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Abstract— The discovery of networks is a fundamental prob-
lem arising in numerous fields of science and technology, includ-
ing communication systems, biology, sociology and neuroscience.
Unfortunately, it is often difficult, or impossible, to obtain data
that directly reveal network structure, and so one must infer a
network from incomplete data. This paper considers inferring
network structure from “co-occurrence” data: observations that
identify which network components (e.g., switches, routers, genes)
carry each transmission but do not indicate the order in which
they handle the transmission. Without order information, the
number of networks that are consistent with the data grows
exponentially with the size of the network (i.e., the number
of nodes). Yet, the basic engineering/evolutionary principles
underlying most networks strongly suggest that not all data-
consistent networks are equally likely. In particular, nodes that
co-occur in many observations are probably closely connected.
With this in mind, we model the co-occurrence observations
as independent realizations of a random walk on the network,
subjected to a random permutation to account for the lack of
order information. Treating permutations as missing data, we
derive anexpectation-maximization (EM) algorithm for estimating
the random walk parameters. The model and EM algorithm sig-
nificantly simplify the problem, but the computational complexity
of the reconstruction process does grow exponentially in the
length of each transmission path. For networks with long paths
the exact E-step may be computationally intractable. We propose
a polynomial-time Monte Carlo EM (MCEM) algorithm based
on importance sampling and derive conditions which ensure
convergence of the algorithm with high probability. Simulations
and experiments with Internet measurements demonstrate the
promise of this approach.

Index Terms— EM algorithm, graphical models, importance
sampling, Markov models, network inference, network tomogra-
phy.

I. NETWORK INFERENCE ANDCO-OCCURRENCE

OBSERVATIONS

The study of complex networked systems is an emerging
field, impacting nearly every area of engineering and science,
including the important domains of communication systems,
biology, sociology, and cognitive science. The analysis of
communication networks enables a better understanding of
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routing, transmission patterns, and information flow [1], [2].
Characteristics of biological networks provide insight into
the functional roles played by different genes, proteins, and
metabolites in biological systems [3], [4]. Social network
analysis can be used to gain a deeper understanding of inter-
actions, dynamics, and the structure of organizations [5],[6].
Functional connectivity networks of brain regions are studied
to better understand coupling and interaction between different
neuronal colonies [7]–[9]. Obtaining or inferring the structure
of networks from experimental data precedes any such analysis
and is thus a basic and fundamental task, critical to many
applications.

Unfortunately, measurements which directly reveal network
structure are often beyond experimental capabilities or are
excessively expensive. This paper considers inferring network
structure from observations that identify which network com-
ponents (e.g., switches, routers, genes) carry each transmission
but do not indicate the order in which they handle the transmis-
sions. Mathematically, the underlying network structure can
be represented as a directed graph, and the vertices involved
in each transmission form a connected subgraph. The observa-
tions only reflect which subset of vertices are involved, or “co-
occur”, in each transmission; not their inter-connectivity. We
refer to such observations asco-occurrences. Co-occurrence
observations arise naturally in each of the application areas
mentioned above.

Transmissions over telecommunication networks are carried
by links and routers/switches which form a path between the
source and terminal nodes. In some cases, it is impossible
to directly observe the order in which the routers/switches
handle each transmission, since sensors are geographically
distributed, making precise time-synchronization impractical.
The so-calledinternally-sensed network tomographyproblem
specifically aims at recovering network structure from un-
ordered lists of network elements along transmission paths
[1].

Biological signal transduction networks describe fundamen-
tal cell functions such as growth, metabolism, differentiation,
and apoptosis (disintegration) [4]. Although it is possible to
test for individual, localized interactions between protein pairs,
such experiments are expensive and time-consuming. High-
throughput measurement techniques such as microarrays have
successfully been used to identify the components of different
signal transduction pathways [10]. However, microarray data
only reflects order information at a very coarse, unreliable
level. Developing computational techniques for inferringpath-
way orders is an active research area [11].

Co-occurrence or transactional data also appears in the con-
text of social networks,e.g., by considering which academic
papers are co-cited by another paper, which web pages are
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linked to or from another web page, or which people were
diagnosed with a common disease on the same day. Such
measurements are readily available, but do not necessarily
reflect the temporal or other natural order of occurrence.
Researchers in this area have considered the problems of
reconstructing networks from co-occurrence data and of using
the inferred network to predict potential future co-occurrences
[12].

Functional magnetic resonance imaging(fMRI) provides a
mechanism for measuring activity in the brain with high spatial
resolution. By observing which regions of the brain co-activate
while a patient is performing different tasks, we can obtain
multiple co-occurrence observations. Although fMRI offers
high spatial resolution, its limited temporal resolution makes it
impractical to obtain complete order information. Magnetoen-
cephalography and electroencephalography measure activity in
the brain with higher temporal resolution but only provide
coarse spatial resolution. Consequently, these techniques do
not allow a precise determination of which functional regions
are active during a given task. Existing techniques for ob-
taining functional co-activation networks either involvebrute-
force measurement or use crude correlation methods (see [7]
and references therein).

In this article, we focus on observations arising from
transmissions in a network. Specifically, each co-occurrence
observation corresponds to a path1 through the network. We
observe the vertices comprising each path but not the order
in which they appear along the path. In certain applications
the endpoints (source and destination) of the path may also be
observed.

Our goal is to identify which pairs of vertices are directly
connected via an edge, thereby learning the structure of the
network. A feasible graph is one which agrees with the
observations;i.e., a graph which contains a directed path
through the vertices in each co-occurrence observation. Given
a collection of co-occurrence observations, a feasible graph
is easily constructed by assigning an order – any order, in
fact – to the vertices in each observation, and then inserting
directed edges between vertices which are adjacent in the
assigned order. In light of the many possible orders for each
co-occurrence observation, the number of feasible topologies
grows exponentially in the number and size of observations.
Without additional assumptions, side information, or prior
knowledge, there is no reason to prefer one feasible topology
over the others.

Previous work on related problems has involved heuristics
using frequencies of co-occurrence either to assign an order
to each path [1] or to approximate the probability of tran-
sitioning from one vertex to another [12]. These approaches
make stringent assumptions and sacrifice flexibility in order to
achieve computational tractability and systematically identify
a unique solution. Thefrequency methodintroduced in [1] is
based on a model where paths from a particular source or to a
particular destination form a tree. This model coincides with
the shortest-path routing policy. When the network provides

1Throughout this paper a “path” refers to a sequence of vertices
(x1, x2, . . . , xT ) such that there is an edge between each adjacent pair of
vertices,xi−1 andxi, and no node appears more than once in the sequence.

multiple paths between the same pair of endpoints (e.g., for
load-balancing) the algorithm may fail. ThecGraphalgorithm
of Kubicaet al. [12] inserts weighted edges between every pair
of vertices which co-occur in some observation. This approach
produces solutions which are typically much denser than
desired. Because both of these methods are based on heuristics,
the results they produce are not easily interpreted. Also, these
heuristics do not readily lend themselves to incorporating
side information. A different approach, introduced by Justice
and Hero in [13], involves averaging over an ensemble of
feasible topologies sampled uniformly from the feasible set.
In general there is an enormous number of feasible topologies
(exponential in the problem dimensions) exhibiting a wide
variety of characteristics, and it is not clear that an average
of feasible topologies will be optimal in any sense. These
observations have collectively motivated our developmentof
a more general approach to network reconstruction which we
simply termnetwork inference from co-occurrences, or NICO
for short.

Our approach is based on a generative model where paths
are realizations of a random walk on the underlying graph. A
co-occurrence observation is obtained by randomly shuffling
each path to account for lack of observed order information.
Based on this model, network inference reduces to estimat-
ing the parameters governing the random walk. Then, these
parameter estimates determine the most likely order for each
co-occurrence.

The following interpretation motivates our shuffled random
walk model. Imagine sitting at a particular vertex in the
network and observing a series of transmissions pass by. This
vertex is only connected to a handful of other vertices in the
network, so regardless of its final destination, a transmission
arriving at this vertex must pass through one of the neighboring
vertices next. By recording how many arriving transmissions
are passed to each neighbor over a period of time, it is
possible to calculate the empirical probability of transmission
to each neighbor. Obtaining such probabilities at each vertex
would provide a tremendous amount of information about
the network. Unfortunately, co-occurrence observations do not
directly reveal transition probabilities and we thereforeface
a challenging inverse problem. This paper develops a formal
framework for estimating local transition probabilities from a
collection of co-occurrence observations, without makingany
additional assumptions about routing behavior or properties
of the underlying network structure. Experimental results
on simulated topologies indicate that good performance is
obtained for a variety of operating conditions.

A particularly novel aspect of the problem and approach
introduced in this article is the counterintuitive idea of recov-
ering temporal dynamics from non-temporal data. Models of
information flow and causal signaling are quite common in
problems where one is able to measure both where and when
events occur. However, in the problem considered here, we
have no knowledge of the temporal chain of events associ-
ated with each observation. We leverage correlation among
the different activity patterns observed across the network,
together with the notion that similar activity patterns are
presumably caused by a common stimulus, to recover the
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dynamics of information flow, a seemingly impossible task.
Indeed, it is impossible to glean information about dynamics
from just one co-occurrence observation, and it is only through
an ensemble of patterns, which we assume are generated by
the same network process, that information flow dynamics are
recovered.

It is also worth mentioning that the approach discussed
in this paper differs considerably from that of learning the
structure of a directed graphical model or Bayesian network,
a graph where nodes correspond to random variables and
edges indicate conditional independence relationships [14],
[15]. A typical aim of graphical modeling is to find a graph
corresponding to a factorization of a high-dimensional dis-
tribution which predicts the observations well. In turn, these
probabilistic models do not directly reflect physical structures,
and applying such an approach in the context of this problem
would ignore physical constraints inherent to the observations:
that co-occurring vertices must lie along a path in the network.
We note that, although the Bayesian network paradigm does
not directly fit our problem setup, Teyssier and Koller [16]
describe an approach to Bayesian network structure learning
which is similar to the network inference algorithm presented
in this paper. In [16], rather than searching over all Bayesian
network structures, a search is performed over all orderings
of random variables in the model. This simplifies the search
procedure since it is easier to determine the mostly likely
directed acyclic graph that is consistent with a fixed ordering.

