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Abstract— The discovery of networks is a fundamental prob-
lem arising in numerous fields of science and technology, iha-
ing communication systems, biology, sociology and neurdsace.
Unfortunately, it is often difficult, or impossible, to obtain data
that directly reveal network structure, and so one must infe a
network from incomplete data. This paper considers inferrng
network structure from “co-occurrence” data: observations that
identify which network components (e.g., switches, routes, genes)
carry each transmission but do not indicate the order in whid
they handle the transmission. Without order information, the
number of networks that are consistent with the data grows
exponentially with the size of the network (i.e., the number
of nodes). Yet, the basic engineering/evolutionary pringiles
underlying most networks strongly suggest that not all data
consistent networks are equally likely. In particular, nodes that
co-occur in many observations are probably closely conneetl.
With this in mind, we model the co-occurrence observations
as independent realizations of a random walk on the network,
subjected to a random permutation to account for the lack of
order information. Treating permutations as missing data, we
derive an expectation-maximization (EM) algorithm for estimating
the random walk parameters. The model and EM algorithm sig-
nificantly simplify the problem, but the computational complexity
of the reconstruction process does grow exponentially in &
length of each transmission path. For networks with long pals
the exact E-step may be computationally intractable. We prpose
a polynomial-time Monte Carlo EM (MCEM) algorithm based
on importance sampling and derive conditions which ensure
convergence of the algorithm with high probability. Simulaions
and experiments with Internet measurements demonstrate th
promise of this approach.

Index Terms—EM algorithm, graphical models, importance
sampling, Markov models, network inference, network tomoga-

phy.

I. NETWORKINFERENCE ANDCO-OCCURRENCE
OBSERVATIONS

routing, transmission patterns, and information flow [H]. [
Characteristics of biological networks provide insightoin
the functional roles played by different genes, proteims] a
metabolites in biological systems [3], [4]. Social network
analysis can be used to gain a deeper understanding of inter-
actions, dynamics, and the structure of organizations[{B],
Functional connectivity networks of brain regions are &tdd

to better understand coupling and interaction betweerrmifft
neuronal colonies [7]-[9]. Obtaining or inferring the stture

of networks from experimental data precedes any such dsalys
and is thus a basic and fundamental task, critical to many
applications.

Unfortunately, measurements which directly reveal nekwor
structure are often beyond experimental capabilities e ar
excessively expensive. This paper considers inferring/omwt
structure from observations that identify which networkneo
ponents (e.g., switches, routers, genes) carry each trssism
but do not indicate the order in which they handle the trassmi
sions. Mathematically, the underlying network structues c
be represented as a directed graph, and the vertices idvolve
in each transmission form a connected subgraph. The observa
tions only reflect which subset of vertices are involved,@r-*
occur”, in each transmission; not their inter-connecfivite
refer to such observations &®-occurrencesCo-occurrence
observations arise naturally in each of the applicatiorasre
mentioned above.

Transmissions over telecommunication networks are ahrrie
by links and routers/switches which form a path between the
source and terminal nodes. In some cases, it is impossible
to directly observe the order in which the routers/switches
handle each transmission, since sensors are geographicall
distributed, making precise time-synchronization imgicad.

The so-callednternally-sensed network tomograppyoblem

The study of complex networked systems is an emergiggecifically aims at recovering network structure from un-

field, impacting nearly every area of engineering and s@engrdered lists of network elements along transmission paths
including the important domains of communication systemg].

biology, sociology, and cognitive science. The analysis of Bjological signal transduction networks describe fundame
communication networks enables a better understandingt8f cell functions such as growth, metabolism, differetitia,
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linked to or from another web page, or which people wemaultiple paths between the same pair of endpoietg,(for
diagnosed with a common disease on the same day. Slmdd-balancing) the algorithm may fail. Tle&raphalgorithm
measurements are readily available, but do not necessaofKubicaet al.[12] inserts weighted edges between every pair
reflect the temporal or other natural order of occurrencef vertices which co-occur in some observation. This apgioa
Researchers in this area have considered the problemspafduces solutions which are typically much denser than
reconstructing networks from co-occurrence data and aofgusidesired. Because both of these methods are based on husyristi
the inferred network to predict potential future co-ocemces the results they produce are not easily interpreted. Alsesd
[12]. heuristics do not readily lend themselves to incorporating
Functional magnetic resonance imagi(iyIRI) provides a side information. A different approach, introduced by ihest
mechanism for measuring activity in the brain with high gdat and Hero in [13], involves averaging over an ensemble of
resolution. By observing which regions of the brain coaxat® feasible topologies sampled uniformly from the feasible se
while a patient is performing different tasks, we can obtaim general there is an enormous number of feasible topdogie
multiple co-occurrence observations. Although fMRI offer(exponential in the problem dimensions) exhibiting a wide
high spatial resolution, its limited temporal resolutioakes it variety of characteristics, and it is not clear that an ayera
impractical to obtain complete order information. Magmsto of feasible topologies will be optimal in any sense. These
cephalography and electroencephalography measuretaativi observations have collectively motivated our developrant
the brain with higher temporal resolution but only provida more general approach to network reconstruction which we
coarse spatial resolution. Consequently, these techsidoe simply termnetwork inference from co-occurrences NICO
not allow a precise determination of which functional rewio for short.
are active during a given task. Existing techniques for ob- Our approach is based on a generative model where paths
taining functional co-activation networks either involveute- are realizations of a random walk on the underlying graph. A
force measurement or use crude correlation methods (seed@]occurrence observation is obtained by randomly shgfflin
and references therein). each path to account for lack of observed order information.
In this article, we focus on observations arising frorBased on this model, network inference reduces to estimat-
transmissions in a network. Specifically, each co-occueening the parameters governing the random walk. Then, these
observation corresponds to a pathrough the network. We parameter estimates determine the most likely order foh eac
observe the vertices comprising each path but not the orderoccurrence.
in which they appear along the path. In certain applicationsThe following interpretation motivates our shuffled random
the endpoints (source and destination) of the path may &sovwmalk model. Imagine sitting at a particular vertex in the
observed. network and observing a series of transmissions pass byg. Thi
Our goal is to identify which pairs of vertices are directlyertex is only connected to a handful of other vertices in the
connected via an edge, thereby learning the structure of #hetwork, so regardless of its final destination, a transonss
network. A feasible graphis one which agrees with thearriving at this vertex must pass through one of the neighigor
observations;i.e, a graph which contains a directed patlvertices next. By recording how many arriving transmission
through the vertices in each co-occurrence observatiorerGi are passed to each neighbor over a period of time, it is
a collection of co-occurrence observations, a feasibl@lgrapossible to calculate the empirical probability of transsion
is easily constructed by assigning an order — any order, tin each neighbor. Obtaining such probabilities at eachexert
fact — to the vertices in each observation, and then ingertiwould provide a tremendous amount of information about
directed edges between vertices which are adjacent in the network. Unfortunately, co-occurrence observatianaak
assigned order. In light of the many possible orders for eadirectly reveal transition probabilities and we thereféaee
co-occurrence observation, the number of feasible topedoga challenging inverse problem. This paper develops a formal
grows exponentially in the number and size of observatiorfsamework for estimating local transition probabilitigei a
Without additional assumptions, side information, or priacollection of co-occurrence observations, without makang
knowledge, there is no reason to prefer one feasible togologdditional assumptions about routing behavior or properti
over the others. of the underlying network structure. Experimental results
Previous work on related problems has involved heuristiodi simulated topologies indicate that good performance is
using frequencies of co-occurrence either to assign anr oré®tained for a variety of operating conditions.
to each path [1] or to approximate the probability of tran- A particularly novel aspect of the problem and approach
sitioning from one vertex to another [12]. These approachggroduced in this article is the counterintuitive idea etov-
make stringent assumptions and sacrifice flexibility in otde ering temporal dynamics from non-temporal data. Models of
achieve computational tractability and systematicallgniify information flow and causal signaling are quite common in
a unique solution. Thérequency methoéhtroduced in [1] is problems where one is able to measure both where and when
based on a model where paths from a particular source or tevents occur. However, in the problem considered here, we
particular destination form a tree. This model coincidethwihave no knowledge of the temporal chain of events associ-
the shortest-path routing policy. When the network prosidated with each observation. We leverage correlation among
L _ - __the different activity patterns observed across the nétwor
Throughout this paper a “path” refers to a sequence of \etic

