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Abstract

The majority of fMRI studies obtain functional information using statistical
tests based on the magnitude image reconstructions. Recently, a complex corre-
lation (CC) test was proposed based on the complex image data in order to take
advantage of phase information in the signal. However, the CC test ignores ad-
ditional phase information in the baseline component of the data. In this paper,
a new detector for fMRI based on a Generalized Likelihood Ratio Test (GLRT)
is proposed. The GLRT exploits the fact that the fMRI response signal as well
as the baseline component of the data share a common phase. Theoretical anal-
ysis and Monte Carlo simulation are used to explore the performance of the new
detector. At relatively low signal intensities, the GLRT outperforms both the
standard magnitude data test and the CC test. At high signal intensities, the
GLRT performs as well as the standard magnitude data test and significantly
better than the CC test.

Index Terms: functional magnetic resonance imaging (fMRI), signal detection,

statistics, hypothesis testing
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1 Introduction

In functional magnetic resonance imaging (fMRI) a series of MR images of the brain
are acquired over time to detect neural activity. Neural activity has been linked to blood
oxygenation levels in blood vessels nearby active neurons. This relationship is called the
Blood Oxygenation Level Dependent (BOLD) effect [28]. Subtle variations in the magnetic
properties of oxygenated and de-oxygenated blood induce changes in the MR signal intensity
which can be used to detect neural activity. The BOLD effect can be used to obtain maps
of active and non-active regions of the brain. In order to achieve high SNR, the spatial and
temporal imaging resolution must be limited [15]. Unfortunately, low resolution imaging
may lead to a loss in signal information originating in microvasculature [26]. Hence, there is
a fundamental trade-off between resolution and SNR in fMRI. It is therefore of great interest
to develop reliable detection methods for fMRI in the presence of noise.

Most fMRI imaging methods are based on detecting intensity changes in a sequence of two
or more MR images of a certain volume of the brain. When comparing just two images — a
“rest state” and “active state” image — a two-sample t-test is routinely used. In repetitive
experiments involving a dynamic time sequence of images, a correlation method is common
in which the correlation between each voxel time series and a reference signal is used to
decide whether or not activity is present [2]. We will focus on the repetitive experiments
in this paper, however similar results and conclusions can be drawn in other contexts such
as event-related experiments. Many generalizations and extensions of this simple idea have

been proposed [12, 11, 17, 22, 25, 26, 27], and under various assumptions and experimental
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setups the fMRI detection problem is equivalent to well-known statistical tests including
t-tests, F-tests, and y2-tests. Bayesian strategies have also been recently proposed for fMRI
[10], [16].

Almost all fMRI tests are based on the magnitude image data. In standard practice, the
raw MRI data is reconstructed and the magnitude is taken to eliminate the (unknown) phase.
A common approach to fMRI detection is based on a test statistic obtained by correlating
the magnitude voxel time-series data with a known reference signal which is assumed to be
representative of the BOLD response. We call this detector the magnitude correlation (MC)
test. Recently, however, Lai and Glover proposed a complex correlation (CC) test based
on the complex image data (i.e., image data before taking the magnitude of each voxel), in
order to take advantage of phase information in the data and improve the detectability of
fMRI responses [17].

Here, we show that the CC test statistic is F-distributed and has a constant false-alarm
rate (CFAR) property. This means that a specified false-alarm rate, i.e., the probability
of deciding a voxel is active when in fact it is not, can be achieved irrespective of the
signal-to-noise ratio, which is generally unknown a priori. Throughout the paper we denote
the false-alarm rate by P;. Despite the CFAR property, the CC test focuses only on the
response component of the data and ignores the constant baseline component of the data.
The constant component does not contain information relevant to the response itself, but
it does contain important information about the phase. Although the phase is a nuisance

parameter in the testing problem, more accurate knowledge of the phase can improve the
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detectability of the fMRI response. In this paper, we propose a new test based on the
Generalized Likelihood Ratio Test (GLRT) principle that allows us to incorporate the phase
information contained in the constant data component.

Theoretical and Monte Carlo studies are used to show that the GLRT outperforms the
CC test. Specifically, we show that for a fixed false-alarm rate Py, the GLRT’s detection
rate is higher than that of the CC test. Furthermore, we show that the GLRT also performs
significantly better than the MC test at low SNR. The performances of the GLRT and MC
test are roughly the same at high SNR, and in such situations both perform better than the
CC test.

