figure 3.

The link count matrix and transition matrix are as follows:

D =





0 0 6 4 4
3 0 1 0 0
3 4 0 0 0
4 0 0 0 0
4 0 0 0 0





P =





0 0 3/7 4/14 4/14
3/4 0 1/4 0 0
3/7 4/7 0 0 0
1 0 0 0 0
1 0 0 0 0





The resulting scores for the co-occurrence {A,B,C} are
shown in the third column of Table 1. Note that now the
most likely route for route-set {A,B,C} is C-B-A, which
does not occur at all in this network. Note that the critical
feature of this example which pushes the score of a non-
existent route above the scores of real routes is the asym-
metry in the routes along with a heavily traversed link from
B-A, which gives a high transition probability to B-A.

However again in this example, the only ordering with
non-zero score which begins with the source node is the cor-
rect ordering. It is quite remarkable that this holds true in
general.
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Figure 4: Example 3 with multiple equal-cost paths: The
route from A to C could go directly or it could go through B.

The existence of multiple equal-cost (MEC) paths in the
network causes a problem for us, and we see why in Fig-
ure 4. If the traffic was split evenly between the two equal-
cost paths, we would have

D =





0 3 1 3
2 0 2 0
2 1 0 0
3 0 0 0





P =





0 3/7 1/7 3/7
1/2 0 1/2 0
2/3 1/3 0 0
1 0 0 0



 .

If the co-occurrence were {A,B,C}, we can see that no
permutation of this submatrix gives a lower Hessenberg ma-
trix. Not only that, but the most likely ordering would be
C-A-B with score 2/3× 3/7 = 2/7, as opposed to the cor-
rect A-B-C, which has score 3/7× 1/2 = 3/14.

5.1 Simulation Results
These simulations show how well NICO can do in topol-

ogy identification, using the true transition matrix P and also
using an estimate of P based on empirical frequencies of co-
occurrence. These unexpectedly accurate results were our
motivation for developing the theory in Section 4.

Figure 5 shows the results on Rocketfuel topology 1239,
with 33 nodes and 130 links, and Figure 6 shows the results
on Rocketfuel topology 701, with 48 nodes and 368 links.
All destination nodes are probed, and the results are shown
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Figure 5: A Rocketfuel topology with average degree ≈ 4.
On the left with fewer sources, some links that are simply
not measured; the curve for the correct ordering shows the
best possible result.

0 10 20 30 40
0

50

100

%
 M

is
s
e

d
 l
in

k
s

AS number 701

0 10 20 30 40
0

20

40

%
 F

a
ls

e
 a

la
rm

 l
in

k
s

# source nodes from which we probe

 

 

Correct ordering

Start known

Start and end known

Figure 6: A Rocketfuel topology with average degree ≈ 8.

as we increase the number of source nodes, thus increasing
the number of measurements.

We plotted a curve for the oracle case when the correct
path orderings are known; this is the best case. Even the best
method cannot see the entire network when some links are
not probed; thus there are errors even in the best case. The
other two curves are using an empirical estimate of P calcu-
lated directly from the co-occurrence frequencies: the entry
Dij was found by counting the number of times nodes i and
j showed up together in a route-set, and then P is the nor-
malized version of D as usual. We used this empirical esti-
mate of P along with knowledge of the source only, and then
we used it along with knowledge of both the source and des-
tination. In the former case, we saw mistakes in the ordering
of end nodes; this actually results in fewer missed links but
many more false alarms. In the latter case, we achieved the
best possible reconstruction of the network.

We show results for eight Rocketfuel topologies in Ta-
ble 2, 3, and 4. When the true P is used, as described in the
proofs, as expected we get the best possible performance.
Also when the estimate of P is used, the results are perfect
except for a few false alarms when only the source is known.

Table 2 shows the results when all nodes are used as
source probing nodes, and Table 4 when half the nodes are
used as source probing nodes. The results are the same even
when only two sources are used to probe as in Table 3: All
methods reach the best possible performance2 except for the
method which uses the empirical P and the source only; this
is also illustrated in Figures 5 and 6.