(21,2, ...,a7) such that there is an edge between each adjacent pairtgfgether with the notion that S|m|Iar_act|V|ty patterns are
vertices,z; _; andz;, and no node appears more than once in the sequengresumably caused by a common stimulus, to recover the



dynamics of information flow, a seemingly impossible taskve obtain observationsX = {x() x® ... x(N)} where
Indeed, it is impossible to glean information about dynami(™ = (z{™ #{" .. ’I(TZ)) is a length?}, co-occurrence,
from just one co-occurrence observation, and it is onlyugho indexed in an arbitrary order.
an ensemble of patterns, which we assume are generated bX directed graphG = (V,E) is said to be data-
the same network process, that information flow dynamics agensistent with respect to observatiods if for each
recovered. co-occurrencex(™ e X there exists an ordered path
It is also worth mentioning that the approach discusseg(®) — (wgb%wg"),...,w;’;)) and a permutationr™ =
in this paper d|.ffers conS|de_rany from that of I(_aarmng th%r(n)(m ..., 7™(T,)) such thatwgn) _ I(ﬁ))
structure of a directed graphical model or Bayesian networ ) (n) (n) (1)
a graph where nodes correspond to random variables dn@nd there is an edge from,_, to w, " in the graph for
edges indicate conditional independence relationshig$, [1t = 2, - - -, Ny, that is, (w™), wi") € B.
[15]. A typical aim of graphical modeling is to find a graph Notice that network inference from ordered paths is trivial
corresponding to a factorization of a high-dimensionat di¥Ve can begin with an empty graggh, = (V, E) with E = {}.
tribution which predicts the observations well. In turnese Then, for each ordered observatier™) we update the set of
probabilistic models do not directly reflect physical stues, edges viak — EU(w!™), w™) fort = 2,...,T,. Even if we
and applying such an approach in the context of this proble#n not observe ordered paths, if we observe the permutation
would ignore physical constraints inherent to the obsemat 7™ along with each co-occurrence™, we can use the
that co-occurring vertices must lie along a path in the netwo permutation to recover the correctly ordered observatimh a
We note that, although the Bayesian network paradigm do#gply the same procedure.
not directly fit our problem setup, Teyssier and Koller [16] In practice we do not make ordered observations and we do
describe an approach to Bayesian network structure legrnimot have access to the correct permutations. However, we can
which is similar to the network inference algorithm preseht obtain a feasible reconstruction by associatingpermutation
in this paper. In [16], rather than searching over all Bayesi (of the appropriate length) with each co-occurrence, aed th
network structures, a search is performed over all orderinfpllowing the procedure described above. ThereBreways
of random variables in the model. This simplifies the sear¢h permute the elements af”), so there may be as many as
procedure since it is easier to determine the mostly likeh],_, 7».! feasible reconstructions. Clearly, for largg and
directed acyclic graph that is consistent with a fixed omtgri NV this is a huge set to search over. Moreover, without making
The rest of the paper is organized as follows. In Seedditional assumptions, or adopting some additional rizite
tion Il we introduce notation and formulate the problem petuthere is no reason to prefer one feasible reconstruction ove
Section |l reviews the standard approach to estimating tAaother.
parameters of a random walk when fully observed (ordered)Physical principles governing the development of many nat-
samples are available and presents an EM algorithm for egal and man-made networks suggest that not all feasible net
timating random walk parameters from shuffled observationgorks are equally plausible. Intuitively, if two or more tiees
A Monte Carlo variant of the EM algorithm is described irappear together in many co-occurrences, we expect that they
Section IV for situations where long transmission paths enalkre close in the underlying network topology. Likewise, we
the E-step computationally prohibitive. Section V analyzeexpect that most vertices will only be directly connectedito
convergence of the Monte Carlo EM algorithm. Simulatioamall fraction of the other vertices. Based on this intufiove
results are presented in Section VI and the paper is contlugegopose the following probabilistic model. First, we motted
in Section VII, where ongoing work is also briefly describedinobserved, ordered paths(™, as independent samples of a
first-order Markov chain. The Markov chain is parameterized
by transition probabilitiesd; ; = Plw; = jlw,—1 = ], and
initial state probabilitied)y; = Plw; = i|; we denote byd
We model the network as a simple directed graph= the entire collection of Markov chain parameters. Of course
(V,E), whereV = {1,2,...,|V|} is the set of vertices and these parameters must satisfy the normalization contgtrain
E C V x V is the set of edges. The number of vertices,
|[V|, is considered known, so network inference amounts to
determining the adjacency structure of the graph; that is, Zeij =1
identifying whether or noti, j) € E, for every pair of vertices
(i,7) eV x V. In addition, we assume that the support of the transitionimat
A co-occurrence observatior,C V, is a subset of vertices is determined by the adjacency structure of the underlying
in the graph which simultaneously “occur” when a particularetwork;i.e, 8; ; > 0 if and only if (i, j) € E.
stimulus is presented to the network. For example, whenA co-occurrence observatior, is generated by shuffling
a transmission is made over a communication network,tlze elements of an ordered Markov chain sample, =

for each

Il. PROBLEM FORMULATION

, for eachi =0,1,...,|V|. (1)

subset of routers and switches carry the transmission fr@m (w1, ..., wr), via a permutationr drawn uniformly fromSr,
source to the destination. This activated subset correlspothe collection of all permutations @f objects. Thus, for each
to a co-occurrence observation, with the stimulus beingta=1,...,T, z) = w;. We assume the random permutation

transmission between that particular source-destingtmn  is independent of the Markov chain sampte, Based on
By repeating this procedur®& times with different stimuli this model, we can write the likelihood of a co-occurrence



observationx conditioned on the permutatian as of notation. With this notation, we can write

N V]
T logP[W|0] = Z Zwﬁ-) log o,
]P)[X|7T7 0] = 90,z,r(1) H emﬂ(t,l),zw(ﬂ . (2) n=1i=1
t=2 N T, |VI V]|
23> wileny logbi
SinceP[n] = 1/(T"), for all = € Sy, marginalization over all n=11t=2 i=1 j=1
permutations leads to [V] N
= S tonth >l
1 i=1 n=1
Pix|6] = 7 > P[x|m.6]. €) VI V] N
£ loghy 30 el )
i=1 j=1 n=1t=2
Finally, assuming that co-occurrence observations ampied-  Maximum likelihood estimates o can be obtained from
dent, and taking the logarithm, gives W my maximizinglog P[W|6] under the constraints in (1);
the solution is well known,
N N T,
logP[X]|0] = Z log Z Px™) |7 0] | —log(Tu!)| . Z Z wgf)“ wt(z)
n=1 TEST, N n=1t=2
T ( 0;;, = VN T , and
Under this model, network inference consists in computing a SN W W (6)
estimate for the Markov chain parametefs, given a prior j=1n=1t=2
P[O], a natural criterion for estimation is the maximum a ~ 1 & (n)
posteriori criterion, boi = N Zwl,i :
n=1
0= argmgx logP[X]0] + log P[6)]. (5) B. Shufflings, Permutations, and the EM Algorithm
To address the case where we have a set of co-occurrences
, _ X = {xM, ..., x(M1 not ordered samples, we defined the
Of course, wherP[0] is a constant, independent 6f this equivalent binary representatia = {xV,...,x™} in

reduces to the maximum likelihood criterion. With the estien
6 in hand, we may determine the most likely permutation f
each co-occurrence observation accordingftoand obtain {af"=i}"

a feasible reconstruction using our procedure for orderedléqgIvalent tp usingr < St to denote a Iengtﬁi ber-
. ) mutation/shuffling, we introduce a more convenient (bihary
observations described above.

o _ _ ) representation; each shuffling is represented pgranutation
For non-trivial observationspg P[X|6] is a complicated, matrix which we also refer to as shuffling matrix Let the
non-concave function d, so solving (5) is not a simple task.gpyffling matrix corresponding to a permutatiorbe denoted
In the next section, we derive a EM algorithm for finding localg Ar \whered™ — Lix(i)=j}- Thus, an ordered sequence
’ .7 m)=Js" !

maxima of this optimization problem, by treating the set qfermuytationr, and corresponding co-occurrengare related
permutations{r(™), ..., 7(")}, shuffling the paths, as missing;5 , — A"y

data. LetlI = {#(M, ..., 7(")} be the collection of permutations
that recover the ordered patNé = {w(!), ..., w(T)} from the
corresponding shuffled co-occurrendés= {x(), ... x(M},
Recall that the permutations(”™), are assumed to be inde-
pendent of the Markov chain paramete’s\We can write the
complete log-likelihoodog P[X, I1|0] as follows:

a similar way as abovex™ e {0,1}7*IVl and y\") =

I1l. AN EM ALGORITHM FOR ESTIMATING MARKOV
CHAIN PARAMETERS FROMSHUFFLED OBSERVATIONS

. . . . logP[X, 11|60
A. Fully Observed Markov Chains: Notation and Estimation”® (X, T16]
= logP[X|IL, 6] + log P[I1] (7)
LetW = {w(, ..., w(T)} be a set of sample paths(™) = N

. R (n)|(n)

(wi™, ...,w(TZ)), independently generated by a Markov chain — Zlog]P’[x |7, 8] + log P[LI]
with parameter® (see (1)). For later use, it is convenient . . v
to introduce the equivalent binary representatinoﬁfl)) € i z": z": I IR
{0,1}7»*IVI for each samplav(™), defined such thabgﬁ. = t=Ltr gt At X 6
I, (m_;y» Wherelly is the indicator function. Since/") and N 7

(m) ivalent tati f th informati 7 (n)
w(™ are equivalent representations of the same information, AT ) 1og o+ log PTI],  (8)
we will also writeW = {w® ... w1, with a slight abuse 22 : b ’ =

n=1 t=2 ¢/ t"=1 i,j=1



where P[II] is the probability of the set of permutatioik 2) Computingagt’? Since the permutations are (a priori)
which is constant in our model since all permutations aegjuiprobable, forr € S1, we haveP[r] = 1/(T.,!), P[n(1) =
equiprobable. '] = (T =1)!/T!) = 1/T,, andP[x|m(1) = t'] = 1/((T5 —

To estimated from X, we treatll as missing data, opening1)!). Using these facts, together with the mutual independence
the door to the use of the EM algorithm. Notice that ihmong the several sequences, and Bayes law, yields
we had the complete dai{X, II), we could recoveW via ok . (n) pk
w™ = A" (") and obtain the closed-form estimates (6). %o = P {O‘Ovt’ =1 ‘X 0 }
The EM algonthm proceeds by computing the expected value p[x(n) \w(”)(l) =, gk} ]P’[w(")(l) =1/
of logP[X,I1|0] (w.r.t. IT), conditioned on the observations =

(n)|@*

and on the current model estimaé (the E-step), Z [ >(< )| ’0 ]k]

P|x'™ |, 0

Q (6:6°) =En [log PIX, 106} X, 0°] . (9) P s
where we writeEy; to denote expectation with respect to > P[x™|r, 6" ’
the missing permutation variableH, The model parameter €S,
estimates are then updated as follows (the M-step): where each terr?[x(™ |7, 0*] is easily computed after using
0! = argmax Q (9; gk) , (10) = to unshufflex™:
0

These two steps are repeated cyclically until a convergence P[x(")|7r 49’c = 9’“ ) H9 -
criterion is met. Fre=1) Er)

3) Computinga;,%,: The computation oht, . follows

C. The E-step a similar path as that oﬁgt’f, since all permutations are
1) Sufficient statistics: Rearranging (8), and droppingequiprobable, forr € Sy, Plr(t — 1) = ¢/, n(t) = '] =
log P[II] (a constant), we can write (T, — 2)!/(T,") and P[r|w(t — 1) = t/,7n(t) = t"]
1/((T,, — 2)"), thus
log P[X, T1/6] /( T)) !