In this paper we stress very simple voxel-wise testing based on a (Gaussian white noise
observation model. Voxel-wise testing ignores spatial relationships in fMRI data. Moreover,
the white noise model does not capture more complicated disturbances present in fMRI
data such as time-correlated noises due to physiologic motions. However, since the focus
of this work is to assess the potential benefits of fMRI detection using complex data, we
employ a simple data model and testing procedure to explore this basic issue, realizing our
assumptions are perhaps too simplistic in many practical cases. However, it is possible to
extend our results and conclusions to more elaborate approaches based on more realistic
data and/or correlated noise models, potentially accounting for uncertainties in the BOLD
response and/or spatial relationships among neighboring voxels. Such extensions are briefly
discussed in the conclusions.

The paper is organized as follows. In Section 2, we review a basic model for fMRI data
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and establish some vector notation that will be used throughout the paper. In Section 3, we
examine the standard MC and CC tests and study the statistical properties of each. We also
derive the new GLRT for fMRI. The properties of the GLRT are discussed and mathematical
analysis is relegated to the Appendices. In Section 4, we compare the performance of the
MC test, CC test, and GLRT in various SNR regimes. Although the GLRT statistic does
not have a standard distribution, we use exhaustive Monte Carlo simulation to assess the
performance of the detector. Our results show that the GLRT does have a CFAR property
and we give a simple rule for choosing the threshold level to achieve a desired P;. We also
demonstrate the performance of all methods in a simulated fMRI experiment. We close in

Section 5 with discussion and conclusions.

2 fMRI Signal Model

The most common reconstruction technique in MRI is to compute the inverse discrete
Fourier transform (DFT) of the raw data. Due to phase errors which are difficult to control,
the signal component of the measurements appears in both real and imaginary channels [19],
[5]. This suggests the following simple model for an fMRI voxel time-series. Let x denote an

N x 1 vector containing the voxel time-series data:

x = (al + br)(cos ¥ + isin¥) + on, (1)

The data vector x consists of two complex signal components. The first component al is

a constant baseline component, where 1 denotes an N X 1 vector of ones and a > 0 is the
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amplitude of the constant component. This vector represents the average value of the time-
series. The second component br is the oscillatory! response signal. The vector r is a reference
function that models the expected response characteristic, and it is assumed to be known
throughout the paper. The amplitude b characterizes the strength of the response. In the
absence of activity b = 0. The two components share a common phase 1. Hence, we model
this phase-coupling by multiplying both components by the complex number cos ) + ¢ sin ¥,
where 7 = v/—1. In addition to the two signal components, an additive complex Gaussian
white noise component on, models random fluctuations in the fMRI time-series. The term
n. denotes a standard (zero mean, unit variance) complex Gaussian vector. The factor o
scales the noise resulting in a variance of 02. In general, the parameters of this model a,
b, ¥, and o2 are unknown and are different for each voxel time-series. We have compared
this model to actual fMRI time-series and found that our assumptions are fairly reasonable.
In particular, the phase-coupling between the constant and response components has been
verified by our experiments. Figure 1 shows the real part, imaginary part and phase of
one time series from real fMRI experiment and it is illustrative of the constant phase idea.
One limitation of our model, as mentioned earlier, is the white noise assumption. The white
noise model is generally an oversimplification of the noises inherent in fMRI (e.g., physiologic
motions), but it is a tractable model for exploring the potential of complex data detection

schemes. Extensions of this work to more realistic noise models are discussed in Section 5.

'We focus on repetitive experiments with (known) oscillatory response signals to illustrate our ideas.
However, it may be possible to extend the analysis and results to other situations such as event-related
experiments (see
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Figure 1. The real part, imaginary part and phase of one time series from a real fMRI experi-
ment, illustrating the the constant phase idea in our model.
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A GLRT can be derived directly from this complex model (1), but this form is not well
suited for mathematical analysis. Because complex numbers can be interpreted as pairs of

real numbers, we re-express the complex model (1) as a 2N x 1 dimensional real-valued

model:
y =S¢+ pH¢ +on (2)
where 1 = b/a and
XR 1 0 r O acos v N.p
y = ? S = 7 H = 7 ¢ = 7 n=
X7 0 1 0 r asin n.;

The subscripts R and I denote real and imaginary parts, respectively. The phase-coupling
in the complex model is manifest in the real model as a nonlinear coupling between the
parameter p and the parameter ¢.

We point out here that this (nonlinear) model stands in marked contrast to the classical
linear regression model

y =S¢ + ,LLHQSQ + on. (3)

where ¢; and ¢, are independent. In the next section we show that the CC test proposed by
Lai and Glover [17] can be derived from the linear model in (3) above. It is our contention
that the nonlinear model is a more accurate representation of the physical fMRI problem,
and, indeed, the new GLRT based on the nonlinear model outperforms the CC test.