Rocketfuel True P Src only Src&Dst
Topology # FA M FA M FA M
1239 0 0 0.75 0 0 0
7018 0 0 2.80 0 0 0
70181 0 0 2.61 0 0 0
3561 0 0 2.05 0 0 0
1 0 0 0.19 0 0 0
701 0 0 2.24 0 0 0
2914 0 0 0.93 0 0 0
3356 0 0 5.78 0 0 0

Table 2: Missing links (M) and false alarm (FA) links as a
percentage of total links, when all source nodes were used
for probing. Note the perfect reconstruction attained when
either P is known or when the estimate of P is used along
with the the source and destination node. A small number of
false positives occur with the estimate of P when only the
source is known.

Best True P Src Src&Dst
Topo # FA M FA M FA M FA M
1239 0 14.8 0 14.8 1.5 13.5 0 14.8
7018 0 16.7 0 16.7 2.9 14.8 0 16.7
70181 0 15.6 0 15.6 2.5 14.1 0 15.6
3561 0 94.7 0 94.7 4.5 92.4 0 94.7
1 0 7.7 0 7.7 1.5 7.2 0 7.7
701 0 56.2 0 56.2 2.3 55.2 0 56.2
2914 0 20.9 0 20.9 4.0 18.7 0 20.9
3356 0 87.9 0 87.9 3.2 87.3 0 87.9

Table 3: Link misses and false alarms as a percentage of total
links, when only two source nodes were used for probing.

5.2 The Misbehaving Router
Theorem 1 is a necessary and sufficient condition, and

thus can be applied to detect malicious or misconfigured
routers. If a router announces an ordered route-set, using
P we can identify whether that route is a proper route.

However, inherent in the definition of “route-set” is an-
other condition that the route-set or co-occurrence observa-
2When we probe from fewer starting nodes, there are missed links
even in the best case simply because they are not measured.
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Best True P Src Src&Dst
Topo # FA M FA M FA M FA M
1239 0 3.66 0 3.66 1.1 3.1 0.1 3.68
7018 0 5.6 0 5.6 2.5 4.4 0 5.6
70181 0 5.1 0 5.1 2.5 4.0 0 5.1
3561 0 35.4 0 35.4 7.4 33.7 0 35.4
1 0 2.7 0 2.7 0.6 2.4 0 2.7
701 0 17.7 0 17.7 13.0 15.6 0 17.7
2914 0 5.4 0 5.4 1.6 4.6 0 5.4
3356 0 40.0 0 40.0 5.6 39.0 0 40.0

Table 4: Link misses and false alarms as a percentage of total
links, when half the source nodes were used for probing.

tion is made up of nodes that participated in the routing of a
single packet. That is, the nodes in the route-set make up a
real route. If the misbehaving router is clever and concate-
nates proper routes in a particular way such that the overall
route is not a true route but each individual hop is legitimate,
then the lack of the lower Hessenberg property of the per-
muted P might not identify this as a bad route. Obviously
a misconfigured router will not be trying specifically to give
such a route, but a malicious router might. How clever must
the router be for this to happen?

For the Rocketfuel topologies we used before, we enu-
merated all possible 3, 4, and 5-node route-sets, including
ones that do not consist of nodes in any real path. We calcu-
lated the score according to the true matrix P . If the score
was non-zero, we can only assume this is a correct route; if
it was in fact an incorrect route, the announcement of this
route by a malicious router would go undetected.

In the rightmost section of Table 5 we can see that mis-
behaving routers have very few choices for false routes if
they want to go undetected. The percentage of 4-node routes
that would go undetected is always below 4%, even for a
topology with high node degree. When we get to 5-node
routes, the number is only 1.5% for a topology with high
node degree. A misconfigured router would therefore be
highly unlikely to report a bad route that could not be de-
tected; a malicious router would be severely restricted in the
route announcements it could make without being detected.

6. CONCLUSION
Network inference from co-occurrence measurements, us-

ing maximum likelihood and a Markov random walk model
for routing, results in perfect reconstruction of shortest-path
topologies. We have provided a thorough foundation for fur-
ther study of the connection between a Markov random walk
routing model and real routes resulting from nested routing
policies. The connection is surprising but fundamental, and
will lead to improved network measurement analysis.
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