N |V| Th " " (n)(+ _ (n) B ) ok
SPIPIEDS ZA(l)t'A?i”)XmXSf) log 0 ; O‘t’t”—ZP (t—1) =t 7" (1) = t"|x™, 6"]

n=14,j=1 ¢/ t''=1 t=2

T’n n n n
N V| T, . _ X( )‘ﬂ— ) t—1)=1t, 7l )(t)zt”’ek}
1 3)3) PRI P06
n=1i=1t'=1
N V] . xP[r™(t —1)=¢, 7" (t) = t”}]
= Z Z Z oy N xt, Xt” log 0; ;
n=14,j=1 ¢t/ t'"=1 1 Z
N VI T, — P[x™|r, 0"
+ Z Z Z O‘S,t/ X?Z log 6,4, (11) . i (T —2)t 7T€ST" (t—1)=t/,7(t)=t"
n=1i=1t'=1 B Z Z ]p n)’
t=2
revealing thatlogP[X,II|0] is linear with respect to the T,! 5 ™
following simple functions: (T — 2 "
« the first entry of each permutatioﬁ”>: ap, = ATy = ( >
]I{ﬂ.(n)(l) t’}i for n = 1 N and t/ = 1(n) . Tn,(n) T,
« transition indicatorsiaj; ,, = = Y, A 1.t Aft// = Z P[x™|r, 6¥] ZH{” =t} L n ()=t}
Zt:Q H{Tr(")(t—l):t'}]l{ﬂ(")(t):t”}i fOI‘ n = 1 N and . w&€St,, t=2 15
t/,tuzl,...,Tn. - Z ]P)[Xn |7T Ok] . ( )

The E-step reduces to computing the condltlon expectations
of ag, anday given 6* (denotedagt’f anda}",), since
the expectation is a linear operator and hence it commutegExact computation of the sufficient statistigsyyy; /™,
with linear functions. Noticing thatg ,, anday) ,,, are binary- and {at/,t// Tt,/ , via (14) and (15) requires enumerating
valued yields all permutations ofx(™). For largeT;, this is a heavy load;

& & Section IV describes a Monte Carlo sampling approach for
X, 0 ] - ]P’{ag_’t, zl‘X,G ] (12)

meS,

—n,

avk — Ela® k
ot = 0.t/ computing approximations ta 'y, anday)’y,.

—n,k
at’ R = E |:Oé?/7tu

Xvek} =P {0‘?%” =1 ’X,ok}(l3) D. The M-step
nk

Finally, @ (0; 0’“) is obtained simply by plugging,,’,, and Recall that the functiord) (0- 0’“) is obtained by plugging
df,’,’:// in the places oty ,, andaj, ,, in (11). ag " anda, ’Z in the places oty ,, anday ,., respectively,



in (11). Maximization w.r.t.0, under the constraints in (1), (6;1,...,0;v(),i=0,...,|V| of @,
leads to following simple update equations:

14
N Tn ul T
5 k() () P[0;]u;] o He (17)
O‘t’ R Xt’ Xt” 1
=1¢,t"=1 . . . .
f“—“l = (16) which are proper priors if and only if the parametets are
J VI N T proper p y p ¥
Z Z z": an (n) non-negative [17]. The largex, ; is relative to the otheu, ;/,
el t, i Xt/ Xt” ] j' # j, the greater our prior belief that stajeis an initial
= state rather than the others; equivalently, the expectad va
and - of 8, under the Dirichlet distribution is given d§[6, ;|ug] =
3 Z": £ uo,;/ S} wo ;. Similarly, the largew, ; relative to othew; ;
- £ ts for 5/ # j, the more likely we expecs priori, transitions from
n— = . .
g1 = states to statej relative to transitions fromto the other states.

V]

n

1
i i amk X(:z) Consider the prior distribution on the initial state digtriion;
0.8 Aty takinguo ; = ¢ > 1, for all j, has asmoothingeffect, as if all

of the states had some mass, regardless of the observations,
the initial state distribution.

Due to the conjugacy of the Dirichlet priors, their incorpo-

In some applications, (one or both of) the endpoints of eaclition into the EM algorithm only results in a change to the
path are known and only the internal nodes are shuffled. Thiksstep. Incorporating the prior leads to the following n-aet
is the case in communication networks( internally-sensed version of the function@(0; 0’“):
network tomography), since the sources and destinatioms ar

i=1n=1 t'=1

E. Handling Known Endpoints

o o . N VI T,
known, but not the connectivity within the network. In estim & n)
tion of biological networks (signal transduction pathwrys @(6:6%) 2:1 Z ,Z: oy t”Xt’ 1Xt” 1og ;.
physical stimulus€.g, hypotonic shock) causes a sequence of "L/ L=
protein interactions, resulting in another observablespda} N VI T ) loe g 18
responsed.g, a change in cell wall structure) [3]; in this case, + Z Z Z 0‘0 t/Xt/ 08Y0,i (18)
the stimulus and response act as fixed endpoints, our goal is "Vl ==l v
to infer the order of the sequence of protein interactions. Ad 1) log 6; Ad Dloed
Observe that knowledge of the endpoints of each path im- T Z uij = 1)logfi; + Z uo,i — 1) logfo,;.
poses the constraints™ (1) = 1 and7(")(T},) = T;,. Under hI=t =t
the first constraint, estimates of the initial state prolittds Note that the prior does not involve the missing data (permu-
are simply given by (for alk) tations) and thus does not effect the E-step calculatior. Th
N M-step updates become
1
915.1‘ =% ZXY? N In
N n=1 ug,; — 1+ Z Z @gﬁxg/n)
Thus, EM only needs to be used to estimate the transitiogft! = Vi ":i\:’ ; (19)
matrix entries. Let ' n
; z(um—1+22a35x:>-)
Spr={neSr : 7(1)=1,#(T) =T}, i=1 n=1t=1
denote the set of permutations @f elements with fixed wij — 1+Z Z a t,, Xt’ ng})_
endpoints. As in the general case, the E-step can be computggrl B n=1¢t"=1 0
using summary statistics (faf,t” =1,...,T},) i T vy (20)
, (n)
vk = Z Px™)|x, 6] Z uig — 1+ Z Z ) t" Xt’ Xt" j
— Jj=1 n=1¢t¢'t"'=1
TEST,,
N.
~ ’" IV. MONTE CARLO E-STEP BY IMPORTANCE SAMPLING
%ﬁ fw = Z P X(m)|7T Zﬂ{n t—1)=t'Hm(t)=t}, ) )
~CBr i—2 For long sequences, the combinatorial nature of (14) and

(15) (involving sums over all permutations of each sequgnce
and settingoz?,:’j,, =3k, /3. The M-step (update fog/t) ~may render exact computation impractical. In this section,
remains unchanged. we consider Monte Carlo approximate versions of the E-step,
which avoid the combinatorial nature of its exact versione T
Monte Carlo EM (MCEM) algorithm, based on an MC version
of the E-step, was originally proposed in [18], and used ever

The EM algorithm can be easily modified to incorporatsince by many authors (recent work can be found in [19]-[21]
conjugate priors; these are Dirichlet priors for each #hw= and references therein).