Before moving on, let us establish some basic mathematical conventions and notation that
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are used throughout the paper. All vector norms are the standard (Euclidean) 2-norm. Let
M denote an p X ¢ matrix, (e.g., S or H). Let Pyy denote the matrix that projects a vector
onto the subspace spanned by the columns of M, i.e., Py = M(MTM)~IM7, where the
superscript 7' denotes matrix transposition. Let Py; denote the matrix projecting a vector
onto the complementary subspace that is orthogonal to the subspace spanned by the columns

of M, i.e., Py; = I — Py, where I denotes the p x p identity matrix.

3 Methods for Functional MRI Detection

In this section we review the basic MC and CC tests and introduce the new GLRT test
for fMRI detection. In fact, all three tests may be interpreted as GLRTs based on different
data models as we will show. These interpretations illuminate the underlying (although
sometimes overlooked) modeling assumptions associated with each method. Before we look

at each method, let us briefly review the GLRT principle.

3.1 Generalized Likelihood Ratio Tests

The likelihood ratio test (LRT) [14] is an optimal method for deciding which of two hy-
potheses (competing data models) best described a set of observed data. The data model
corresponding to each hypothesis is a probability density function (pdf). Unfortunately,
however, to implement the LRT, the pdf’s under each hypothesis must be completely spec-
ified. This is not the case in fMRI. In fMRI, we have two hypotheses; Hy, BOLD response

absent (1 = 0), and Hy, BOLD response present (4 7# 0). Under hypothesis Hy, the vector
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¢ and the noise power o2 are unknown. Under hypothesis Hi, ¢, 0? and p are unknown.
Due to the unknowns, in fMRI we have what is called a composite hypothesis test.

In special cases, it is possible to derive universally most powerful (UMP) tests for a com-
posite hypothesis problems. However in the complicated problems with multiple nuisance
parameters, UMP tests are not easily derived or more often unavailable. In such complicated
cases, such as the fMRI problem at hand, there are two standard approaches to composite hy-
pothesis testing. The Bayesian approach prescribes prior pdf’s for the unknown parameters
themselves and the likelihoods are integrated against these pdf’s to eliminate the dependence
of the LRT on the unknown parameters. The generalized likelihood ratio test (GLRT) is an-
other approach to composite hypothesis testing. The GLRT is often preferable to Bayesian
approaches due to its ease of implementation and less restrictive assumptions (specifically,
the GLRT does not require the specification of prior probability distributions for the un-
known parameters) [14], [23]. For example, the prior pdf’s for the unknown parameters are
generally unknown to us. For these reasons, we focus on the GLRT in this paper.

The idea of GLRT is motivated by the classical likelihood ratio test. In a simple hypothesis
testing problem, the pdf for each hypothesis is completely known. Let pg,(x;0;), i = 0,1,
denote the pdf’s corresponding to the two hypotheses. Recall that x denotes the data. The
argument ©; denotes a known parameter that specifies the precise form of the pdf. For
example, ©; may represent the mean and covariance of a multivariate Gaussian density. The

LRT decides H; if
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where 7 is a user specified threshold, which can be chosen to achieve a desired P;. The

likelihood ratio (LR), L(x), is a function of the data x, and it is called the test statistic.
The GLRT is also based on the LR, but in the composite case the parameters are unknown.

The key idea in the GLRT is to replace the unknown parameters by their maximum likelihood

estimates (MLE’s). In general, the GLRT decides H; if

L(X) — Pu, (X;

>,
PH, (X7

D) D

0

where @1 is the MLE of ©; assuming H; is true, and @0 is the MLE of ©y assuming H
is true. The MLE of a parameter is simply the value that makes the observed data most
likely (i.e., the value of the parameter that maximizes the corresponding pdf evaluated at
x). The GLRT has no optimality property in general, but it asymptotically approaches the
UMP test among all parameter-invariant tests [6]. For more details on maximum likelihood

estimation and the GLRT, see [14].
3.2 Method 1: Magnitude Correlation Test

Under the assumption of a Gaussian white noise model for the complex data, the mag-
nitude of fMRI data is Rician distributed [19]. However, for large values of the ratio a/c

(ratio of baseline signal intensity to noise standard deviation) the Rician density can be well



3 METHODS FOR FUNCTIONAL MRI DETECTION 12
approximated as Gaussian distribution. To see this, note that z;, the jth observation in the

time series can be written as:

z; = (a+brj)cosO + ongj + i[(a + brj) sin @ + ony;]

So

Y = |z = \/[(a + br;) cos § 4 ong;]? + [(a + br;) sin 4 ong;)?