The rest of the paper is organized as follows. In Sec-
tion II we introduce notation and formulate the problem setup.
Section III reviews the standard approach to estimating the
parameters of a random walk when fully observed (ordered)
samples are available and presents an EM algorithm for es-
timating random walk parameters from shuffled observations.
A Monte Carlo variant of the EM algorithm is described in
Section IV for situations where long transmission paths make
the E-step computationally prohibitive. Section V analyzes
convergence of the Monte Carlo EM algorithm. Simulation
results are presented in Section VI and the paper is concluded
in Section VII, where ongoing work is also briefly described.

II. PROBLEM FORMULATION

We model the network as a simple directed graphG =
(V, E), whereV = {1, 2, . . . , |V |} is the set of vertices and
E ⊆ V × V is the set of edges. The number of vertices,
|V |, is considered known, so network inference amounts to
determining the adjacency structure of the graph; that is,
identifying whether or not(i, j) ∈ E, for every pair of vertices
(i, j) ∈ V × V .

A co-occurrence observation,x ⊂ V , is a subset of vertices
in the graph which simultaneously “occur” when a particular
stimulus is presented to the network. For example, when
a transmission is made over a communication network, a
subset of routers and switches carry the transmission from the
source to the destination. This activated subset corresponds
to a co-occurrence observation, with the stimulus being a
transmission between that particular source-destinationpair.
By repeating this procedureN times with different stimuli

we obtain observations,X = {x(1),x(2), . . . ,x(N)}, where
x(n) = (x

(n)
1 , x

(n)
2 , . . . , x

(n)
Tn

) is a length-Tn co-occurrence,
indexed in an arbitrary order.

A directed graphG = (V, E) is said to be data-
consistent with respect to observationsX if for each
co-occurrencex(n) ∈ X there exists an ordered path
w(n) = (w

(b)
1 , w

(n)
2 , . . . , w

(n)
Tn

) and a permutationπ(n) =

(π(n)(1), . . . , π(n)(Tn)) such thatw(n)
t = x

(m)

π(n)(t)
for each

t, and there is an edge fromw(n)
t−1 to w

(n)
t in the graph for

t = 2, . . . , Nm, that is,(w(n)
t−1, w

(n)
t ) ∈ E.

Notice that network inference from ordered paths is trivial.
We can begin with an empty graphG0 = (V, E) with E = {}.
Then, for each ordered observationw(n) we update the set of
edges viaE ← E∪(w

(n)
t−1, w

(n)
t ) for t = 2, . . . , Tn. Even if we

do not observe ordered paths, if we observe the permutation
π(n) along with each co-occurrencex(n), we can use the
permutation to recover the correctly ordered observation and
apply the same procedure.

In practice we do not make ordered observations and we do
not have access to the correct permutations. However, we can
obtain a feasible reconstruction by associatinganypermutation
(of the appropriate length) with each co-occurrence, and then
following the procedure described above. There areTn! ways
to permute the elements ofx(n), so there may be as many as∏N

n=1 Tn! feasible reconstructions. Clearly, for largeTn and
N this is a huge set to search over. Moreover, without making
additional assumptions, or adopting some additional criteria,
there is no reason to prefer one feasible reconstruction over
another.

Physical principles governing the development of many nat-
ural and man-made networks suggest that not all feasible net-
works are equally plausible. Intuitively, if two or more vertices
appear together in many co-occurrences, we expect that they
are close in the underlying network topology. Likewise, we
expect that most vertices will only be directly connected toa
small fraction of the other vertices. Based on this intuition, we
propose the following probabilistic model. First, we modelthe
unobserved, ordered paths,w(n), as independent samples of a
first-order Markov chain. The Markov chain is parameterized
by transition probabilities,θi,j = P[wt = j|wt−1 = i], and
initial state probabilitiesθ0,i = P[w1 = i]; we denote byθ
the entire collection of Markov chain parameters. Of course,
these parameters must satisfy the normalization constraints,

|V |∑

j=1

θi,j = 1, for eachi = 0, 1, . . . , |V |. (1)

In addition, we assume that the support of the transition matrix
is determined by the adjacency structure of the underlying
network; i.e., θi,j > 0 if and only if (i, j) ∈ E.

A co-occurrence observation,x, is generated by shuffling
the elements of an ordered Markov chain sample,w =
(w1, . . . , wT ), via a permutationπ drawn uniformly fromST ,
the collection of all permutations ofT objects. Thus, for each
t = 1, . . . , T , xπ(t) = wt. We assume the random permutation
π is independent of the Markov chain sample,w. Based on
this model, we can write the likelihood of a co-occurrence
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observationx conditioned on the permutationπ as

P[x|π, θ] = θ0,xπ(1)

T∏

t=2

θxπ(t−1),xπ(t)
. (2)

SinceP[π] = 1/(T !), for all π ∈ ST , marginalization over all
permutations leads to

P[x|θ] =
1

T !

∑

π∈ST

P[x|π, θ]. (3)

Finally, assuming that co-occurrence observations are indepen-
dent, and taking the logarithm, gives

log P[X|θ] =
N∑

n=1



log




∑

π∈STn

P[x(m)|π(n), θ]



− log(Tn!)



 .

(4)
Under this model, network inference consists in computing an
estimate for the Markov chain parameters,θ; given a prior
P[θ], a natural criterion for estimation is the maximum a
posteriori criterion,

θ̂ = arg max
θ

log P[X|θ] + log P[θ]. (5)

Of course, whenP[θ] is a constant, independent ofθ, this
reduces to the maximum likelihood criterion. With the estimate
θ̂ in hand, we may determine the most likely permutation for
each co-occurrence observation according toθ̂, and obtain
a feasible reconstruction using our procedure for ordered
observations described above.

For non-trivial observations,log P[X|θ] is a complicated,
non-concave function ofθ, so solving (5) is not a simple task.
In the next section, we derive a EM algorithm for finding local
maxima of this optimization problem, by treating the set of
permutations,{π(1), ..., π(N)}, shuffling the paths, as missing
data.

III. A N EM ALGORITHM FOR ESTIMATING MARKOV

CHAIN PARAMETERS FROMSHUFFLED OBSERVATIONS

A. Fully Observed Markov Chains: Notation and Estimation

Let W = {w(1), ...,w(T )} be a set of sample paths,w(n) =

(w
(n)
1 , ..., w

(n)
Tn

), independently generated by a Markov chain
with parametersθ (see (1)). For later use, it is convenient
to introduce the equivalent binary representationω(n) ∈
{0, 1}Tn×|V | for each samplew(n), defined such thatω(n)

t,i =

I
{w

(n)
t =i}

, whereI{·} is the indicator function. Sincew(n) and

ω(n) are equivalent representations of the same information,
we will also writeW ≡ {ω(1), . . . , ω(N)}, with a slight abuse

of notation. With this notation, we can write

log P[W|θ] =
N∑

n=1

|V |∑

i=1

ω
(n)
1,i log θ0,i

+
N∑

n=1

Tn∑

t=2

|V |∑

i=1

|V |∑

j=1

ω
(n)
t−1,i ω

(n)
t,j log θi,j

=

|V |∑

i=1

log θ0,i

N∑

n=1

ω
(n)
1,i

+

|V |∑

i=1

|V |∑

j=1

log θi,j

N∑

n=1

Tn∑

t=2

ω
(n)
t−1,i ω

(n)
t,j .

Maximum likelihood estimates ofθ can be obtained from
W my maximizing log P[W|θ] under the constraints in (1);
the solution is well known,

θ̂i,j =

N∑

n=1

Tn∑

t=2

ω
(n)
t−1,i ω

(n)
t,j

|V |∑

j=1

N∑

n=1

Tm∑

t=2

ω
(n)
t−1,i ω

(n)
t,j

, and

θ̂0,i =
1

N

N∑

n=1

ω
(n)
1,i .

(6)

B. Shufflings, Permutations, and the EM Algorithm

To address the case where we have a set of co-occurrences
X = {x(1), . . . ,x(N)}, not ordered samples, we defined the
equivalent binary representationX ≡ {χ(1), . . . , χ(N)} in
a similar way as above:χ(n) ∈ {0, 1}Tn×|V | and χ

(n)
t,i =

I
{x

(n)
t =i}

.
Equivalent to usingπ ∈ ST to denote a length-T per-

mutation/shuffling, we introduce a more convenient (binary)
representation; each shuffling is represented by apermutation
matrix, which we also refer to as ashuffling matrix. Let the
shuffling matrix corresponding to a permutationπ be denoted
asAπ , whereAπ

i,j = I{π(i)=j}. Thus, an ordered sequenceω,
permutationπ, and corresponding co-occurrenceχ are related
via ω = Aπχ.

Let Π = {π(1), . . . , π(N)} be the collection of permutations
that recover the ordered pathsW = {w(1), ...,w(T )} from the
corresponding shuffled co-occurrencesX = {x(1), ...,x(T )}.
Recall that the permutations,π(m), are assumed to be inde-
pendent of the Markov chain parameters,θ. We can write the
complete log-likelihoodlog P[X, Π|θ] as follows:

log P[X, Π|θ]

= log P[X|Π, θ] + log P[Π] (7)

=
N∑

n=1

log P[χ(n)|π(n), θ] + log P[Π]

=
N∑

n=1

Tn∑

t=2

Tn∑

t′,t′′=1

|V |∑

i,j=1

Aπ(n)

t−1,t′ Aπ(n)

t,t′′ χ
(n)
t′,i χ

(n)
t′′,j log θi,j

+

N∑

n=1

Tn∑

t′=1

|V |∑

i=1

Aπ(n)

1,t′ χ
(n)
t′,i log θ0,i + log P[Π], (8)
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whereP[Π] is the probability of the set of permutationsΠ,
which is constant in our model since all permutations are
equiprobable.