F. Incorporating Prior Information



To lighten the notation in this section, we drop the suhe target distributionP, the better the quality of the estimate
perscript from@*, using simply@ as the current parameterwill be. Although our goal is to accurately approximate the
estimates. Moreover, we focus on a particular leriftho- E-step sufficient statistics, our primary motivation folings
occurrencex = (z1,...,2r) € VT and drop the superscriptlS is to speed up calculation of the E-step. The remainder of
(n); due to the independence of the paths, there is no losstiois section describes an IS scheme which is both simple to
generality. Recall thak is a (shuffled) path, and thus has namplement (fast), and closely mimics the generative Markov
repeated elements. model for ordered paths. Next, we describe the IS scheme,

The E-step (see (12) and (13)) consists of computing tireluding the derivation of closed form expressions forhbot
conditional expectationgg = E[ao,t/ x,G} and ay »» = the sampling distributionR, and the sample weights;. We
E[at/,t// x,O}. A naive Monte Carlo approximation wouldconclude the section by mentioning other sampling variants
be based on random permutations, sampled from the uniform
distribution overSr. However, the reason to resort to approx- _
imation techniques in the first place is tH&t is large, with A. Causal Sampling Scheme
only a small fraction of these random permutations havingLet f = {f1,..., fv|} € {0, 1}Vl be a sequence of binary
non-negligible posterior probability?[r|x,¢]; a very large flags. Given a probability distributiop = {p1,p2,...,pjv(}
number of uniform samples is thus needed to obtain a good the set of stated/, denote byp|f the restriction ofp to
approximation toxg » and s 4. those elements of that have corresponding flag set to 1,

Ideally, we would sample permutations directly from théhat is,
posteriorP[r|x, 8]; however, this would require determining

its value for allT"! permutations. Instead, we emplaypor- (plf): = Ivl‘)iifi, fori=1,2,...,|V| (25)
tance samplindlS) (seeg.g, [22], [23], for an introduction to
IS): we sampld. permutationsyy, . . ., 7, from a distribution 2;1)1 fi

J:

R[x|x, 8], from which it is easier to sample thdfr|x, 0],
then apply a corrective re-weighting to obtain approximagi  The proposed sampling scheme is defined as follows:

to aor anday .. The IS estimates are given by Step 1iLetf = {fi,..., fiy} be initialized according to
L fi = Liiexy-

Zzi Ter, ()=t} Obtain one sample frony according to the distri-

Gop = = 1) bution 8y |f. Let the obtained sample be denoted

of course, one and only one elementxofs equal to

L
D s

=1 Locate the positiort of s in x; that is, find¢ such
= ) thatz; = s. Setn(1) = t.
Z Zi Z L e-vy=ty Imi)=v} Setf; = 0 (preventingz; from being sampled again).
Qg = L =2 - . (22 Seti = 2.
Zz' Step 2:0btain a sampl€ from S, according to the distri-
P ‘ bution 6,|f, where 8, denotes thesth row of the
. ) ) transition matrix.
W_herezl-, the correction factor (or weight) for sampte, is Find ¢ such thatz, = s'. Setr (i) = t. Set f, = 0.
given by Pr,|x, 0 Step 3ifi < N, then sets — s/, seti «+ i+ 1, go back to
z; = L’], (23) Step 2; otherwise, stop.
Rm;|x, 6]

. ) o . 1) Sampling Distribution:Before deriving the form of the
the ratio between the desired distribution and the sampliggiripution R, let us begin by writing the target distribution

distribution employed. _P[r|x, 6] explicitly. Using Bayes law,
A relevant observation is that the target and samplin
Plx|r, 0] P[x]

distributions only need to be known up to normalizing fastor
Given R[r] = ZrR[r|x,0] and P[r] = ZpP[r|x,0], for Px|g]
constantsZr and Zp, we can use

Plr|x, 0] = (26)
since m does not dependh priori on 6. Based on our
,_Plm] _ Zp , (24) assumption that all permutations are equiprobable we have

Z; = - Ziy .. . . .

' R[m]  Zr P[r] = I{res,y/T!. Noticing that the denominator in (26) is
instead ofz; in (21) and (22); the approximations will remainust @ normalizing constant independentofwe have
unchanged since the factdfp/Zr will appear both in the
numerator and denominator of (21) and (22), thus canceling Plrx,0] o Iizes,) Plx|m, 0]

out. T

The IS framework just described is general, and the per- = ILiresry (90=1«<1> Hewmnaw«m) -(27)
formance of this approach is closely tied to the particular =2
sampling scheme employed. In particular, the more clo$edy t For the sake of notational economy, we will write simply
shape of the sampling distributio®®, matches the shape ofR[r] to representR[r|x,8]. The sequential nature of the



sampling scheme suggests a factorization of the form 2) Known Endpointsin the case where the endpoints are
_ known, we fixn(1) = 1, n(T) = T, and setf,, = 0
Rir] = Rim(D)] RIr(2)lr(1)] Rlx(3)[r(2), w(L)] and f,, = 0 in Step 1; the remainder of the procedure
o X RE(N)[7 (N = 1), w(1)). (28) is unchanged. Based on these constraints, the importance
For Step 1 of the sampling scheme, it is clear that, f@ampling weight takes a slightly different form:
(1) =1,...,T,

T—1
R[r(1)] o B0, ;- (29)  #=00u b yer [T D0 Oeniiy (33
For the:-th iteration, we have, =2 t{m (=D, (1))

Rm(§)|m(i = 1),...,m(1)] B. Other Sampling Schemes

% Oarimsyane) Lm@g (n(i=1) om0} In addition to the causal sampling scheme that we have just
where the indicator term simply expresses thét) cannot described, we have also developed other sampling schemes
be equal to one of the previous samples; — 1),...,w(1). that work in a hierarchical, rather than sequential, fashio
Observe that the normalization constant for this distidhut For the sake of space, we refrain from describing these other
can be expressed as sampling schemes; detailed descriptions can be found i [24

V| In particular, we have developed a two-stage hierarchical
ngﬂ(i%)’jfj’ (30) scheme and a fully hierarchical scheme. In the two-stage
= ' method, the first stage samples from the collection of all

possible transitions occurring in a path; then the secoaglest
samples from the distribution on all arrangements of these
transitions, to form a permutation. In the fully hieraraiic

where f; = 1 if ©, = j for somet ¢ {n(i — 1),...,7(1)}.
Thus, for thei-th iteration we can write

Rix(i)|7(i — 1),...,w(1)] method, the first stage samples a suitable set of transitags
= Ouiisyong Gilm(i—1),...,7(1)) Gy; then, the following stage samples a suitable collection of
Dy - (31) pairs of elements cg‘?_l, yielding a col_lect|on of qua_ldru_plesg, _
(r(@OELr(=1),eom(D}}> and the procedure is repeated until a permutation is olitaine
with A detailed comparison of these sampling schemes with
-1 the causal sampler described above is presented in [24].
pi(m(i —1),...,7(1)) = Z - . Empirically, we find that the causal sampler performs the bes
t¢ {m(i—1),..,m(1)} (lowest approximation error for a fixed number of importance

samples), and so we use this sampling scheme for the re-
mainder of the paper. Moreover, our original motivation for
R[r] o resorting to Monte Carlo methods was to improve the speed
T T of computation of our algorithm. The causal sampling scheme
leoyrm) H 9%@1),1”(,)] [H ¢¢(m(t —1),....m(1))|  has complexity which is linear in the length of the path to be
t=2 t=2 sampled, and hence very clearly meets our needs.

Inserting (29) and (31) into (28), we finally have

T
X I ali—1). . . 32
[H {r@®)g{m(t-1),..., (1)}}] (32) V. MONOTONICITY AND CONVERGENCE

t=2
Note that the third factor in the r.h.s. of (32) is simply the Well-known convergence results due to Wu and Boyles [25],
indicator thatr is a permutationi.e., is equal tol,cs,.}, for [26] guarantee convergence of our EM algorithm when the E-
anyr € {1,....,T}7. step calculation is performed exactly. By choos#fy™! =
Dividing (27) by (32) we obtain the correction factofor a argmaxg Q(8; 0%) in the M-step, our iterates satisfy the
permutation sample generated using this sequential schemmonotonicity property

as
. o 0 (0’““;0’“) > Q (0’“;0’“) : (34)
2= (H $i(m(i—1),... ’W(l))> The marginal log-likelihood (4) is continuous in its paraers
TZZQ 6 and it is bounded above. In this setting, the monotonicity
_ H Z property (34) guarantees that each exact EM update monoton-
- LTr(i—1)sTt"

ically increases the marginal log-likelihood, so the EMates

1=2 w(i—1),...,m .
. . o D) ) . converge to a local maximum.
With this quantity in hand, we have all the ingredients nelede When Monte Carlo methods are used in the E-step, mono-

to produce IS estimates,,, anday .. Notice that computing tonicity is no longer guaranteed since the M-step solves

the terms¢;, and thus computing:;, is easy since these~k+1 ~ & ~ ,
factors are the normalization terms for the distributih, = argmaxg Q(6; 0%), Wh?Tg is defined analogously

. _n.k ~n,k
which are already computed while performing each iteratidf Cg but with termsa;’,.,» and a,, replaced by, and
of Step 2. Thus, we just need to store the product of thegg», their corresponding importance sampling approxima-
normalizing constants to finally obtain the weight tions. Consequently, care must be taken to ensure ¢hat



approximateg) well enough so that the EM algorithm is not

swamped with error from the Monte Carlo estimates. -200f 8
To illustrate this issue, consider the following synthetic
example. We generate 40 co-occurrence observations mgtaki  _3po! ]

a random walk on a graph with 140 vertices. Each co- 2
occurrence has between 4 and 8 vertices. Figure 1(a) plot <

Q(ek 6"~1) for the exact E-step, along witf)(6 kH;Ak) and
Q(e wH Ak) for the Monte Carlo EM algorithm usmg onIy 10 ~500!" ]
importance samples per co-occurrence. AItthgH ;Ak)
increases at each iteratio@,(§k+l;5k) clearly does not and ~600r — Exact, Q

the monotonicity property does not hold. This is apparent in - - - Monte Carlo (10 samples), Qhat
Figure 1(b), where the dash-dot line shows the progresseof th  —700- . .~ Monte Carlo (10 samples), Q
marginal log-likelihood (our optimization criterion) fohe 10 2 4 Iteraﬁonﬁk 8 10
sample Monte Carlo EM algorithm. When enough importance '
samples are used the Monte Carlo EM algorithm performs @
comparably to the exact EM algorithm; see the dashed line ‘ ‘ o
in Figure 1(b) corresponding to a Monte Carlo EM algorithm ~ —280f ==
using 1000 importance samples per co-occurrence. All three
instances of the EM algorithm used in this example start from 3
the same initialization.