= \/(a +brj)? + 0?(n%g; + n3;) + 2(a + brj)o(ng;jcos 0 + ny;sin )

= (a+bry)y |1+ 20(npjcos + nyysinb) o
a+ br; (a4 brj)?

2

(”?zj + n%)

Note that ng; cos @+ny; sin 6 is nothing but another Gaussian random variable. We denote it
as n;. Also note that n; and n;, are independent for j # k. n%zj —l—n%j is a x2 random variable.
Under the assumptions that ¢ >> ¢ and u = b/a is very small, the third term under the
square root sign is much smaller than the second one and therefore can be neglected. Then
using the binomial expansion

1
\/1+x%1+§x lz| << 1

we arrive at

y; = a+brj+ on;.
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Hence, a very common approach to fMRI detection is to use the following Gaussian approx-
imation:

y~al+br+on (4)

where here y = |x|, n = [n; ny---ny|" is (real) Gaussian distributed as N(0,I), and with
b =0 under Hy and b # 0 under H;. Hence, in this case Oy = [a 0?] and ©; = [a b o?].
Bear in mind that this approximation does not accurately model the data in cases in which
a/o is relatively small as we shall see later in some examples.

The GLRT for this problem is based on the following test statistic [23], [24]:

| PPty |°
1 = N-1)—"5=N-1)Ly -1 5
t(y) = ( 1)“ Pipiy | ( L (y) — 1] (5)
where
L~ IR
| Py I

If t1(y) > n1, then we decide Hy, otherwise we choose Hy. We call this test the magnitude
correlation (MC) test, because the test statistic ¢;(y) is proportional to the correlation
between the magnitude data y and the reference signal r.

The test statistic ¢;(y), under the assumption that y is truly Gaussian, is distributed as
Fi(nv-1)(SNR) [24], where SNR = p?a®/o?. That is SNR is the non-centrality parameter of
F-distribution. Unfortunately, the Gaussian approximation (4) is inaccurate when a/o < 3.
In fact, when a/o is small, we don’t know the distribution of MC detector nor whether

or not it has CFAR property. So determination of a proper threshold (to obtain a desired
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Py) is theoretically very difficult. Moreover, since the Gaussian approximation is no longer
reasonable in this case, one expects the performance of the MC test to suffer. This is indeed
the case as we shall see in the next section. How to solve this problem will be explained in

next section together with our numerical results.
3.3 Method 2: Complex Correlation Test

Recall the linear model

y = S¢1 + pHepy + on. (6)

The GLRT based on this model is well known in the signal processing literature as a
matched subspace detector [24], and in fact coincides with the CC test proposed by Lai
and Glover [17]. The unknown parameters in this case are ©y = [¢] ¢l 02| and ©; =

[¢T #% u o0?. The GLRT is given by

2
| PaPsy II” _
.=
I PsirPsy |l

2
| PuPsy |

b(y) = (¥ = DlLa(y) 1] = (N = 1) Piriy P

(N-1)
where

2
_ I Psy |l _ y'Psy
Iy I =1l Psy II* = I Pay I " Pemy

Ly(y)

(8)

If t5(y) > m9, then we decide H;, otherwise choose Hy. This test is called the complex
correlation (CC) test, because it is equivalent to the test proposed in [17], which is based

on the correlation between the reference signal and real and imaginary components of the
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complex data. The pdf of ¢,(y) is non-central F5o(n_1)(SNR), where again SNR = pa?/0?,
and thus it has the CFAR property (note that the CC test statistic has a standard central
F, 9(nv-1) distribution under H, (11 = 0)). However, the CC test has one drawback. As we
pointed out in the previous section, the phase-coupling between the constant and BOLD
response components of the data dictates the nonlinear model (2), as opposed to the linear
model used to derive the CC test. Therefore, we next propose a novel GLRT based on this

more accurate model.

3.4 Method 3;: A New GLRT for fMRI

The unknown parameters in model (2) are Oy = [¢7 ¢?%] and ©; = [¢7 u 0?], under H,
and H, respectively. Recall that the phase coupling introduces a nonlinear coupling between
the parameter y and ¢ under H;. This nonlinearity makes the MLE’s more difficult to
compute, but, remarkably, a closed-form expression for the GLRT statistic does exist. Using

the GLRT principle and the nonlinear model (2), in Appendix 1 we derive the following test

statistic:
ts(y) = [Ls(y) — 1J(V — 1) (9)

where
L(y) = 2 Py I (10

2 2
I Pay I+ 11 Psy —\/II Pay [I' + 1| Psy I* + 2l Pay Il Psy |I” cos 2¢
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with

cos p = (01, 6) = yTHTSTy (11)
60l 021 [ Pay Il Psy |l

and 0, and 0, are two sufficient statistics

1
01 = NHTy, 92 = —STy (12)

As usual, given a specified threshold 73, we decide H; if t3(y) > 13, and Hy otherwise.