To estimateθ from X, we treatΠ as missing data, opening
the door to the use of the EM algorithm. Notice that if
we had the complete data(X, Π), we could recoverW via
ω(n) = Aπ(n)

χ(n) and obtain the closed-form estimates (6).
The EM algorithm proceeds by computing the expected value
of log P[X, Π|θ] (w.r.t. Π), conditioned on the observations
and on the current model estimateθk (the E-step),

Q
(
θ; θk

)
= EΠ

[
log P[X, Π|θ]

∣∣∣X, θk
]
, (9)

where we writeEΠ to denote expectation with respect to
the missing permutation variables,Π. The model parameter
estimates are then updated as follows (the M-step):

θk+1 = argmax
θ

Q
(
θ; θk

)
. (10)

These two steps are repeated cyclically until a convergence
criterion is met.

C. The E-step

1) Sufficient statistics: Rearranging (8), and dropping
log P[Π] (a constant), we can write

log P[X, Π|θ]

∝
N∑

n=1

|V |∑

i,j=1

Tn∑

t′,t′′=1

Tn∑

t=2

Aπ(n)

t−1,t′A
π(n)

t,t′′ χ
(n)
t′,iχ

(n)
t′′,j log θi,j

+
N∑

n=1

|V |∑

i=1

Tn∑

t′=1

Aπ(n)

1,t′ χ
(n)
t′,i log θ0,i,

=

N∑

n=1

|V |∑

i,j=1

Tn∑

t′,t′′=1

αn
t′,t′′ χ

(n)
t′,i χ

(n)
t′′,j log θi,j

+

N∑

n=1

|V |∑

i=1

Tn∑

t′=1

αn
0,t′ χ

(n)
t′,i log θ0,i, (11)

revealing that log P[X, Π|θ] is linear with respect to the
following simple functions:

• the first entry of each permutationπ(n): αn
0,t′ = Aπ(n)

1,t′ =
I{π(n)(1)=t′}, for n = 1, . . . , N and t′ = 1, . . . , Tn;

• transition indicators:αn
t′,t′′ =

∑Tn

t=2 Aπ(n)

t−1,t′ Aπ(n)

t,t′′ =∑Tn

t=2 I{π(n)(t−1)=t′}I{π(n)(t)=t′′}, for n = 1, . . . , N , and
t′, t′′ = 1, . . . , Tn.

The E-step reduces to computing the condition expectations
of αn

0,t′ andαn
t′,t′′ given θk (denotedᾱn,k

0,t′ and ᾱn,k
t′,t′′), since

the expectation is a linear operator and hence it commutes
with linear functions. Noticing thatαn

0,t′ andαn
t′,t′′ are binary-

valued yields

ᾱn,k
0,t′ = E

[
αn

0,t′

∣∣∣X, θk
]

= P

[
αn

0,t′ = 1
∣∣∣X, θk

]
(12)

ᾱn,k
t′,t′′ = E

[
αn

t′,t′′

∣∣∣X, θk
]

= P

[
αn

t′,t′′ = 1
∣∣∣X, θk

]
.(13)

Finally, Q
(
θ; θk

)
is obtained simply by plugginḡαn,k

0,t′ and

ᾱn,k
t′,t′′ in the places ofαn

0,t′ andαn
t′,t′′ in (11).

2) Computingᾱn,k
0,t′ : Since the permutations are (a priori)

equiprobable, forπ ∈ STn we haveP[π] = 1/(Tn!), P
[
π(1) =

t′] = ((Tn−1)!/Tn!) = 1/Tn, andP[π|π(1) = t′] = 1/((Tn−
1)!). Using these facts, together with the mutual independence
among the several sequences, and Bayes law, yields

ᾱn,k
0,t′ = P

[
αn

0,t′ = 1
∣∣∣x(n), θk

]

=
P
[
x(n)

∣∣π(n)(1) = t′, θk
]

P
[
π(n)(1) = t′]

P[x(n)
∣∣θk
]

=

∑

π∈STn: π(1)=t′

P
[
x(n)

∣∣π, θk
]

∑

π∈STn

P
[
x(n)

∣∣π, θk
] , (14)

where each termP
[
x(n)

∣∣π, θk
]

is easily computed after using
π to unshufflex(n):

P
[
x(n)

∣∣π, θk
]

= θk

0,x
(n)

π(1)

Tn∏

t=2

θk

x
(n)

π(t−1)
, x

(n)

π(t)

.

3) Computingᾱn,k
t′,t′′ : The computation ofᾱn,k

t′,t′′ follows

a similar path as that of̄αn,k
0,t′ ; since all permutations are

equiprobable, forπ ∈ STn , P[π(t − 1) = t′, π(t) = t′′] =
(Tn − 2)!/(Tn!) and P[π|π(t − 1) = t′, π(t) = t′′] =
1/((Tn − 2)!), thus

ᾱn,k
t′,t′′ =

Tn∑

t=2

P
[
π(n)(t− 1) = t′, π(n)(t) = t′′

∣∣x(n), θk
]

=

Tn∑

t=2

[
P
[
x(n)

∣∣π(n)(t− 1) = t′, π(n)(t) = t′′, θk
]

P
[
x(n)

∣∣θk
]

×P
[
π(n)(t− 1) = t′, π(n)(t) = t′′

]
]

=

Tn∑

t=2



 1

(Tn − 2)!

∑

π∈STn :π(t−1)=t′,π(t)=t′′

P
[
x(n)

∣∣π, θk
]




1

Tn!

∑

π∈STn

P
[
x(n)

∣∣π, θk
]

×
(

(Tn − 2)!

Tn!

)

=

∑

π∈STn

P[x(n)|π, θk]

Tn∑

t=2

I{π(t−1)=t′}I{π(t)=t′′}

∑

π∈STn

P[x(n)|π, θk]
. (15)

Exact computation of the sufficient statistics{ᾱn,k
0,t′}Tn

t′=1

and {ᾱn,k
t′,t′′}Tn

t′,t′′=1 via (14) and (15) requires enumerating
all permutations ofx(n). For largeTn this is a heavy load;
Section IV describes a Monte Carlo sampling approach for
computing approximations tōαn,k

0,t′ and ᾱn,k
t′,t′′ .

D. The M-step

Recall that the functionQ
(
θ; θk

)
is obtained by plugging

ᾱn,k
0,t′ and ᾱn,k

t′,t′′ in the places ofαn
0,t′ andαn

t′,t′′ , respectively,
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in (11). Maximization w.r.t.θ, under the constraints in (1),
leads to following simple update equations:

θk+1
i,j =

N∑

n=1

Tn∑

t′,t′′=1

ᾱn,k
t′,t′′ χ

(n)
t′,i χ

(n)
t′′,j

|V |∑

j=1

N∑

n=1

Tn∑

t′,t′′=1

ᾱn,k
t′,t′′ χ

(n)
t′,i χ

(n)
t′′,j

(16)

and

θk+1
0,i =

N∑

n=1

Tn∑

t′=1

ᾱn,k
0,t′ χ

(n)
t′,i

|V |∑

i=1

N∑

n=1

Tn∑

t′=1

ᾱn,k
0,t′ χ

(n)
t′,i

.

E. Handling Known Endpoints

In some applications, (one or both of) the endpoints of each
path are known and only the internal nodes are shuffled. This
is the case in communication networks (i.e., internally-sensed
network tomography), since the sources and destinations are
known, but not the connectivity within the network. In estima-
tion of biological networks (signal transduction pathways), a
physical stimulus (e.g., hypotonic shock) causes a sequence of
protein interactions, resulting in another observable physical
response (e.g., a change in cell wall structure) [3]; in this case,
the stimulus and response act as fixed endpoints, our goal is
to infer the order of the sequence of protein interactions.

Observe that knowledge of the endpoints of each path im-
poses the constraintsπ(n)(1) = 1 andπ(n)(Tn) = Tn. Under
the first constraint, estimates of the initial state probabilities
are simply given by (for allk)

θk
0,i =

1

N

N∑

n=1

χ
(n)
1,i .

Thus, EM only needs to be used to estimate the transition
matrix entries. Let

S̃T = {π ∈ ST : π(1) = 1, π(T ) = T },

denote the set of permutations ofT elements with fixed
endpoints. As in the general case, the E-step can be computed
using summary statistics (fort′, t′′ = 1, . . . , Tn)

γ̃n,k =
∑

π∈S̃Tn

P[x(m)|π, θk]

γ̃n,k
t′,t′′ =

∑

π∈S̃Tn

P[x(m)|π, θk]

Nm∑

t=2

I{π(t−1)=t′}I{π(t)=t′′},

and settingᾱn,k
t′,t′′ = γ̃n,k

t′,t′′/γ̃. The M-step (update forθk+1
i,j )

remains unchanged.

F. Incorporating Prior Information

The EM algorithm can be easily modified to incorporate
conjugate priors; these are Dirichlet priors for each rowθi =

(θi,1, . . . , θi,|V |), i = 0, . . . , |V | of θ,

P[θi|ui] ∝
|V |∏

j=1

θ
ui,j−1
i,j (17)

which are proper priors if and only if the parametersui,j are
non-negative [17]. The largeru0,j is relative to the otheru0,j′ ,
j′ 6= j, the greater our prior belief that statej is an initial
state rather than the others; equivalently, the expected value
of θ0 under the Dirichlet distribution is given byE[θ0,j |u0] =

u0,j/
∑|V |

i=1 u0,i. Similarly, the largerui,j relative to otherui,j′

for j′ 6= j, the more likely we expect,a priori, transitions from
statei to statej relative to transitions fromi to the other states.
Consider the prior distribution on the initial state distribution;
takingu0,j = c > 1, for all j, has asmoothingeffect, as if all
of the states had some mass, regardless of the observations,in
the initial state distribution.