Recently, researchers have considered the question of ho
many importance samples should be used in a Monte Carle
E-step [19]-[21], [27]. The goal is to balance monotonicity
and computational efficiency by using enough samples to hav s, _ag0l |
a good chance at monotonicity while not using excesswelyg
many samples. Booth et al. [21] argue that if the same numbe  -400} — Exact H
of importance samples is used at each EM iteration, ther - - - Monte Carlo (1000 samples)
the algorithm will eventually be swamped by Monte Carlo 420 Monte Carlo (10 samples) ||
error and will not converge. They also suggest requiring tha 2 4 6 8 10
a convergence criterion be satisfied on multiple successive Iteration, k
iterations since the criterion may be met prematurely due to (b)
poor Monte Carlo approximations. Fig. 1. An example with simulated observations illustrgtihat the Monte

Fort and Moulines consider asymptotic convergence Ghrlo EM algorithm may not result in monotonic increase d tharginal
Monte Carlo EM in [20]. In particular, they prove COI’]SiSt?I’]CIOg |Ike|lh20d1 if ;oo few Monte Carlo samples are used. Tlmdadilllntik!n
of the Monte Carlo EM for curved exponential families usinf) is @(6"""; 6%) for exact EM iterations, the dashed line@{6" " ;6")

PRI
various forms of the ergodic theorem for Markov chains undé?d the dash-dot line i@(6" * ;6 ) for Monte Carlo EM iterations using
10 samples. Even thoug@ increases monotonicallyp) may not be

the assumption that the number of Monte Carlo samples groWg\Otonic for the Monte Carlo EM algorithm. Figure (b) deépithe marginal
at a suitable rate with respect to the number of EM iteratiorisg-likelihood for exact EM iterates and for two versionsté Monte Carlo

: M. Monte Carlo EM performance closely resembles that ofakact EM
Caffo et al. [27] propose a method for aummatlcallgl orithm when sufficiently many importance samples areluse
adapting the number of Monte Carlo samples used at eac%
EM iteration. Let A(6"*!) = Q(8"";6") — Q(6";6")
and A(@*) = Q(6";6%) — Q(6";6"). Recall that statement they claim that monotonicity holds with probigpil
L importance samples are used to calculate the termsgiieastl — d(¢). They further remark that if a differeni, is
Q. The algorithm of Caffo et al. is based on a Centrghosen at each iteration, so thag” | 5(ex) < oo, then, by the
~k ~k
leltAThfggem I|keA%E;1)rOX|mat|on in which they show thaborel Cantelli LemmapPr (A( )~ A@") > e |.o.) — 0,
VL(A@ ) — A(@ ")) converges in distribution to the . oy
standard normal. Observe that the monotonicity property (350 there exists & > 0 such thatA(6 ) — A(8") < ¢ for all _
is equivalent to the conditiom (8 + ) > 0. Although k> KWI.th probab|I|ty; ie, eyentually every EM updat_e is
monotonic. Of course, in practice, the algorithm is terrteda

~kt1 . .
A(Q . ) cannot be _%o?puted W'EE%Ut computing the exaglyer 5 finite number of iterations, so we may never reach the
suff|C|ent statistics{a;";»} and {a;’;}, we can compute stage where all iterates are monotonic.

~ ~k+
A6 ) Their scheme then amounts t? increasing the num-Notice that for the monotonicity cond|t|oﬁ( ) >0to
ber of Monte Carlo samples unti\(§° ) > e for a user- truly hold in the above framework, the events

specifiede > 0. Then, applying an asymptotic standard {A k41

~k+1 ~ ~k+1
normal tail agp{oximatiokn,lthey obtain a statement of the (A ) —A@ )< 6} and {A(G )= 6}
~ kAt ~k+ _
form Pr (A(O )—Al ) = 6) < d(e). Based on this must occur simultaneously. Because the probabilistic Houn

@ -400

Vario

-320r 1

-340} 1

-3601 1
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above only addresses one of these events we refer to thiThe proof of Theorem 1 appears in Appendix . Because

type of result as guaranteeing @né)-probably approximately A(@""') > o by definition, the theorem guarantees that

monotoniaupdate, or PAM for short. More generally, &19)- Sk+1 ; o
. - —e with probabilit ter than — 6.
PAM result states that with probability at least— §, the A6 ) > —c with probability greater tha

. . o~ kel Remark 1:1f the EM algorithm is initialized witho?; >
qu%tfl will bee-appromekitlely monotonicie, A0 ) — ¢ (ie., all entries initialized with positive values), thefl
A0 ) <eimpliesA(6 ) > —e, because, by definition, finite iterates will also be bounded away from zero. However,
ﬁ(@kﬂ) > 0. the iterates may tend arbitrarily close to zero, violatihg t

Rather than resorting to asymptotic approximations to opssumption of the theorem. This problem can be resolved
tain such a result, we can take advantage of the specific fob using a Dirichlet prior withu; ; = ¢ > 1, for all 4,7,
of Q in our problem to obtain the finite-sample PAM resulgffectively adding a bit of mass to all possible transiti¢sese
presented next. Recall that independent importance samph&ction IlI-F for discussion of priors). For example, takin
are drawn for each co-occurrence observation in the Monte= 2 has the effect of assuming one observation of each
Carlo E-step. Denote h¥,, the number of importance samplegind every transition. The prior places a small amount of mass
used to compute sufficient statistics for observatié®. The 0n every transition, and results in EM iterates that satiséy
computational complexity of the exact E-step computatidawer boundbyi, := rpryy- Recalling the M-step formula
for this observation requires,! operations (enumerating allusing the Dirichlet prior (16) and takingo; = 2 for all i
permutations ofx(™), and thus increases with the size oproduces
the co-occurrence. Similarly, we should expect that larger

observations will require more importance samples for two 14 XN: i gk (™)
reasons: 1) there are more sufficient statistics associeited ; 0,1/ Xt i 1
this observation? in total), and 2) there are more ways to 9’”1 = nzlj\f :; > TEy
shuffle these observations. Z 14 Z - Gy ) (
In the previous section we derived closed form ex- P == 0,87 A7,

pressions for the importance sample weights, =

P[m;|x, 0]/R[m;|x, 8], whereP is the target distribution an® where the inequality follows by noting that the minimum of
is the importance sampling distribution. A key assumpti@sw the numerator id and the denominator is bounded above by
made tha? is absolutely continuous with respectiothat is, [V|(1+ N) since all the summands 6F>_ S22 dgt’fngl)-

P[r|x, 0] = 0 for every permutatiomr with R[7[x, 8] = 0. We i in the set[0,1], and for eachn at most OneXt/ —

adopt the conventiof/0 = 0 so thatz; = 0 for such samples. 1,...,T, is non-zero. A similar bounding argument shows
This guarantees thaf; < co. The bounds below depend O”that 9k+1 > o 1 whenu; ; = 2 for all i, j. Observe
N QY

the quality of our importance sample estimators as gauged s the incorporation of the prior does not alter the prdof o

Plr|x(™, ] Theorem 1 since the Enor terms (i.e., log of the Dirichlebpr

b, = max ————. (35) .. =~ gkt
resSt, R[m|x("), 0] in A(@6 ) and A(@ ) are independent of the sufficient
statistics and thus cancel each other. Note that this chadice

Because the sefy, is finite, Plr|x, 0] and R[r|x"),6] o results in the following requirement on the number of
have finite support, and the maximum is well-defined (f'n'teﬁnportance samples

If R matches the target distributidhwell thens,, should not

be very large. 2N2T, b7 [log(|V[(1 + N))P? 27,
There is one other subtlety that we must introduce for odrm = 2 log { 7= 1—08)/N )"
bounds. Because the terms @(0,0’“) have factordog6;_; (37)

andlog 6 ;, in practice we typically bound; ; and6,; away Finally, we also point out that if two verticesand j do not
from zero to ensure tha:p does not go to-oco. This is easily co-occur in any of the observations, then one carﬂ%]et: 0,
accomplished with a Dirichlet prior, as discussed after thedfectively eliminating it from further consideration. iBhwill
theorem below. Thus, for the theorem we will assume thabt affect the EM algorithm or the bounds above. However,
9k > Omin and 9’€ > Omin for some0 < O, < [V|71. The if one suspects that the observations do not necessarigctefl
upper bound om)mm ensures it is still possible to satisfy theall possible paths, then it may be sensible to use the Daichl

constraints (1). prior in such situations.
We have the following finite-sample PAM result for our Recall that exact E-step computation requifgsoperations
Monte Carlo EM algorithm. for the nth observation. The bound above stipulates that

Theorem 1:Lete > 0 andd > 0 be given and assume therghe number of importance samples required is proportional
existsfmin € (0, [V|~!) such tha¥}’; > Ouin andoj; > Omin  to T2logT2. Generating one importance sample using the
for all 7 andj. If causal sampling scheme requifEs operations, and thus, the
IN2T402 |10g Oumin|? 272 computational complexity_of a PAM Monte Carlo update only

= 1 (1 —a- 5)1/T) (36) depends orl?log 7?2, which clearly demonstrates that the
computational complexity of the Monte Carlo E-step depends
|mportance samples are used for theh observation then polynomially on7,, in comparison to exponential dependence

A(O H) — A(@k ) < e with probability greater than — 0.  for the exact E-step.