An interesting relationship exists between this test and the CC test. Compare (8) with
(10). Note that if ¢ = 0 in (10) then L3 and L, coincide. It is precisely through the term
cos 2¢ that the effect of phase coupling comes into play. Furthermore, if the true parameter
i < 1 under Hy, which is the case for most fMRI detection problems?, then we show in
Appendix 3 that L3(y) asymptotically (as N, the length of the time-series, increases) has
the same distribution as Ly(y). For example, this means that for long repetitions of an
experimental task (large N) the CC test and our new GLRT will have roughly the same
performance in terms of detection power at a given false-alarm rate.

Unfortunately, a closed form for the pdf of such a test statistics as t3(y) is not as easily
accessible to us as for the CC test. We can, however, show that the pdf of £3(y) is a function
of u and a*/0? alone (see Appendix 2). This is a desirable feature, since in general a test
could depend on all the unknown parameters (a, u1, 9, 0?). Hence, this result shows that the

test is only a function of two key variables, instead of four.

2The assumption p = % < 1 implies that the strength of the response b is much smaller than the baseline
intensity a.
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Unfortunately though, the dependence of the test on a?/0? implies that, in general, this
test does not have the CFAR property. Hence, selection of a threshold 73 to achieve a desired
P; is more difficult. However, the relationships between this test and the CC test suggest
some possibilities for threshold selection. From (10), the upper bound of L3(y) is easily seen
to be coincident with Ly(y). So, one method of threshold selection is to choose our threshold
slightly smaller than that determined for the Fjoy_1) distribution.

A more accurate method is to determine the exact thresholds via Monte Carlo simulation.
Some of the results of our simulations are given in the next section. Here, we summarize the
conclusions. Exhaustive Monte Carlo simulation reveals that the GLRT test is also CFAR
when a/o > 1, which is the case for most if not all fMRI experiments. More importantly and
more interestingly, to achieve the desired Py, the proper threshold of our GLRT detector is
almost exactly one half that of the corresponding threshold required for a Fy (y_1y distributed
test statistic. This is not only partially justified theoretically in Appendix 3, but it is also
confirmed by extensive Monte Carlo simulation. In mathematical terms, we have that the

density of the test statistic T3 under H is related to the F y_; density by the approximation

Py, (t3) =~ 2f(2t3),

where f denotes the density of an F y_;) distributed statistic. This implies that a very
accurate threshold can be selected using standard Fy (y_1) distribution tables [1]. The factor
of 2 on the right-hand-side above is due to the fact that our analysis revealed that the

threshold producing a specified false-alarm rate for our new GLRT was almost exactly twice
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that required for the same rate with an Fy y_1 statistic.

4 Monte Carlo Analysis of the Tests

4.1 Comparison of the Three Detectors

In order to compare the performances of the three detectors, we have run exhaustive
Monte Carlo experiments. Because the GLRT does not generally have the CFAR property,
it is necessary to study the performance for different values of a/o. However, as mentioned
above, for a/o > 1, the Monte Carlo analysis reveals that the GLRT is essentially CFAR.

In Tables 1-3, we compare the detection rates P; of the three tests under three different
false-alarm rate specifications. The false-alarm rates were selected to be representative of
those commonly used in fMRI. The most difficult element of the Monte Carlo analysis, except
in the CC test case, is the determination of proper thresholds to achieve a desired false-alarm
rate with each detector. The CC test is Fyov_1) distributed under Hy, and therefore the
proper threshold is very easily determined from standard tables [1].

Because the MC test and GLRT are not known to possess the CFAR property, the proper
threshold will, in general, depend on a/o. For a given value of a/o, the threshold needed
to achieve a desired false-alarm rate can be determined via Monte Carlo analysis and trial-
and-error over a range of thresholds. This is precisely how the thresholds were determined
for the results given in Tables 1-3. Remarkably, however, the Monte Carlo analysis revealed
that both the MC test and the GLRT were essentially CFAR so long as a/o > 1, which is

almost always true in fMRI. Moreover, the Monte Carlo analysis supports the use of some
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very simple rules for threshold selection.

First, in the case of the MC test, for very large values of a/o the magnitude data is very
well approximated as Gaussian. Therefore, in such situations, the MC test is (approximately)
Fi (-1 distributed under Hy and the proper threshold can be determined again from stan-
dard tables [1]. Because, the Monte Carlo simulations show that for a/oc > 1 the MC test
is essentially CFAR, the proper threshold may be determined from F; y_1) distribution for
all cases in which a/o > 1. The derivation of equation (4) also proves this, although not
strictly.