Due to the conjugacy of the Dirichlet priors, their incorpo-
ration into the EM algorithm only results in a change to the
M-step. Incorporating the prior leads to the following modified
version of the function,Q(θ; θk):

Q(θ; θk) ∝
N∑

n=1

|V |∑

i,j=1

Tn∑

t′,t′′=1

ᾱn,k
t′,t′′χ

(n)
t′,iχ

(n)
t′′,j log θi,j

+
N∑

n=1

|V |∑

i=1

Tn∑

t′=1

ᾱn,k
0,t′χ

(n)
t′,i log θ0,i (18)

+

|V |∑

i,j=1

(ui,j − 1) log θi,j +

|V |∑

i=1

(u0,i − 1) log θ0,i.

Note that the prior does not involve the missing data (permu-
tations) and thus does not effect the E-step calculation. The
M-step updates become

θk+1
0,i =

u0,i − 1 +

N∑

n=1

Tn∑

t′=1

ᾱn,k
0,t′χ

(n)
t′,i

|V |∑

i=1

(
u0,i − 1 +

N∑

n=1

Tn∑

t′=1

ᾱn,k
0,t′χ

(n)
t′,i

) (19)

θk+1
i,j =

ui,j − 1 +

N∑

n=1

Tn∑

t′,t′′=1

ᾱn,k
t′,t′′ χ

(n)
t′,i χ

(n)
t′′,j

|V |∑

j=1


ui,j − 1 +

N∑

n=1

Tn∑

t′,t′′=1

ᾱn,k
t′,t′′ χ

(n)
t′,i χ

(n)
t′′,j




.(20)

IV. M ONTE CARLO E-STEP BY IMPORTANCE SAMPLING

For long sequences, the combinatorial nature of (14) and
(15) (involving sums over all permutations of each sequence)
may render exact computation impractical. In this section,
we consider Monte Carlo approximate versions of the E-step,
which avoid the combinatorial nature of its exact version. The
Monte Carlo EM (MCEM) algorithm, based on an MC version
of the E-step, was originally proposed in [18], and used ever
since by many authors (recent work can be found in [19]–[21]
and references therein).
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To lighten the notation in this section, we drop the su-
perscript fromθk, using simplyθ as the current parameter
estimates. Moreover, we focus on a particular length-T co-
occurrencex = (x1, . . . , xT ) ∈ V T and drop the superscript
(n); due to the independence of the paths, there is no loss of
generality. Recall thatx is a (shuffled) path, and thus has no
repeated elements.

The E-step (see (12) and (13)) consists of computing the
conditional expectations̄α0,t′ = E

[
α0,t′

∣∣x, θ
]

and ᾱt′,t′′ =
E
[
αt′,t′′

∣∣x, θ
]
. A naı̈ve Monte Carlo approximation would

be based on random permutations, sampled from the uniform
distribution overST . However, the reason to resort to approx-
imation techniques in the first place is thatST is large, with
only a small fraction of these random permutations having
non-negligible posterior probability,P[π|x, θ]; a very large
number of uniform samples is thus needed to obtain a good
approximation toᾱ0,t′ and ᾱt′,t′′ .

Ideally, we would sample permutations directly from the
posteriorP[π|x, θ]; however, this would require determining
its value for allT ! permutations. Instead, we employimpor-
tance sampling(IS) (see,e.g., [22], [23], for an introduction to
IS): we sampleL permutations,π1, . . . , πL, from a distribution
R[π|x, θ], from which it is easier to sample thanP[π|x, θ],
then apply a corrective re-weighting to obtain approximations
to ᾱ0,t′ and ᾱt′,t′′ . The IS estimates are given by

α̂0,t′ =

L∑

i=1

zi I{πi(1)=t′}

L∑

i=1

zi

, (21)

α̂t′,t′′ =

L∑

i=1

zi

T∑

t=2

I{πi(t−1)=t′}I{πi(t)=t′′}

L∑

i=1

zi

, (22)

wherezi, the correction factor (or weight) for sampleπi, is
given by

zi =
P[πi|x, θ]

R[πi|x, θ]
, (23)

the ratio between the desired distribution and the sampling
distribution employed.

A relevant observation is that the target and sampling
distributions only need to be known up to normalizing factors.
Given R[π] = ZR R[π|x, θ] and P [π] = ZP P[π|x, θ], for
constantsZR andZP , we can use

z′i =
P [πi]

R[πi]
=

ZP

ZR
zi, (24)

instead ofzi in (21) and (22); the approximations will remain
unchanged since the factorZP /ZR will appear both in the
numerator and denominator of (21) and (22), thus canceling
out.

The IS framework just described is general, and the per-
formance of this approach is closely tied to the particular
sampling scheme employed. In particular, the more closely the
shape of the sampling distribution,R, matches the shape of

the target distribution,P, the better the quality of the estimate
will be. Although our goal is to accurately approximate the
E-step sufficient statistics, our primary motivation for using
IS is to speed up calculation of the E-step. The remainder of
this section describes an IS scheme which is both simple to
implement (fast), and closely mimics the generative Markov
model for ordered paths. Next, we describe the IS scheme,
including the derivation of closed form expressions for both
the sampling distribution,R, and the sample weights,zi. We
conclude the section by mentioning other sampling variants.

A. Causal Sampling Scheme

Let f = {f1, . . . , f|V |} ∈ {0, 1}|V | be a sequence of binary
flags. Given a probability distributionp = {p1, p2, . . . , p|V |}
on the set of states,V , denote byp|f the restriction ofp to
those elements ofV that have corresponding flagfi set to 1,
that is,

(p|f)i =
pi fi

|V |∑

j=1

pj fj

, for i = 1, 2, . . . , |V |. (25)

The proposed sampling scheme is defined as follows:

Step 1:Letf = {f1, . . . , f|V |} be initialized according to
fi = I{i∈x}.
Obtain one sample fromV according to the distri-
bution θ0|f . Let the obtained sample be denoteds;
of course, one and only one element ofx is equal to
s.
Locate the positiont of s in x; that is, findt such
that xt = s. Setπ(1) = t.
Setfs = 0 (preventingxt from being sampled again).
Set i = 2.

Step 2:Obtain a samples′ from S, according to the distri-
bution θs|f , whereθs denotes thesth row of the
transition matrix.
Find t such thatxt = s′. Setπ(i) = t. Setfs′ = 0.

Step 3:If i < N , then sets← s′, seti← i + 1, go back to
Step 2; otherwise, stop.

1) Sampling Distribution:Before deriving the form of the
distribution R, let us begin by writing the target distribution
P[π|x, θ] explicitly. Using Bayes law,

P[π|x, θ] =
P[x|π, θ] P[π]

P[x|θ]
, (26)

since π does not dependa priori on θ. Based on our
assumption that all permutations are equiprobable we have
P [π] = I{π∈ST }/T !. Noticing that the denominator in (26) is
just a normalizing constant independent ofπ, we have

P[π|x, θ] ∝ I{π∈St} P[x|π, θ]

= I{π∈ST }

(
θ0,xπ(1)

T∏

t=2

θxπ(t−1),xπ(t)

)
.(27)

For the sake of notational economy, we will write simply
R[π] to representR[π|x, θ]. The sequential nature of the
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sampling scheme suggests a factorization of the form

R[π] = R[π(1)] R[π(2)|π(1)] R[π(3)|π(2), π(1)]

· · · × R[π(N)|π(N − 1), . . . , π(1)]. (28)

For Step 1 of the sampling scheme, it is clear that, for
π(1) = 1, . . . , T ,

R[π(1)] ∝ θ0,xπ(1)
. (29)

For thei-th iteration, we have,

R[π(i)|π(i − 1), . . . , π(1)]

∝ θxπ(i−1), xπ(i)
I{π(i)/∈{π(i−1),...,π(1)}},

where the indicator term simply expresses thatπ(i) cannot
be equal to one of the previous samples,π(i − 1), . . . , π(1).
Observe that the normalization constant for this distribution
can be expressed as

|V |∑

j=1

θxπ(i−1),jfj , (30)

wherefj = 1 if xt = j for somet /∈ {π(i − 1), . . . , π(1)}.
Thus, for thei-th iteration we can write

R[π(i)|π(i− 1), . . . , π(1)]

= θxπ(i−1),xπ(i)
φi(π(i− 1), . . . , π(1))

×I{π(i)/∈{π(i−1),...,π(1)}}, (31)

with

φi(π(i− 1), . . . , π(1)) =




∑

t/∈{π(i−1),...,π(1)}

θxπ(i−1),xt




−1

.

Inserting (29) and (31) into (28), we finally have

R[π] ∝[
θ0,xπ(1)

T∏

t=2

θxπ(t−1),xπ(t)

][
T∏

t=2

φt(π(t− 1), . . . , π(1))

]

×
[

T∏

t=2

I{π(t)/∈{π(t−1),...,π(1)}}

]
. (32)

Note that the third factor in the r.h.s. of (32) is simply the
indicator thatπ is a permutation,i.e., is equal toI{π∈ST }, for
any π ∈ {1, ..., T}T .

Dividing (27) by (32) we obtain the correction factorz for a
permutation sampleπ generated using this sequential scheme
as

z =

(
T∏

i=2

φi(π(i− 1), . . . , π(1))

)−1

=

T∏

i=2

∑

t/∈{π(i−1),...,π(1)}

θxπ(i−1),xt .

With this quantity in hand, we have all the ingredients needed
to produce IS estimateŝα0,t′ andα̂t′,t′′ . Notice that computing
the termsφi, and thus computingz, is easy since these
factors are the normalization terms for the distributionsθs|f ,
which are already computed while performing each iteration
of Step 2. Thus, we just need to store the product of these
normalizing constants to finally obtain the weightz.