L, =
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To put this result in perspective, observe that the value global maximum (the marginal log-likelihood is not concpve
L,, given by (36) is roughly a factor a¥ away from the value and there may even be multiple global maxima. To address
we would expect based on an asymptotic variance calculatidinis issue, we rerun the EM algorithm from multiple random

Ignoring constants and log terms, for fix@dwve have initializations and report the collective results.
N T N T We compare the performance of our algorithm with that
7\ ~ o, ~ o, f the frequency metho@FM), defined in [1] and mentioned
Var (A 0 ) ~ Var amh, ank 0 , ’
(©) ;t/ ! +;; 0.t in Section 1. The FM also reconstructs a network topology

by estimating an order of the vertices in each observation.
N ik L & This method individually determines each path ordering in-
ZVar O‘?’:t” + Z O‘gft’ ’ dependently by sorting the elements in the path according
n=t #,=1 =1 to how correlated each vertex is with the endpoints of the
since independent sets of importance samples are usedoadh. It is possible that multiple vertices may receive tateh
calculate sufficient statistics for different observasioit is FM scores, in which case their sorting would be arbitrary
easily shown that the variance of an individual approximatene could exchange elements with identical scores without
statistic a;”t“ or ag;t’i decays according to the parametrigiolating the FM criteria). In fact, we observe this phenome
rate: i.e., Var(a?,”;,,) = O(1/Ly). In total, there arer? In many of our experiments. T|gs are r_esolved by chooglng
sufficient statistics for thexth observation, and they are all@ random order for elements with identical scores. Multiple
potentially correlated since they are functions of the saste 'estarts are also performed using the FM, yielding a codact

TTI,

of importance samples. Then we have of feasible _solutions. o .
N ) The quality of a network reconstruction is determined by a
Var (3(0)) - 0 Z (Tf) guantity we term thedge symmetric differenegror. Because
N — Ln ' the nodes in the network have unique labels, the goal of

any reconstruction scheme is to determine which vertices ar
To drive Var(ﬁ(@) down to a constant level, independent ofonnected by an edge. The edge symmetric difference error
N andT,, we needL, x NT%. The additional factor ofV is defined as the sum of the number of false positives (edges
in our bound is essentially an artifact from the union bound®PPearing in the reconstructed network which do not exist in
Note that if we use different, at each EM iteration, chosenth® true network) and the number of false negatives (edges in
such thaty>>° | 6, < oo, then by the Borel-Cantelli Lemmathe true network not appearing in the reconstructed nefwork

~k .
one can argue thdtr (A(@ ) <0 i.0.) = 0. In other words,
eventually all EM iterates result in a monotonic increase &. Simulated Networks

the marginal log-likelihood. Our synthetic data is obtained as described next. A network

"_1 addition to dempnstratmg th_at the Monte _Carlo_ EM aly generated according to a random geometric graph model:
gorithm has polynomial computational complexity, this bdu 5"y erices are thrown at random in the unit square, and

gives a useful guideline for determining how many impor&@ng,, yertices are connected with an edge if the Euclidean

samples shquld be used. However, becau.se they invoIye—wo!‘](%t‘,jmce between them is less than or equa\l/m.
case analysis, the number of samples dictated by this bouffs threshold guarantees that the graph is connected with
tends to be on the conse_rvatlv_e S'de'_ For example, in tHf@h probability [28]. Groups of nodes are randomly chosen
Internet experiments described in Section WI,= 249 and ¢’ sources and destinations, transmission paths are tgehera
the average path length is 17 hops. Theorem 1 suggests fiafyeen each source-destination pair according to either a
roughly 10 billion importance samples should be used pgf,est path or random routing model, and then co-occeeren
observation. However, in our experiments we find that thg,serations are formed from each path. We keep the number
algorithm exhibits reasonable performance on this data $flsorces fixed at 5 and vary the number of destinations be-
using as few ag, 000 samples per observat_lon. Of course, iyeen 5 and 40, to see how the number of observations effects
practice, the only way to know the valuelof is to enumerate ,oformance. Each experiment is repeated on 100 different
aII_per.mutat|ons, so this bound cannot be used as an eXpliﬁlﬁoIogies, using 10 restarts of both NICO and the FM per
guideline. configuration. Exact E-step calculation is used for obsna
with T;, < 12, and causal importance sampling (2000 samples)
VI. EXPERIMENTAL RESULTS is used for longer paths. The longest observation in our data
In this section, we evaluate the performance of meitwork was obtained by random routing and Has= 19 (notice that

inference from co-occurrenc¢d1CO) algorithm on simulated 19! ~ 10'7). No prior is used in any of the results reported
data and on data gathered from the public Internet. In there. In our experience, we found little practical diffexen
results reported below, network reconstructions are pbthi between the MLE and the MAP estimate based on a Dirichlet
by first estimating an initial state distribution and prottiab prior with u; ; = 2, as discussed in Remark 1.
transition matrix via the EM algorithm. Then, we compute the Figure 2 plots edge symmetric difference performance for
most likely order of each observation according to the ief@r synthetic data generated using (a) shortest path routidg an
model and use this ordering to reconstruct a feasible n&two¢b) random routing. The edge symmetric difference error is
The EM algorithm cannot be guaranteed to converge tocamputed between the inferred network and the graph olgtaine
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Fig. 2. Edge symmetric differences between inferred neéksvaand the
network one would obtain using co-occurrence measuremamgnged in
the correct order. Performance is averaged over 100 diffemetwork con-
figurations. For each configuration 10 NICO and FM solutiore @btained
via different initializations. We then choose the NICO ¢ino yielding the
largest likelihood, and compare with both the sparsest daidvayant best
FM solution.
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distance of each internal vertex from the path endpoints. At
the other extreme, when many destinations are used, there
is significant overlap among the co-occurrence obseration
which aids in localizing vertices. In general, the FM seems t
be much more sensitive to the amount of data available.

As expected, the FM generally performs better on shortest
path data than it does on random routes. When routes are
generated randomly the corresponding topology is less tree
like and pair-wise co-occurrence frequencies do not reflect
network distances. Because NICO is not based on a particular
routing paradigm it performs similarly in both scenarios,
possibly even a little better when routing is random.

B. Internet Data

We have also studied the performance of our algorithm on
co-occurrence observations gathered from the InternéhgUs
t racer out e we have collected data describing roughly 250
router-level paths from sources at the University of Wision
Madison, thelnstituto Superior &cnicoin Lisbon, and Rice
University to 83 servers affiliated with corporations, weriv
sities, and governments around the world. Our motivatian fo
using this type of data is two-fold. Firgty acer out e allows
us to measure the true order of elements in each path so that we
have a ground truth to validate our results against. Secordl,
more importantly, the data comes from a real network where,
presumably, paths are not generated according to a first-ord
Markov model. This allows us to gauge the robustness of the
proposed model and to evaluate how well it generalizes to
realistic scenarios. The ground truth network containstal to
of 1105 nodes and 1317 edges, and the longest observed path
has length 27.

For this data set we rerun FM and NICO each from 50
random initializations and look at performance across all
solutions rather than focusing on the maximum likelihood or
clairvoyant best. The exact E-step is used to compute sarftici
statistics for paths of up to 9 hops. For paths longer than
9 hops, we use the causal importance sampling described in
Section IV-A, with 2000 samples per observation.

Minimum, median, and maximum edge symmetric differ-

from correctly ordered observations. Of the 10 solutionsnce errors are shown in Figure 3. Both algorithms have

corresponding to different NICO initializations, we use tine

seemingly high error rates, as there are roughly 1300 links i

based on parameter estimates yielding the highest likatihothe true network. However keep in mind that both algorithms
score. For this simulation, the most likely NICO solutiosal are attempting to fill in the entries of a roughly00 x 1100
always resulted in the best edge symmetric difference .erromatrix. For 50 networks constructed by choosing a random
The FM does not provide a similar mechanism for rankingrder for the elements of each observation the average edge
different solutions. A possible heuristic would be to ch®osymmetric difference error was 4300, so both algorithms
the sparsest solution (with fewest edges). The figures shave indeed doing considerably better than random guessing.

performance for both this heuristic, and clairvoyantly asiog

NICO performance is again noticeably better than that of the

the best (lowest error) solution of the 10. In fact, using thEéM; the NICO average error is better than that of the best
sparsest solution does better than just choosing a FM solutFM reconstruction, and the worst case NICO reconstruction
at random but not as well as using the clairvoyant best. i& on par with the average FM performance. We also note

these simulations, NICO consistently outperform the FM.

that the number of false positives and false negatives in a

Notice that both algorithms exhibit their worst performancreconstruction using either scheme tend to be roughly equal
at an intermediate number of destinations. When very few dé€sach constituting half of the edge symmetric differencergr
tinations are used the measured topology closely resemables Figure 4 shows statistics for the number of edges in the
tree, regardless of the underlying routing mechanism.tRela reconstructed networks. There is an interesting coroelati
frequencies of co-occurrence accurately reflect the nétwdretween the number of edges and reconstruction accuracy in
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Fig. 3. Edge symmetric difference error comparison of NIG@ &M on Fig. 5. Marginal log likelihood values for different randoimitializations

Internet data. The reported values come from 50 randonulizéitions of of NICO, sorted in ascending order. The three hollow cirdesrespond to

each algorithm. the solutions which achieve the lowest edge symmetric rdiffee error of

all NICO trials. The dashed line shows the marginal log ii@bd value

computed using the true path orders to estimate a Markosgitiam matrix.