Second, the similar performances of the GLRT and MC test for large a/o suggested the
possibility of a relationship between the GLRT statistic and the Fj(y_1) statistic. This
intuition led to the discovery that the proper threshold for the GLRT can be determined
from the Fy y_1) as well. Specifically, our analysis shows that the proper threshold for the
GLRT can be selected as 1/2 of the threshold required to achieve the desired false-alarm
rate with a F} (y_1) distributed statistic. What this implies mathematically is that the “tail”
behavior of the GLRT statistic’s distribution, which is not known explicitly, must coincide
with the tail behavior of the F y_;) distribution.

The results in the three tables show clearly that our GLRT detector performs best for
all three (low, medium, high) a/o cases. The CC detector does perform better than MC
detector at low a/o case. However, as the constant component becomes more and more
dominant over the noise, the GLRT and MC test significantly outperform the CC test.

Finally note that the detection rate of the CC test is constant for fixed SNR = p?(a/c)2.
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This is expected because the CC test statistic is non-central F59y—1)(SNR) under H;. Re-
markably, note that the dependence of detection rate of our GLRT detector also depends
only on SNR. The same is not true of the MC test, whose performance drops off severely as
a/o decreases.

We also illustrate the results graphically in Fig. 2. Here we plot the probability of detection
as a function of relative response strength p = 2. Fig. 2(a) shows the case with a/o = 1.0,
which is fairly low, so we expect the performance of the MC detector to be poor, which is
indeed the case. Fig. 2(b) shows the case for a/o = 3.162, and we see that the performance
of the MC detector begins to surpass that of the CC detector but is still inferior to that of
our new GLRT. Fig. 2(c) indicates the case for a/o = 10, which is quite large, and so the

MC detector and GLRT detector have almost the same performance.
4.2 A Simulated fMRI Study

Figure 3 shows one slice image of the brain (64 x 64 voxels). A 9 x 9 voxel region in
the lower right corner of the brain (indicated in white) was selected to be active in this
simulation. For the simulation, a N = 120 length time series was simulated for each voxel.
The reference signal r was a square wave with period 10. The fluctuation of reference signal
about the constant baseline level was +10%, i.e., p = 0.1. The noise variance in each time
series was set so that a/o = 3.162. For each time series, the phase is a constant. But
spatially, the phase has a random fluctuation (modeled here as a Gaussian noise with zero
mean 0.1 variance) about a constant phase of 7/3. The desired false-alarm rate in this

example was chosen to be Py = 0.01, and thus the three thresholds for CC, GLRT and MC
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Figure 2. Three performance curves (detection probability Pp v. response strength py = %)
with N = 120, Py = .01 while y = b/a varies. Therefore the thresholds are chosen as in
Table 1. solid (— — —) line for GLRT; dash-dot(-.) line for CC; dashed (— —)line for MC.
(a) a/o = 1. The curve at the top is for GLRT, the middle one for CC, the bottom one for
MC;(b) a/o = 3.162. The top one is for GLRT, the middle one for MC, the bottom one for
CC (c) a/o = 10, the GLRT and MC curves coalesce to one in the top while the CC detector

remains at the bottom.
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detectors are 4.70, 3.43, and 6.85, respectively. The actual false-alarm and detection rates
observed in this simulation, given in the caption of Figure 3, are in excellent agreement with

the tabulated Monte Carlo results.
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Table 1: P; with Py = 0.01, N = 120

threshold | 4.70 | 3.43 | 6.85

a/o 1 CC | GLRT | MC
1 .3162 .72 .80 44
3.162 1 .72 .80 .78
10 .03162 .72 .80 .80

Table 2: Py with Py = 0.025, N = 120

threshold | 3.75 | 2.58 | 5.15

a/o 1 CC | GLRT | MC
1 3162 .82 .88 .58
3.162 1 .82 .88 87
10 | .03162 .82 .88 .88

Table 3: P; with Py = 0.05, N = 120

threshold | 3.03 | 1.96 | 3.92

a/o 1 CC | GLRT | MC
1 3162 .88 93 .69
3.162 1 .88 93 92
10| .03162 .88 93 93

23
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5 Discussions and Conclusions

This paper developed a novel GLRT for fMRI in the complex data domain, and compared
it to the commonly used MC test and the recently proposed CC test. We derived a very
simple, closed-form expression for the GLRT statistic. In fact, all three tests are roughly
equal in terms of computational complexity. Although the GLRT statistic does not obey a
well known distribution, theoretical analysis established a basic invariance principle for the
statistic, and it was shown that the GLRT and the CC test are asymptotically equivalent (as
the length fMRI time series increases). Monte Carlo analysis was used to demonstrate that
the GLRT performs better than the MC test or CC test overall. Furthermore, the analysis
revealed that desired false-alarm rates can be achieved with the GLRT using thresholds
determined by well known distribution tables.