2) Known Endpoints:In the case where the endpoints are
known, we fix π(1) = 1, π(T ) = T , and setfx1 = 0
and fxT = 0 in Step 1; the remainder of the procedure
is unchanged. Based on these constraints, the importance
sampling weight takes a slightly different form:

z = θ0,x1 θxπ(T−1),xT

T−1∏

i=2

∑

t/∈{π(i−1),...,π(1)}

θxπ(i−1),xt . (33)

B. Other Sampling Schemes

In addition to the causal sampling scheme that we have just
described, we have also developed other sampling schemes
that work in a hierarchical, rather than sequential, fashion.
For the sake of space, we refrain from describing these other
sampling schemes; detailed descriptions can be found in [24].
In particular, we have developed a two-stage hierarchical
scheme and a fully hierarchical scheme. In the two-stage
method, the first stage samples from the collection of all
possible transitions occurring in a path; then the second stage
samples from the distribution on all arrangements of these
transitions, to form a permutation. In the fully hierarchical
method, the first stage samples a suitable set of transitions, say
G1; then, the following stage samples a suitable collection of
pairs of elements ofG1, yielding a collection of quadruples,G2,
and the procedure is repeated until a permutation is obtained.

A detailed comparison of these sampling schemes with
the causal sampler described above is presented in [24].
Empirically, we find that the causal sampler performs the best
(lowest approximation error for a fixed number of importance
samples), and so we use this sampling scheme for the re-
mainder of the paper. Moreover, our original motivation for
resorting to Monte Carlo methods was to improve the speed
of computation of our algorithm. The causal sampling scheme
has complexity which is linear in the length of the path to be
sampled, and hence very clearly meets our needs.

V. M ONOTONICITY AND CONVERGENCE

Well-known convergence results due to Wu and Boyles [25],
[26] guarantee convergence of our EM algorithm when the E-
step calculation is performed exactly. By choosingθk+1 =
argmaxθ Q(θ; θk) in the M-step, our iterates satisfy the
monotonicity property:

Q
(
θk+1; θk

)
≥ Q

(
θk; θk

)
. (34)

The marginal log-likelihood (4) is continuous in its parameters
θ and it is bounded above. In this setting, the monotonicity
property (34) guarantees that each exact EM update monoton-
ically increases the marginal log-likelihood, so the EM iterates
converge to a local maximum.

When Monte Carlo methods are used in the E-step, mono-
tonicity is no longer guaranteed since the M-step solves

θ̂
k+1

= arg maxθ Q̂
(
θ; θk

)
, whereQ̂ is defined analogously

to Q but with termsᾱn,k
t′,t′′ and ᾱn,k

0,t′ replaced byα̂n,k
t′,t′′ and

α̂n,k
0,t′ , their corresponding importance sampling approxima-

tions. Consequently, care must be taken to ensure thatQ̂
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approximatesQ well enough so that the EM algorithm is not
swamped with error from the Monte Carlo estimates.

To illustrate this issue, consider the following synthetic
example. We generate 40 co-occurrence observations by taking
a random walk on a graph with 140 vertices. Each co-
occurrence has between 4 and 8 vertices. Figure 1(a) plots

Q(θk; θk−1) for the exact E-step, along witĥQ(θ̂
k+1

; θ̂
k
) and

Q(θ̂
k+1

; θ̂
k
) for the Monte Carlo EM algorithm using only 10

importance samples per co-occurrence. AlthoughQ̂(θ̂
k+1

; θ̂
k
)

increases at each iteration,Q(θ̂
k+1

; θ̂
k
) clearly does not and

the monotonicity property does not hold. This is apparent in
Figure 1(b), where the dash-dot line shows the progress of the
marginal log-likelihood (our optimization criterion) forthe 10
sample Monte Carlo EM algorithm. When enough importance
samples are used the Monte Carlo EM algorithm performs
comparably to the exact EM algorithm; see the dashed line
in Figure 1(b) corresponding to a Monte Carlo EM algorithm
using 1000 importance samples per co-occurrence. All three
instances of the EM algorithm used in this example start from
the same initialization.

Recently, researchers have considered the question of how
many importance samples should be used in a Monte Carlo
E-step [19]–[21], [27]. The goal is to balance monotonicity
and computational efficiency by using enough samples to have
a good chance at monotonicity while not using excessively
many samples. Booth et al. [21] argue that if the same number
of importance samples is used at each EM iteration, then
the algorithm will eventually be swamped by Monte Carlo
error and will not converge. They also suggest requiring that
a convergence criterion be satisfied on multiple successive
iterations since the criterion may be met prematurely due to
poor Monte Carlo approximations.

Fort and Moulines consider asymptotic convergence of
Monte Carlo EM in [20]. In particular, they prove consistency
of the Monte Carlo EM for curved exponential families using
various forms of the ergodic theorem for Markov chains under
the assumption that the number of Monte Carlo samples grows
at a suitable rate with respect to the number of EM iterations.

Caffo et al. [27] propose a method for automatically
adapting the number of Monte Carlo samples used at each
EM iteration. Let ∆(θk+1) = Q(θk+1; θk) − Q(θk; θk)
and ∆̂(θk+1) = Q̂(θk+1; θk) − Q̂(θk; θk). Recall that
L importance samples are used to calculate the terms in
Q̂. The algorithm of Caffo et al. is based on a Central
Limit Theorem-like approximation in which they show that√

L
(
∆̂(θ̂

k+1
) − ∆(θ̂

k+1
)
)

converges in distribution to the
standard normal. Observe that the monotonicity property (34)

is equivalent to the condition∆(θ̂
k+1

) ≥ 0. Although

∆(θ̂
k+1

) cannot be computed without computing the exact
sufficient statistics{ᾱn,k

t′,t′′} and {ᾱn,k
0,t′}, we can compute

∆̂(θ̂
k+1

). Their scheme then amounts to increasing the num-

ber of Monte Carlo samples until̂∆(θ̂
k+1

) > ǫ for a user-
specified ǫ > 0. Then, applying an asymptotic standard
normal tail approximation, they obtain a statement of the

form Pr
(
∆̂(θ̂

k+1
)−∆(θ̂

k+1
) ≥ ǫ

)
≤ δ(ǫ). Based on this
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Fig. 1. An example with simulated observations illustrating that the Monte
Carlo EM algorithm may not result in monotonic increase of the marginal
log-likelihood if too few Monte Carlo samples are used. The solid line in

(a) isQ(θk+1;θk) for exact EM iterations, the dashed line iŝQ(θ̂
k+1

; θ̂
k

)

and the dash-dot line isQ(θ̂
k+1

; θ̂
k

) for Monte Carlo EM iterations using
only 10 samples. Even thougĥQ increases monotonically,Q may not be
monotonic for the Monte Carlo EM algorithm. Figure (b) depicts the marginal
log-likelihood for exact EM iterates and for two versions ofthe Monte Carlo
EM. Monte Carlo EM performance closely resembles that of theexact EM
algorithm when sufficiently many importance samples are used.

statement they claim that monotonicity holds with probability
at least1− δ(ǫ). They further remark that if a differentǫk is
chosen at each iteration, so that

∑∞
k=1 δ(ǫk) <∞, then, by the

Borel-Cantelli Lemma,Pr
(
∆̂(θ̂

k
)−∆(θ̂

k
) ≥ ǫk i.o.

)
= 0,

so there exists aK > 0 such that∆̂(θ̂
k
)−∆(θ̂

k
) < ǫk for all

k ≥ K with probability 1; i.e., eventually every EM update is
monotonic. Of course, in practice, the algorithm is terminated
after a finite number of iterations, so we may never reach the
stage where all iterates are monotonic.

Notice that for the monotonicity condition∆(θ̂
k+1

) ≥ 0 to
truly hold in the above framework, the events
{
∆̂(θ̂

k+1
)−∆(θ̂

k+1
) ≤ ǫ

}
and

{
∆̂(θ̂

k+1
) ≥ ǫ

}

must occur simultaneously. Because the probabilistic bound
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above only addresses one of these events we refer to this
type of result as guaranteeing an(ǫ, δ)-probably approximately
monotonicupdate, or PAM for short. More generally, an(ǫ, δ)-
PAM result states that with probability at least1 − δ, the

update will beǫ-approximately monotonic;i.e., ∆̂(θ̂
k+1

) −
∆(θ̂

k+1
) ≤ ǫ implies ∆(θ̂

k+1
) ≥ −ǫ, because, by definition,

∆̂(θ̂
k+1

) ≥ 0.
Rather than resorting to asymptotic approximations to ob-

tain such a result, we can take advantage of the specific form
of Q in our problem to obtain the finite-sample PAM result
presented next. Recall that independent importance samples
are drawn for each co-occurrence observation in the Monte
Carlo E-step. Denote byLn the number of importance samples
used to compute sufficient statistics for observationx(n). The
computational complexity of the exact E-step computation
for this observation requiresTn! operations (enumerating all
permutations ofx(n)), and thus increases with the size of
the co-occurrence. Similarly, we should expect that larger
observations will require more importance samples for two
reasons: 1) there are more sufficient statistics associatedwith
this observation (T 2

n in total), and 2) there are more ways to
shuffle these observations.

In the previous section we derived closed form ex-
pressions for the importance sample weights,zi =
P[πi|x, θ]/R[πi|x, θ], whereP is the target distribution andR
is the importance sampling distribution. A key assumption was
made thatP is absolutely continuous with respect toR; that is,
P[π|x, θ] = 0 for every permutationπ with R[π|x, θ] = 0. We
adopt the convention0/0 = 0 so thatzi = 0 for such samples.
This guarantees thatzi < ∞. The bounds below depend on
the quality of our importance sample estimators as gauged by

bn = max
π∈STn

P[π|x(n), θ]

R[π|x(n), θ]
. (35)

Because the setSTn is finite, P[π|x(n), θ] and R[π|x(n), θ]
have finite support, and the maximum is well-defined (finite).
If R matches the target distributionP well thenbn should not
be very large.