1500 Most NICO solutions have higher marginal log-likelihoodatth the true

topology, suggesting that our generative model does nairaty describe
i Internet topology data.
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circles in the figure. The dashed line shows the likelihood
value based on a transition matrix estimated using the @tle p
orders as measured by acer out e. Notice that the majority
1200¢ 1 of the NICO solutions have a higher marginal likelihood than
the true topology. This suggests that our generative model
may not be the best match for Internet topology data. Still
the overall performance of our algorithm is encouraging.
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VIl. DISCUSSION ANDONGOING RESEARCH

Fig. 4. Number of edges in networks reconstructed using eathod. The . .
median number of edges per reconstruction is 1329 for NIC® 126 for This paper presents a novel approach to network inference

FM. The true network has 1317 edges, and so it appears thaDMises a from co-occurrence observations. A co-occurrence observa
better job of capturing the complexity of the true network. reflects which vertices are activated by a particular trassm
sion through the network, but not the order in which they are
activated. We model transmission paths as random walks on
this example. As seen above, the typical NICO reconstractiehe underlying graph structure. Co-occurrence obsenvatioe
is more accurate, in terms of edge errors, than a FM recanedeled as i.i.d. samples of the random walk subjected to a
struction. NICO also consistently returns a sparser estimarandom permutation which accounts for the lack of observed
The median number of links in a NICO reconstruction is 1329ath order. Treating the random permutations as latent vari
whereas the median number of links in a FM reconstructieibles we derive aexpectation-maximizatio(EM) algorithm
is 1426. There are 1317 edges in the true network, so in thig efficiently computing maximum likelihood or maximum
sense the NICO reconstructions more accurately reflect tag@osterioriestimates of the random walk parameters (initial
inherent level of complexity in the true network. state distribution and transition matrix).

Marginal log-likelihood values for each of the 50 NICO es- The complexity of the EM algorithm is dominated by
timates are depicted in Figure 5. The marginal log-likeditio the E-step calculation which is exponential in the length
given by (4), is the cost function being optimized by the EMf the longest transmission path. In order to handle large
algorithm. In contrast to the experiments with simulatethdanetworks, we describe fast approximation methods based on
reported above, there is no exact correlation between higlmportance sampling and Monte Carlo techniques. We derive
marginal likelihood values and lower edge symmetric diffeconcentration-style bounds on the accuracy of the Mont®Car
ence error for this example. The topology with the higheapproximation. These bounds prescribe how many importance
likelihood value results in an edge symmetric differenaerer samples must be used to ensure a monotonic increase in
of 627. This is better than the clairvoyant best FM error, bthe log-likelihood, thereby guaranteeing convergencehef t
only average for NICO. The three repetitions which returneadgorithm with high probability. The resulting Monte Carlo
a topology with the lowest symmetric difference error hael tHEM computational complexity only depends polynomially on
next highest likelihood value, as indicated by the thredomol the length of the longest path.
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To obtain a network reconstruction, we determine the mogtaphs. Extending our methods in this fashion is easily meco
likely order for each co-occurrence observation accordiqdished in theory, however the computational complexityyma
to the Markov chain parameter estimates, and then insbd significantly increased when more general structures are
edges in the graph based on these ordered transmission pathissidered.

This procedure always produces a feasible reconstrucfioa.  In this paper we have also restricted our attention to noise-
parameter estimates produced by the EM algorithm may free observations. We are also interested in extending our
useful for other tasks such as guiding an expert to altermatalgorithm to handle the case where observations reflect a
reconstructions by assigning likelihoods to differentrpeta- soft probability that a given vertex occurred in the path
tions, or predicting unobserved paths through the netwsrk @ather than hard, “active” or “not active”, binary obseigas.

in [13]. One could also analyze properties of an ensemble Diiis extension is relevant in many applications including t
solutions obtained by running the EM algorithm from diffiete inference of signal transduction networks (in systemsdgjp)
initializations, and then posit a new set of experimentsdo livhere co-occurrence observations are themselves the oésul
conducted based on this analysis. inference procedures run on experimental data.

The transition matrix paramet#y ; can be interpreted as
estimates of the probability that a transmission will bespals

from vertex: to j, conditioned on the path reachingthat

is, 0;; = Plwgsr = jlw, = i]. In particular, theyare not Ther.e are two main.steps in the proof of Theorem 1. First,
estimates of the probability of a link existing fromto j. We denveaconcenktratlon mequallty for the importanceam
Sinced is a stochastic matrix, each row must sum to 1, arfRPProximations;";, anday’ t/ Then we use the inequality
so if vertexi is connected to many other nodes then the uniy construct a bound f(m( H) A(0k+1)_

mass is belng Spread over more entries. We can obtain jOInReca” the express|0ns (21) and (22) for importance sam-

APPENDIX

probabilities,Plwy, = i, wy4+1 = j], via Bayes theorem, ple approximations calculated in the Monte Carlo E-step.
P . . Plw, =i, wpr 1 = ] Both are of the general formi; = 2121 (’”)Xg’”), where
bwrs = gl = 1] = Plwy, = 1] ’ Z:Sr — [0,b] and X : S; — {0,1}, and they are
whereP[w;, = ] is the stationary distribution of the chain (nofalpproxmatlngu = D res, X(m) Plr|x, 8]. The permutations

m1,...,mr are i.i.d. samples from the distributid®|r|x, 6].
Note thatE[ir] # u, so standard concentration results such
as Hoeffding’s inequality or McDiarmid’s bounded-diffeies
inequality do not directly applye.g, consider the casé = 1:

necessarily equal to the initial state distribution). Tehgsint
probabilities (appropriately scaled versions of the titéors
matrix entries) more accurately reflect the likelihood afrth
being an edge from to j, based on our estimates.

Our future work involves extending and generalizing both Z(m)
algorithmic and theoretical aspects of this work. In ourexp [Z(T] Z X(m)R[r|x, 6] (38)
iments we found that our current model leads to reasonable ST
Internet reconstructions, but we feel there is room for im- # Y X(mPlx|x,0].  (39)
provement. For example, the structure of Internet paths may TEST

depend strongly on the destination of the traffic. In fact ofy, can, however, show thai; yields an asymptotically
could partition the co-occurrence data into source-depeind ,nsistent estimate of. Observe that
(or destination-dependent) subsets and learn differemkdsa

models for each subset (see, e.g., [29]). However, if two or E[Z(m)] = Z P[r|x, 0] [7|x, 6] (40)
more sources (respectively, destinations) have similates) 5 Rirlx, 6] ’
then one could potentially obtain a better overall estimate - 1 (41)

by pooling observations from the sources. We are currently
investigating models based on “mixtures of random walksinceP is a probability distribution or$;, and
to account for this added level of dependency. Nevertheless

0
although the source-dependent model more accuratelyteflec E[Z(m;)X (7;)] = Z R| Blrlx, 6] 0 ©)R[r|x, 0] (42)
how routing is performed in actual communication systems, €Sy 7T|x
there are scenarios where a single transition matrix etima _ Z X (m)P[r|x, 0] (43)

is preferable. For example, a more holistic charactednatif iyl

network routing is valuable if one is interested in predigtihe = (44)
route between a source and destination that was not prédyious

observed, or if one is interested in predicting the endgaifit It follows from the strong law of large numbers that — u
a route given only the activated internal routers [13]. asL — oo.

Co-occurrence observations naturally arise from transmis The following finite-sample concentration inequality
sion paths in communication network applications and, talemonstrates that the approximation errof, — u, decays
a degree, in biological, social, and brain networks as weéixponentially in the number of importance samples,
However the physical mechanisms driving interactions & th Proposition 1: Let {(X;, Z;)} be a sequence of indepen-
latter three applications may also correspond to more génetent and identically distributed random variables with €
connected subgraph structures such as trees or directelitacy{ 0,1} and Z; € [0, b]. Assume tha[Z;] = 1 andE[Z; X;] =
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u, and sefip = ZL7ZZX Then with probability greater thanand observe thaCy, ;, C By, ; , thereforePr(Cy ;) <
1-6, = Pr(B} ) < T25. Let 6" = T25' and letL > 0 be a'value
to be determlned later. For ea@h: 1,..., N, set
. 2b%log 2
pr —p < —_— (45)
o L 2LT*b2 log 2Lz
Proof: From the definitions ofZ; and X;, Z, X; € [0, b]. L, = —onmn > (51)

Applying Hoeffding’s inequality [30] yields that for any> 0,

L
Pr <Z Z:X; — Lp > Lt) < e (46)

=1
and for anyt > 0,

L
Pr <Z Zi—L< —Lt) < e/ (a7
=1

Define the event, E, =
{Cizixi— =y {zl 1 Zi— L <Lt}

By the union boundPr(E;) < 2e-2L°/%" for any t > 0.
The complement oF; implies that fort € (0, 1),

L
~ i Zle - L[J, L
fip—p = Z_lL )
Zi:l Z; Zi:l Z;
L
— 49
< Ta-op ta-p * (49)
_ (1 A4p)
=~ (50)