There are several avenues for future work within the GLRT framework. First, the noise
structure in fMRI is very complicated. For simplicity and the purpose of demonstrating
our method and ideas, we assume the noise is white Gaussian. The whiteness assumption
doesn’t change the problem essentially, since given a known time-correlation structure we
can always use the Choleksy factorization of the noise covariance to whiten the data [23],
producing a model with the same form as that used throughout this paper. Hence, many of
our conclusions are easily extended to more realistic noise models that incorporate random
fluctuations due to the respiration and cardiac cycle and patient motions [13,18 4], for ex-
ample. One difficulty that we face, however, is that the noise correlation structure is usually

unknown a priori, and estimation of the noise covariance is a challenging issue that we are
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Figure 3. Simulated fMRI experiment. (a) Brain image with simulated activation region high-
lighted. The MC test, CC test, and GLRT test are compared in (b)-(d). A threshold was
selected for each test to produce a Py = 0.01. (b) MC test results. Detection rate Py = 0.77.
(c) CC test results. Py =0.70. (d) GLRT results. P; = 0.79.
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investigating. Second, more realistic (and necessarily more complicated) signal models can
be used in the GLRT framework. For example, multi-parameter models of the reference
signal r could account for uncertainties in the BOLD response. Multi-parameter linear re-
gression models of the response could be used within the GLRT framework to make the test
more robust to such uncertainties. However, we caution that more complicated models may
or may not improve the performance. It is also possible to deal with unknown delays (differ-
ent onset latencies in different voxels) by correlating the voxels with shifted versions of the
response r and selecting the shift that produces the maximum correlation. This approach
is another instance of a GLRT procedure in which we are effectively computing the MLE of
the delay and plugging it into the LRT. We are currently investigating such methods.
Finally, we close with a summary of our conclusions regarding complex data domain fMRI.
First, at relatively high baseline signal intensity (a/o > 3), the simple MC test, which is
very common in practice, performs quite well. Hence, in such regimes there is no compelling
reason for testing based on the complex data. This is expected since the magnitude data is
approximately Gaussian at high signal intensity, in which case the MC test is nearly optimal.
In fact, in most typical fMRI experiments a/o > 3 and the MC test is adequate. However,
at lower baseline signal intensity the performance of the MC test drops off dramatically,
and in such situations complex data tests such as the new GLRT and CC test offer superior
performance. Low signal intensity does occur as the spatial and/or temporal resolution of
the fMRI study is increased. Most fMRI experiments work with limited resolution in order

to avoid the low signal intensity problem. However, high resolution, low signal intensity
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fMRI may be useful in certain research or clinical paradigms, and in such cases we advocate

the GLRT.
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6 Appendix

6.1 Appendix 1: Derivation of GLRT Statistic

In our derivations, we assume 17r = 0 and r’r = N, so STH = H'S = 0,S7S = H'H =
NI45. The second condition can always be satisfied since we can always normalize the
reference signal without changing the problem essentially. The first condition is generally
not immediately fulfilled, however it is easily achieved by orthogonalization. For example, if
r is not orthogonal to the baseline constant signal 1, then we define an orthogonal response
signal T = Pjr. In fact, this orthogonalization is applied to the data vectors in the test
statistics t1(y), t2(x), and t3(x) (Note that in the complex case this corresponds to the
projection operator Psr). Hence, without loss of generality, we assume r is orthogonal to 1.

Let oy and &, denote the MLEs of noise variance under hypotheses Hy and H;, respectively.

p, (x:01)

Recall that the GLRT statistic is given by o (xB0) It is easy to show that this statistic
0 b)

reduces to

Ly(y) = min(33)/min(3?) (13)
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Recall that under Gaussian distribution the maximum likelihood estimate is the same as

least square estimate. Therefore, calculation of min g} is straightforward:

2
I

ming3 = || Py (14)

Determining min(¢%) is much more difficult due to the nonlinear coupling between the two
unknowns p and ¢. To circumvent this difficulty we first decompose y and y — S¢p — uH¢

into three orthogonal components, i.e.,

y = Psuy + Psy + Pay

and then

5 = |ly—S¢—uHo |

= || Péuy + (Psy — So) + (Puy — uH¢) |”
= || Py I + || Psy — S |I” + || Py — uHo ||’
= || Péuy "+ Sb2 — S¢ |I” + || HY: — iHo |

= || Pguy " + N7 0y + 6205 + (1 + 12)6" ¢ — 2(05 + )" 6]

where 6, and 6, are given by (12).