There is one other subtlety that we must introduce for our
bounds. Because the terms ofQ̂(θ; θk) have factorslog θi,j

andlog θ0,i, in practice we typically boundθi,j andθ0,i away
from zero to ensure that̂Q does not go to−∞. This is easily
accomplished with a Dirichlet prior, as discussed after the
theorem below. Thus, for the theorem we will assume that
θk

i,j ≥ θmin andθk
0,i ≥ θmin for some0 < θmin < |V |−1. The

upper bound onθmin ensures it is still possible to satisfy the
constraints (1).

We have the following finite-sample PAM result for our
Monte Carlo EM algorithm.

Theorem 1:Let ǫ > 0 andδ > 0 be given and assume there
existsθmin ∈ (0, |V |−1) such thatθk

i,j ≥ θmin andθk
0,i ≥ θmin

for all i andj. If

Ln =
2N2T 4

nb2
n | log θmin|2
ǫ2

log

(
2T 2

n

1− (1− δ)1/T

)
(36)

importance samples are used for themth observation then

∆̂(θ̂
k+1

)−∆(θ̂
k+1

) < ǫ with probability greater than1− δ.

The proof of Theorem 1 appears in Appendix . Because

∆̂(θ̂
k+1

) ≥ 0 by definition, the theorem guarantees that

∆(θ̂
k+1

) > −ǫ with probability greater than1− δ.
Remark 1: If the EM algorithm is initialized withθ0

i,j >
0 (i.e., all entries initialized with positive values), thenall
finite iterates will also be bounded away from zero. However,
the iterates may tend arbitrarily close to zero, violating the
assumption of the theorem. This problem can be resolved
by using a Dirichlet prior withui,j = c > 1, for all i, j,
effectively adding a bit of mass to all possible transitions(see
Section III-F for discussion of priors). For example, taking
c = 2 has the effect of assuming one observation of each
and every transition. The prior places a small amount of mass
on every transition, and results in EM iterates that satisfythe
lower boundθmin := 1

|V |(1+N) . Recalling the M-step formula
using the Dirichlet prior (19) and takingu0,i = 2 for all i
produces

θk+1
0,i =

1 +
N∑

n=1

Tn∑

t′=1

ᾱn,k
0,t′χ

(n)
t′,i

|V |∑

i=1

(
1 +

N∑

n=1

Tn∑

t′=1

ᾱn,k
0,t′χ

(n)
t′,i

) ≥ 1

|V |(1 + N)

where the inequality follows by noting that the minimum of
the numerator is1 and the denominator is bounded above by
|V |(1+N) since all the summands of

∑N
n=1

∑Tn

t′=1 ᾱn,k
0,t′χ

(n)
t′,i

lie in the set[0, 1], and for eachn at most oneχ(n)
t′,i, t′ =

1, . . . , Tn is non-zero. A similar bounding argument shows
that θk+1

i,j ≥ 1
|V |(1+N) when ui,j = 2 for all i, j. Observe

that the incorporation of the prior does not alter the proof of
Theorem 1 since the prior terms (i.e., log of the Dirichlet prior)

in ∆̂(θ̂
k+1

) and ∆(θ̂
k+1

) are independent of the sufficient
statistics and thus cancel each other. Note that this choiceof
prior results in the following requirement on the number of
importance samples

Ln ≥
2N2T 4

nb2
n [log(|V |(1 + N))]2

ǫ2
log

(
2T 2

n

1− (1− δ)1/N

)
.

(37)
Finally, we also point out that if two verticesi and j do not
co-occur in any of the observations, then one can setθ0

i,j = 0,
effectively eliminating it from further consideration. This will
not affect the EM algorithm or the bounds above. However,
if one suspects that the observations do not necessarily reflect
all possible paths, then it may be sensible to use the Dirichlet
prior in such situations.

Recall that exact E-step computation requiresTn! operations
for the nth observation. The bound above stipulates that
the number of importance samples required is proportional
to T 4

n log T 2
n . Generating one importance sample using the

causal sampling scheme requiresTn operations, and thus, the
computational complexity of a PAM Monte Carlo update only
depends onT 5

n log T 2
n , which clearly demonstrates that the

computational complexity of the Monte Carlo E-step depends
polynomially onTn in comparison to exponential dependence
for the exact E-step.
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To put this result in perspective, observe that the value of
Ln given by (36) is roughly a factor ofN away from the value
we would expect based on an asymptotic variance calculation.
Ignoring constants and log terms, for fixedθ we have

Var
(
∆̂(θ)

)
≈ Var




N∑

n=1

Tn∑

t′,t′′=1

α̂n,k
t′,t′′ +

N∑

n=1

Tn∑

t′=1

α̂n,k
0,t′




=

N∑

n=1

Var




Tn∑

t′,t′′=1

α̂n,k
t′,t′′ +

Tn∑

t′=1

α̂n,k
0,t′



 ,

since independent sets of importance samples are used to
calculate sufficient statistics for different observations. It is
easily shown that the variance of an individual approximate
statistic α̂n,k

t′,t′′ or α̂n,k
0,t′ decays according to the parametric

rate; i.e., Var(α̂n,k
t′,t′′) = O(1/Ln). In total, there areT 2

n

sufficient statistics for thenth observation, and they are all
potentially correlated since they are functions of the sameset
of importance samples. Then we have

Var
(
∆̂(θ)

)
= O

(
N∑

n=1

(
T 2

n

)2

Ln

)
.

To drive Var
(
∆̂(θ)

)
down to a constant level, independent of

N and Tn, we needLn ∝ NT 4
n . The additional factor ofN

in our bound is essentially an artifact from the union bound.
Note that if we use differentδk at each EM iteration, chosen

such that
∑∞

k=1 δk < ∞, then by the Borel-Cantelli Lemma

one can argue thatPr
(
∆(θ̂

k
) < 0 i.o.

)
= 0. In other words,

eventually all EM iterates result in a monotonic increase of
the marginal log-likelihood.

In addition to demonstrating that the Monte Carlo EM al-
gorithm has polynomial computational complexity, this bound
gives a useful guideline for determining how many importance
samples should be used. However, because they involve worst-
case analysis, the number of samples dictated by this bound
tends to be on the conservative side. For example, in the
Internet experiments described in Section VI,N = 249 and
the average path length is 17 hops. Theorem 1 suggests that
roughly 10 billion importance samples should be used per
observation. However, in our experiments we find that the
algorithm exhibits reasonable performance on this data set
using as few as2, 000 samples per observation. Of course, in
practice, the only way to know the value ofbn is to enumerate
all permutations, so this bound cannot be used as an explicit
guideline.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ournetwork
inference from co-occurrences(NICO) algorithm on simulated
data and on data gathered from the public Internet. In the
results reported below, network reconstructions are obtained
by first estimating an initial state distribution and probability
transition matrix via the EM algorithm. Then, we compute the
most likely order of each observation according to the inferred
model and use this ordering to reconstruct a feasible network.
The EM algorithm cannot be guaranteed to converge to a

global maximum (the marginal log-likelihood is not concave)
and there may even be multiple global maxima. To address
this issue, we rerun the EM algorithm from multiple random
initializations and report the collective results.

We compare the performance of our algorithm with that
of the frequency method(FM), defined in [1] and mentioned
in Section I. The FM also reconstructs a network topology
by estimating an order of the vertices in each observation.
This method individually determines each path ordering in-
dependently by sorting the elements in the path according
to how correlated each vertex is with the endpoints of the
path. It is possible that multiple vertices may receive identical
FM scores, in which case their sorting would be arbitrary
(one could exchange elements with identical scores without
violating the FM criteria). In fact, we observe this phenomenon
in many of our experiments. Ties are resolved by choosing
a random order for elements with identical scores. Multiple
restarts are also performed using the FM, yielding a collection
of feasible solutions.

The quality of a network reconstruction is determined by a
quantity we term theedge symmetric differenceerror. Because
the nodes in the network have unique labels, the goal of
any reconstruction scheme is to determine which vertices are
connected by an edge. The edge symmetric difference error
is defined as the sum of the number of false positives (edges
appearing in the reconstructed network which do not exist in
the true network) and the number of false negatives (edges in
the true network not appearing in the reconstructed network).

A. Simulated Networks

Our synthetic data is obtained as described next. A network
is generated according to a random geometric graph model:
50 vertices are thrown at random in the unit square, and
two vertices are connected with an edge if the Euclidean
distance between them is less than or equal to

√
log(50)/50.

This threshold guarantees that the graph is connected with
high probability [28]. Groups of nodes are randomly chosen
as sources and destinations, transmission paths are generated
between each source-destination pair according to either a
shortest path or random routing model, and then co-occurrence
observations are formed from each path. We keep the number
of sources fixed at 5 and vary the number of destinations be-
tween 5 and 40, to see how the number of observations effects
performance. Each experiment is repeated on 100 different
topologies, using 10 restarts of both NICO and the FM per
configuration. Exact E-step calculation is used for observations
with Tn ≤ 12, and causal importance sampling (2000 samples)
is used for longer paths. The longest observation in our data
was obtained by random routing and hasTn = 19 (notice that
19! ≈ 1017). No prior is used in any of the results reported
here. In our experience, we found little practical difference
between the MLE and the MAP estimate based on a Dirichlet
prior with ui,j = 2, as discussed in Remark 1.

Figure 2 plots edge symmetric difference performance for
synthetic data generated using (a) shortest path routing and
(b) random routing. The edge symmetric difference error is
computed between the inferred network and the graph obtained
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(b) Random routes

Fig. 2. Edge symmetric differences between inferred networks and the
network one would obtain using co-occurrence measurementsarranged in
the correct order. Performance is averaged over 100 different network con-
figurations. For each configuration 10 NICO and FM solutions are obtained
via different initializations. We then choose the NICO solution yielding the
largest likelihood, and compare with both the sparsest and clairvoyant best
FM solution.

from correctly ordered observations. Of the 10 solutions
corresponding to different NICO initializations, we use the one
based on parameter estimates yielding the highest likelihood
score. For this simulation, the most likely NICO solution also
always resulted in the best edge symmetric difference error.