It follows that ﬁL—uZ@} C E, and so

Pr (ﬁL > (H“)) < Pr(E;) < 2e—2LE*/b% Sincejp <

1, if ”“ +p > 1 thenPr (;LL w> t(ll%t“) =0, and the
proposmon holds trivially. Thus, without loss of genetyl
we consider the casé(llf—f) + u < 1, or equivalently,t <
(1—p)/2. This restriction ort implies% < 2t, and so we
havePr (fig, — pu < 2t) > 1 — 2 2L/ Set§ = 2¢— 2L/
to obtain the desired result. [ |

We apply Proposition 1 to the Monte Carlo approximations
{ay "} and {agt’i} as follows. Recall that the Monte Carlo

Welghts are bounded according 9 € [0,b,], with b, as
defined in (35). Define the event

T
n ~n,k —n,k 2b721 1Og %
B6’,Ln = U at/,t” - Oft/ 1 = T
t/ ¢! =1 n
t};ét”
T,
n 2 2
U U amk _ gk 207, log 5
0,/ 0,t" = Ln

t'=1

This is a union ovee(”}')

By the union bound it follows thabr (B,
let CF, ;, denote the event that

Tn Tn

~n,k _o=n, k + ~n,k
O‘t/ Iz O‘t/ Iz O[O +
t/,t"=1

t'=1

1) < T3 Next,

_n,k
— Oy

202 log 2
> T3 =
= n Ln )

+ T, = T? events, each of which
holds with probability at mosé’ according to Proposition 1.

log %
so that

2 273 1
T2 202 log % _ o 202 log ~ _ log 57 52
" L, " L, L

Then with probability greater thah— §”,

In In & log <
Z (at’ 12 O‘t’ t”) Z (agt’ - ) < L5 .
t =1 r=1
(53)
Recall that XE"). are indicator variables satisfying
ZLV‘_l xfgff)lxi?)» —1and3 1Y) ! xt/ ) = 1. Multiplying each

term in (53) by the appropriate sum of indicators, rearraggi
terms, and recalling that importance sample estimates for
different observations are statistically independent, hage
that with probability greater thal — ¢")7,

N T, VI
~nk (n)  (n)
ﬂ Z Z (O‘?/ v — O t“) Xer i X
n=1 | t/,t"/=11,j=1
N Y o) _ |08
—(n n 6//
+ZZ(a0t, —Qq t/) Xy < i7 ,
t'=111=1
which implies that with probability greater thdm — 6)"
N T, |V
~ )
S > (@ —aph )
n=1¢tt"=114,j=1
N T, V]
~nk -~k
+ Z (O‘g,t' - O‘g,t/) ngnz
n=1¢t'=11i=1
log
< N 2
L

Finally, set1 — 6 = (1 — ¢”)T and multiply through by
| log Omin| > 0. Then with probability greater thah— 4,

T, VI

~n,k
at/ t//
n=1t'"t"=11,5=1
N T’Vl IV‘

+Z ZZ (agf’ _OéOt’) Xt’ ] |10g9m1n|

n=1¢=1i=1

—log (1 —(1—
< N|10g9min|\/ o (1

O‘t’ t”) X§N th/ | 10g 9m1n|

5)1/N)
. . (54)



To complete the proof, observe that [16]

~ k1

NG k1

)—AG )
N V] T,

= X2

n=14,j=1¢ t"
~n,k —n,k
32> (and - a)

By assumptionf i, < 9§j < 1 for each(i,j) € V2 1t
follows that

[17]

(n)

~n,k  —nk (n)
at/,t” Xt”,iXt/,j

pk+1
at/,t” (10g 913

[19]
X

[20]

[21]

k41 k
log0; 71 —log0f; < —10g0min |10g Omin|. (56) 221
Similarly, 1og§§j1 — log 0}, < |logfun| for eachi € V.
Apply these bounds in (55) to find that the right hand side 5%3]

(55) is no greater than the left hand side of (54). Set [24]

1Og 1_(1_15)1/N
L

N | log Omin| (57)

€= [25]

Then ﬁ(gkﬂ) - A(@Hl) < e with probability greater than [26]

1 —4. Solve for L in (57) and plug the resulting value back27
into (51) with6” = 1—(1—46)/" to obtain the desired result.

[28]
REFERENCES

M. G. Rabbat, J. R. Treichler, S. L. Wood, and M. G. Larimor [29]
“Understanding the topology of a telephone network via rimaély-
sensed network tomography,” Broc. IEEE International Confernece
on Acoustics, Speech, and Signal Processimg 3, Philadelphia, PA, [30]
March 2005, pp. 977-980.

M. Coates, A. O. Hero, R. Nowak, and B. Yu, “Internet tormaghy,”
IEEE Signal Processing Magazineol. 19, no. 3, pp. 47-65, 2002.

E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. LehragSystems
Biology in Practice: Concepts, Implementation and Apglma John
Wiley and Sons, 2005.

B. O. PalssonSystems Biology: Properties of Reconstructed Networks
Cambridge University Press, 2006.

S. Wasserman, K. Faust, D. lacobucci, and M. Granovefercial
Network Analysis: Methods and ApplicationsCambridge University
Press, 1994.

M. Newman, A. L. Barabasi, and D. J. WattShe Structure and
Dynamics of Networks Princeton University Pres, 2006.

0. Sporns and G. Tononi, “Classes of network connegtigitd dynam-
ics,” Complexity vol. 7, no. 1, pp. 28-38, 2002.

O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag,rd@niza-
tion, development and function of complex brain networkEgnds in
Cognitive Sciengevol. 8, no. 9, 2004.

International Workshop on Brain Connectiyit2005, http://www.ccs.
fau.eduf~bc2005/welcome.html.

D. Zhu, A. O. Hero, H. Cheng, R. Khanna, and A. Swaroopetifbrk
constrained clustering for gene microarray daBaginformatics vol. 21,
no. 21, pp. 4014-4020, 2005.

Y. Liu and H. Zhao, “A computational approach for oraweri signal
transduction pathway components from genomics and pratsodata,”
BMC Bioinformatics vol. 5, no. 158, October 2004.

J. Kubica, A. Moore, D. Cohn, and J. Schneider, “cGrabplfast graph-
based method for link analysis and queries,Pioc. IJCAI Text-Mining
and Link-Analysis Worksho@\capulco, Mexico, August 2003.

D. Justice and A. O. Hero, “Estimation of message sounoe desti-
nation from link intercepts,IEEE Trans. on Information Forensics and
Security vol. 1, no. 3, pp. 374-385, September 2006.

D. Heckerman, D. Geiger, and D. Chickering, “LearningyBsian
networks: The combination of knowledge and statisticahddflachine
Learning vol. 20, pp. 197-243, 1995.

N. Friedman and D. Koller, “Being Bayesian about Bageshetwork
structure: A Bayesian approach to structure discovery ityeBian
networks,”Machine Learningvol. 50, no. 1-2, pp. 95-125, 2003.

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]

El
[10]

[11]

[12]

[13]

[14]

[15]

[}68
— log 91»7 j‘>

16

M. Teyssier and D. Koller, “Ordering-based search: Angie and
effective algorithm for learning Bayesian networks, Hroc. Conference
on Uncertainty in Al Edinburgh, Scotland, July 2005.

J. Bernardo and A. SmitlBayesian Theory John Wiley & Sons, 1994.
G. C. G. Wei and M. A. Tanner, “A Monte Carlo implementeti of

the EM algorithm and the poor mans data augmentation ahgosif

Journal of the American Statistical Associatiorol. 85, pp. 699-704,
1990.

W. Jank, “Stochastic variants of the EM algorithm: Merarlo, quasi-

(log @75451 —log 91&1‘) . (55Monte Carlo and more,” ifProc. of the American Statistical Associatjon

inneapolis, Minnesota, August 2005.
G. Fort and E. Moulines, “Convergence of the Monte Capectation
maximization for curved exponential familiesAnnals of Statistics
vol. 31, no. 4, pp. 1220-1259, 2003.
J. G. Booth, J. P. Hobert, and W. S. Jank, “A survey of Mo@arlo
algorithms for maximizing the likelihood of a two-stage faichical
model,” Statistical Modelling vol. 1, pp. 333-349, 2001.
C. Robert and G. Caselldjonte Carlo Statistical Methods New York:
Springer Verlag, 1999.
J. S. Liu,Monte Carlo Strategies in Scientific ComputingSpringer,
2001.
M. G. Rabbat, M. A. T. Figueiredo, and R. D. Nowak, “Netko
inference from co-occurrences,” April 2006, technical arpECE-06-
02, Department of Electrical and Computer Engineering,versity of
Wisconsin-Madison.
C. F. J. Wu, “On the convergence properties of the EM rtlgm,”
Annals of Statistigsvol. 11, no. 1, pp. 95-103, 1983.
R. A. Boyles, “On the convergence of the EM algorithrddurnal of
the Royal Statistical Society, Bol. 45, no. 1, pp. 47-50, 1983.
B. S. Caffo, W. Jank, and G. L. Jones, “Ascent-based K @drlo EM,”
Journal of the Royal Statistical Society #l. 67, no. 2, pp. 235-252,
2005.
P. Gupta and P. Kumar, “The capacity of wireless netw@rkEEE
Transactions on Information Theqryol. 46, no. 2, pp. 388-404, March
2000.
D. Justice and A. Hero, “Online methods for network ewsidp local-
ization,” April 2007, submitted tdEEE Transactions on Information
Theory
W. J. Hoeffding, “Probability inequalities for sums bbunded random
variables,”Journal of the American Statistical Associatioml. 58, pp.
713-721, 1963.