The FM does not provide a similar mechanism for ranking
different solutions. A possible heuristic would be to choose
the sparsest solution (with fewest edges). The figures show
performance for both this heuristic, and clairvoyantly choosing
the best (lowest error) solution of the 10. In fact, using the
sparsest solution does better than just choosing a FM solution
at random but not as well as using the clairvoyant best. In
these simulations, NICO consistently outperform the FM.

Notice that both algorithms exhibit their worst performance
at an intermediate number of destinations. When very few des-
tinations are used the measured topology closely resemblesa
tree, regardless of the underlying routing mechanism. Relative
frequencies of co-occurrence accurately reflect the network

distance of each internal vertex from the path endpoints. At
the other extreme, when many destinations are used, there
is significant overlap among the co-occurrence observations
which aids in localizing vertices. In general, the FM seems to
be much more sensitive to the amount of data available.

As expected, the FM generally performs better on shortest
path data than it does on random routes. When routes are
generated randomly the corresponding topology is less tree-
like and pair-wise co-occurrence frequencies do not reflect
network distances. Because NICO is not based on a particular
routing paradigm it performs similarly in both scenarios,
possibly even a little better when routing is random.

B. Internet Data

We have also studied the performance of our algorithm on
co-occurrence observations gathered from the Internet. Using
traceroute we have collected data describing roughly 250
router-level paths from sources at the University of Wisconsin-
Madison, theInstituto Superior T́ecnico in Lisbon, and Rice
University to 83 servers affiliated with corporations, univer-
sities, and governments around the world. Our motivation for
using this type of data is two-fold. First,traceroute allows
us to measure the true order of elements in each path so that we
have a ground truth to validate our results against. Second,and
more importantly, the data comes from a real network where,
presumably, paths are not generated according to a first-order
Markov model. This allows us to gauge the robustness of the
proposed model and to evaluate how well it generalizes to
realistic scenarios. The ground truth network contains a total
of 1105 nodes and 1317 edges, and the longest observed path
has length 27.

For this data set we rerun FM and NICO each from 50
random initializations and look at performance across all
solutions rather than focusing on the maximum likelihood or
clairvoyant best. The exact E-step is used to compute sufficient
statistics for paths of up to 9 hops. For paths longer than
9 hops, we use the causal importance sampling described in
Section IV-A, with 2000 samples per observation.

Minimum, median, and maximum edge symmetric differ-
ence errors are shown in Figure 3. Both algorithms have
seemingly high error rates, as there are roughly 1300 links in
the true network. However keep in mind that both algorithms
are attempting to fill in the entries of a roughly1100× 1100
matrix. For 50 networks constructed by choosing a random
order for the elements of each observation the average edge
symmetric difference error was 4300, so both algorithms
are indeed doing considerably better than random guessing.
NICO performance is again noticeably better than that of the
FM; the NICO average error is better than that of the best
FM reconstruction, and the worst case NICO reconstruction
is on par with the average FM performance. We also note
that the number of false positives and false negatives in a
reconstruction using either scheme tend to be roughly equal
(each constituting half of the edge symmetric difference error).

Figure 4 shows statistics for the number of edges in the
reconstructed networks. There is an interesting correlation
between the number of edges and reconstruction accuracy in



13

NICO Freq. Meth
400

450

500

550

600

650

700

E
dg

e 
S

ym
m

et
ric

 D
iff

er
en

ce

Min
Median
Max

Fig. 3. Edge symmetric difference error comparison of NICO and FM on
Internet data. The reported values come from 50 random initializations of
each algorithm.
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Fig. 4. Number of edges in networks reconstructed using eachmethod. The
median number of edges per reconstruction is 1329 for NICO and 1426 for
FM. The true network has 1317 edges, and so it appears that NICO does a
better job of capturing the complexity of the true network.

this example. As seen above, the typical NICO reconstruction
is more accurate, in terms of edge errors, than a FM recon-
struction. NICO also consistently returns a sparser estimate.
The median number of links in a NICO reconstruction is 1329,
whereas the median number of links in a FM reconstruction
is 1426. There are 1317 edges in the true network, so in this
sense the NICO reconstructions more accurately reflect the
inherent level of complexity in the true network.

Marginal log-likelihood values for each of the 50 NICO es-
timates are depicted in Figure 5. The marginal log-likelihood,
given by (4), is the cost function being optimized by the EM
algorithm. In contrast to the experiments with simulated data
reported above, there is no exact correlation between higher
marginal likelihood values and lower edge symmetric differ-
ence error for this example. The topology with the highest
likelihood value results in an edge symmetric difference error
of 627. This is better than the clairvoyant best FM error, but
only average for NICO. The three repetitions which returned
a topology with the lowest symmetric difference error had the
next highest likelihood value, as indicated by the three hollow
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Fig. 5. Marginal log likelihood values for different randominitializations
of NICO, sorted in ascending order. The three hollow circlescorrespond to
the solutions which achieve the lowest edge symmetric difference error of
all NICO trials. The dashed line shows the marginal log likelihood value
computed using the true path orders to estimate a Markov transition matrix.
Most NICO solutions have higher marginal log-likelihood than the true
topology, suggesting that our generative model does not accurately describe
Internet topology data.

circles in the figure. The dashed line shows the likelihood
value based on a transition matrix estimated using the true path
orders as measured bytraceroute. Notice that the majority
of the NICO solutions have a higher marginal likelihood than
the true topology. This suggests that our generative model
may not be the best match for Internet topology data. Still
the overall performance of our algorithm is encouraging.

VII. D ISCUSSION ANDONGOING RESEARCH

This paper presents a novel approach to network inference
from co-occurrence observations. A co-occurrence observation
reflects which vertices are activated by a particular transmis-
sion through the network, but not the order in which they are
activated. We model transmission paths as random walks on
the underlying graph structure. Co-occurrence observations are
modeled as i.i.d. samples of the random walk subjected to a
random permutation which accounts for the lack of observed
path order. Treating the random permutations as latent vari-
ables we derive anexpectation-maximization(EM) algorithm
for efficiently computing maximum likelihood or maximum
a posterioriestimates of the random walk parameters (initial
state distribution and transition matrix).

The complexity of the EM algorithm is dominated by
the E-step calculation which is exponential in the length
of the longest transmission path. In order to handle large
networks, we describe fast approximation methods based on
importance sampling and Monte Carlo techniques. We derive
concentration-style bounds on the accuracy of the Monte Carlo
approximation. These bounds prescribe how many importance
samples must be used to ensure a monotonic increase in
the log-likelihood, thereby guaranteeing convergence of the
algorithm with high probability. The resulting Monte Carlo
EM computational complexity only depends polynomially on
the length of the longest path.
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To obtain a network reconstruction, we determine the most
likely order for each co-occurrence observation according
to the Markov chain parameter estimates, and then insert
edges in the graph based on these ordered transmission paths.
This procedure always produces a feasible reconstruction.The
parameter estimates produced by the EM algorithm may be
useful for other tasks such as guiding an expert to alternative
reconstructions by assigning likelihoods to different permuta-
tions, or predicting unobserved paths through the network as
in [13]. One could also analyze properties of an ensemble of
solutions obtained by running the EM algorithm from different
initializations, and then posit a new set of experiments to be
conducted based on this analysis.

The transition matrix parameterθi,j can be interpreted as
estimates of the probability that a transmission will be passed
from vertex i to j, conditioned on the path reachingi; that
is, θi,j = P[wk+1 = j|wk = i]. In particular, theyare not
estimates of the probability of a link existing fromi to j.
Sinceθ is a stochastic matrix, each row must sum to 1, and
so if vertexi is connected to many other nodes then the unit
mass is being spread over more entries. We can obtain joint
probabilities,P[wk = i, wk+1 = j], via Bayes theorem,

P[wk+1 = j|wk = i] =
P[wk = i, wk+1 = j]

P[wk = i]
,

whereP[wk = i] is the stationary distribution of the chain (not
necessarily equal to the initial state distribution). These joint
probabilities (appropriately scaled versions of the transition
matrix entries) more accurately reflect the likelihood of there
being an edge fromi to j, based on our estimates.

Our future work involves extending and generalizing both
algorithmic and theoretical aspects of this work. In our exper-
iments we found that our current model leads to reasonable
Internet reconstructions, but we feel there is room for im-
provement. For example, the structure of Internet paths may
depend strongly on the destination of the traffic. In fact, one
could partition the co-occurrence data into source-dependent
(or destination-dependent) subsets and learn different Markov
models for each subset (see, e.g., [29]). However, if two or
more sources (respectively, destinations) have similar routes,
then one could potentially obtain a better overall estimate
by pooling observations from the sources. We are currently
investigating models based on “mixtures of random walks”
to account for this added level of dependency. Nevertheless,
although the source-dependent model more accurately reflects
how routing is performed in actual communication systems,
there are scenarios where a single transition matrix estimate
is preferable. For example, a more holistic characterization of
network routing is valuable if one is interested in predicting the
route between a source and destination that was not previously
observed, or if one is interested in predicting the endpoints of
a route given only the activated internal routers [13].

Co-occurrence observations naturally arise from transmis-
sion paths in communication network applications and, to
a degree, in biological, social, and brain networks as well.
However the physical mechanisms driving interactions in the
latter three applications may also correspond to more general
connected subgraph structures such as trees or directed acyclic

graphs. Extending our methods in this fashion is easily accom-
plished in theory, however the computational complexity may
be significantly increased when more general structures are
considered.

In this paper we have also restricted our attention to noise-
free observations. We are also interested in extending our
algorithm to handle the case where observations reflect a
soft probability that a given vertex occurred in the path
rather than hard, “active” or “not active”, binary observations.
This extension is relevant in many applications including the
inference of signal transduction networks (in systems biology)
where co-occurrence observations are themselves the result of
inference procedures run on experimental data.

APPENDIX

There are two main steps in the proof of Theorem 1. First,
we derive a concentration inequality for the importance sample
approximations,̂αn,k

t′,t′′ and α̂n,k
0,t′ . Then we use the inequality

to construct a bound for̂∆(θ̂
k+1

)−∆(θk+1).
Recall the expressions (21) and (22) for importance sam-

ple approximations calculated in the Monte Carlo E-step.

Both are of the general form̂µL =
∑L

i=1 Z(πi)X(πi)∑
L
i=1 Z(πi)

, where

Z : ST → [0, b] and X : ST → {0, 1}, and they are
approximatingµ =

∑
π∈ST

X(π) P[π|x, θ]. The permutations
π1, . . . , πL are i.i.d. samples from the distributionR[π|x, θ].
Note thatE[µ̂L] 6= µ, so standard concentration results such
as Hoeffding’s inequality or McDiarmid’s bounded-differences
inequality do not directly apply;e.g., consider the caseL = 1:

E

[
Z(π1)X(π1)

Z(π1)

]
=

∑

π∈ST

X(π)R[π|x, θ] (38)

6=
∑

π∈ST

X(π)P[π|x, θ]. (39)

We can, however, show that̂µL yields an asymptotically
consistent estimate ofµ. Observe that

E[Z(πi)] =
∑

π∈ST

P[π|x, θ]

R[π|x, θ]
R[π|x, θ] (40)

= 1, (41)

sinceP is a probability distribution onST , and

E[Z(πi)X(πi)] =
∑

π∈ST

P[π|x, θ]

R[π|x, θ]
X(π)R[π|x, θ] (42)

=
∑

π∈ST

X(π)P[π|x, θ] (43)

= µ. (44)

It follows from the strong law of large numbers thatµ̂L → µ
asL→∞.

The following finite-sample concentration inequality
demonstrates that the approximation error,µ̂L − µ, decays
exponentially in the number of importance samples,L.

Proposition 1: Let {(Xi, Zi)} be a sequence of indepen-
dent and identically distributed random variables withXi ∈
{0, 1} andZi ∈ [0, b]. Assume thatE[Zi] = 1 andE[ZiXi] =
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µ, and set̂µL =
∑L

i=1 ZiXi∑L
i=1 Zi

. Then with probability greater than
1− δ,

µ̂L − µ <

√
2b2 log 2

δ

L
. (45)

Proof: From the definitions ofZi andXi, ZiXi ∈ [0, b].
Applying Hoeffding’s inequality [30] yields that for anyt > 0,

Pr

(
L∑

i=1

ZiXi − Lµ ≥ Lt

)
≤ e−2Lt2/b2 , (46)

and for anyt > 0,

Pr

(
L∑

i=1

Zi − L ≤ −Lt

)
≤ e−2Lt2/b2 . (47)

Define the event, Et ={∑L
i=1 ZiXi − Lµ ≥ Lt

}⋃{∑L
i=1 Zi − L ≤ −Lt

}
.

By the union bound,Pr(Et) ≤ 2e−2Lt2/b2 for any t > 0.
The complement ofEt implies that fort ∈ (0, 1),

µ̂L − µ =

∑L
i=1 ZiXi − Lµ
∑L

i=1 Zi

+
Lµ

∑L
i=1 Zi

− µ (48)

<
Lt

L(1− t)
+

Lµ

L(1− t)
− µ (49)

=
t(1 + µ)

1− t
. (50)

It follows that
{

µ̂L − µ ≥ t(1+µ)
1−t

}
⊆ Et, and so

Pr
(
µ̂L − µ ≥ t(1+µ)

1−t

)
≤ Pr(Et) ≤ 2e−2Lt2/b2 . Sinceµ̂L ≤

1, if t(1+µ)
1−t +µ > 1 thenPr

(
µ̂L − µ ≥ t(1+µ)

1−t

)
= 0, and the

proposition holds trivially. Thus, without loss of generality
we consider the caset(1+µ)

1−t + µ ≤ 1, or equivalently,t ≤
(1−µ)/2. This restriction ont implies t(1+µ)

1−t ≤ 2t, and so we

havePr (µ̂L − µ < 2t) > 1− 2e−2Lt2/b2 . Setδ = 2e−2Lt2/b2

to obtain the desired result.
We apply Proposition 1 to the Monte Carlo approximations
{α̂n,k

t′,t′′} and{α̂n,k
0,t′} as follows. Recall that the Monte Carlo

weights are bounded according tozi ∈ [0, bn], with bn as
defined in (35). Define the event

Bn
δ′,Ln

=




Tn⋃

t′,t′′=1
t′ 6=t′′




α̂n,k
t′,t′′ − ᾱn,k

t′,t′′ ≥

√
2b2

n log 2
δ′

Ln









⋃



Tn⋃

t′=1




α̂n,k
0,t′ − ᾱn,k

0,t′ ≥

√
2b2

n log 2
δ′

Ln







 .

This is a union over2
(
Tn

2

)
+ Tn = T 2

n events, each of which
holds with probability at mostδ′ according to Proposition 1.
By the union bound it follows thatPr(Bn

δ′,Ln
) ≤ T 2

nδ′. Next,
let Cn

δ′,Ln
denote the event that

Tn∑

t′,t′′=1

(
α̂n,k

t′,t′′ − ᾱn,k
t′,t′′

)
+

Tn∑

t′=1

(
α̂n,k

0,t′ − ᾱn,k
0,t′

)

≥ T 2
n

√
2b2

n log 2
δ′

Ln
,

and observe thatCn
δ′,Ln

⊆ Bn
δ′,Ln

, thereforePr(Cn
δ′,Ln

) ≤
Pr(Bn

δ′,Ln
) ≤ T 2

nδ′. Let δ′′ = T 2
nδ′ and letL > 0 be a value

to be determined later. For eachn = 1, . . . , N , set

Ln =
2LT 4

nb2
n log

2T 2
n

δ′′

log 1
δ′′

, (51)

so that

T 2
n

√
2b2

n log 2
δ′

Ln
= T 2

n

√
2b2

n log
2T 2

n

δ′′

Ln
=

√
log 1

δ′′

L
. (52)

Then with probability greater than1− δ′′,

Tn∑

t′,t′′=1

(
α̂n,k

t′,t′′ − ᾱn,k
t′,t′′

)
+

Tn∑

t′=1

(
α̂n,k

0,t′ − ᾱn,k
0,t′

)
<

√
log 1

δ′′

L
.

(53)
Recall that χ

(n)
t′,i are indicator variables satisfying

∑|V |
i,j=1 χ

(n)
t′′,iχ

(n)
t′,j = 1 and

∑|V |
i=1 χ

(n)
t′,i = 1. Multiplying each

term in (53) by the appropriate sum of indicators, rearranging
terms, and recalling that importance sample estimates for
different observations are statistically independent, wehave
that with probability greater than(1− δ′′)T ,

N⋂

n=1





Tn∑

t′,t′′=1

|V |∑

i,j=1

(
α̂n,k

t′,t′′ − ᾱn,k
t′,t′′

)
χ

(n)
t′′,iχ

(n)
t′,j

+

Tn∑

t′=1

|V |∑

i=1

(
α̂

(n)
0,t′ − ᾱ

(n)
0,t′

)
χ

(n)
t′,i <

√
log 1

δ′′

L



 ,

which implies that with probability greater than(1− δ′′)N ,

N∑

n=1

Tn∑

t′,t′′=1

|V |∑

i,j=1

(
α̂n,k

t′,t′′ − ᾱn,k
t′,t′′

)
χ

(n)
t′′,iχ

(n)
t′,j

+

N∑

n=1

Tn∑

t′=1

|V |∑

i=1

(
α̂n,k

0,t′ − ᾱn,k
0,t′

)
χ

(n)
t′,i

< N

√
log 1

δ′′

L
.

Finally, set 1 − δ = (1 − δ′′)T and multiply through by
| log θmin| > 0. Then with probability greater than1− δ,

N∑

n=1

Tn∑

t′,t′′=1

|V |∑

i,j=1

(
α̂n,k

t′,t′′ − ᾱn,k
t′,t′′

)
χ

(n)
t′′,iχ

(n)
t′,j | log θmin|

+

N∑

n=1

Tn∑

t′=1

|V |∑

i=1

(
α̂n,k

0,t′ − ᾱn,k
0,t′

)
χ

(n)
t′,i | log θmin|

< N | log θmin|

√
− log

(
1− (1 − δ)1/N

)

L
. (54)
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To complete the proof, observe that

∆̂(θ̂
k+1

)−∆(θ̂
k+1

)

=

N∑

n=1

|V |∑

i,j=1

Tn∑

t′,t′′

(
α̂n,k

t′,t′′ − ᾱn,k
t′,t′′

)
χ

(n)
t′′,iχ

(n)
t′,j

(
log θ̂k+1

i,j − log θk
i,j

)

+

N∑

n=1

|V |∑

i=1

Tn∑

t′=1

(
α̂n,k

0,t′ − ᾱn,k
0,t′

)
χ

(n)
t′,i

(
log θ̂k+1

0,i − log θk
0,i

)
. (55)

By assumption,θmin ≤ θk
i,j ≤ 1 for each (i, j) ∈ V 2. It

follows that

log θ̂k+1
i,j − log θk

i,j ≤ − log θmin = | log θmin|. (56)

Similarly, log θ̂k+1
0,i − log θk

0,i ≤ | log θmin| for each i ∈ V .
Apply these bounds in (55) to find that the right hand side of
(55) is no greater than the left hand side of (54). Set

ǫ = N | log θmin|

√
log 1

1−(1−δ)1/N

L
. (57)

Then ∆̂(θ̂
k+1

) −∆(θ̂
k+1

) < ǫ with probability greater than
1 − δ. Solve forL in (57) and plug the resulting value back
into (51) withδ′′ = 1−(1−δ)1/N to obtain the desired result.
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