Now min 52 is equivalent to minJ = (1 + u2)¢T'¢p — 2(0y + uby) T ¢.
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Setting partial derivatives of J with respect to y and ¢ to zero:

o = 2udte—200¢ =0,

We then get

I )

v = ==, (15)

T
~ 0y + 1161
= V. 1

b= e (16)

So now

PN 2 R ~
ming} = || Pegy |I” + N(0760, + 0365) — N(1 + %)6" ¢
Furthermore, note that
T T 2 2 1 2 2 2 2
N0y 0, +050:) = || Pay [|"+ [ Psy [IY, || Psay I+ Bsy "+ || Pay "=l ¥
which gives
oA ~ ~ N ~ ~
ming} = ||y > - N1+ 88" =y |’ - T 05 0o + 20010, + 67 61)

Eliminating ¢ from (15) and (16) (or setting derivative of the above equation with respect
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to Ji to zero) shows that 1z must satisfy:

070 + 271070, + 7120701 _ 676, + 11670,

= 17
Using this equation, min 5% can be further simplified:
o~ 2 T 0’{92
minoy = ||y ||” = N(6; 61 + 7 ) (18)

This equation is important in our derivation of asymptotic expression of L3(y) in Appendix
3.

From (17), 1i satisfies quadratic equation pu? + cyu — 1 = 0 with

_ 030, —0706,

670,
Since pipue = —1, there are two solutions of opposite signs:
c c.?
=—=+4/1+(=
p=— +(5)

However, from (18), to make sure 5> is minimal, i must have the same sign as 67 6,, and

so the unique solution for 7z is:
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Substitution of 7 into (18) yields the right solution for min 5%. Finally from (13), (14)
and (18) we get the closed form expression for L3(y) as given by (10).
Instead of using L3(y) directly, we use (9) as our test statistic, the main reason is to get a
good comparisons between the three different detectors. It will become much clearer when

we study the asymptotic property of ¢3(y).-

6.2 Appendix 2: Invarianceof GLRT test statistics

The most difficult part to use invariant theory is to find an appropriate set of transfor-
mations which fully exploits the structure of the signal to be detected. Since our problem
is nonlinear, finding this set of transformation is not an easy matter. Actually finding and
proof come simultaneously.

The following theorem may be regarded as an extension of the results in [24], which is not
hard to prove, and therefore we simply state the result.

Theorem: Consider the model

y =puH¢p+S¢p +on (19)

where n is Gaussian distributed as N(0,1). The model is invariant to the group of transfor-

mations defined by:

G={9y):9(y) = cQsQuy} (20)
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where

— — S s ss”
Qs=USQU£+PL=ﬁQﬁ+I—T

Qu = UsQUY, + Py = JLQEC +1- BT
c 1s any constant; Q is any 2 x 2 orthogonal matriz; Ug and Uy are defined in an obvious
way.
The geometrical meaning of this transformation is consecutive rotations of the original
signal within the S plane and then within H plane followed by scalings that introduces
unknown variance.

Under the above transformation, g(y) is explicitly expressed as

9(y) = muHo¢, +S¢; +01n (21)

with the induced transformation G given by:

.
Hi = H

< ¢ = cQo
oy = co

It follows that (u,|| ¢ ||°/0?) or more simply (u,a?/0?) is a set of maximal invariant
parameters under G (see [6], [21], [23]) for details on invariance principles). And it is easy
to verify that ¢3(y) is invariant to the transformation group G. Therefore, from standard
invariance theory (again see [6], [21], [23]), the pdf of ¢3(y) is a function of x and a/c alone

(instead of all four model parameters «a, b, 9, and o).
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6.3 Appendix 3: Asymptoticsof GLRT test statistics

In detection problem, our concern is low SNR case. In our situation, we assume that the
true parameter y under H; is small, i.e., u — 0. By the asymptotic property of maximum
likelihood estimates, as N — oo, i — u. In order to get a more accurate approximation of

i1, we use (16) combined with i — p — 0 (as N — oo) and get é — 05, so from (15) (as

N — ),
070,
R~ 22
which is the maximum likelihood estimate for the corresponding linear model (3).
Substituting the above equation into (18) we have
ming? = ||y [|* ~ N(676: +6562) = |y " = | Py I = || Py II° (23)
Noting that
PSLH = PSLPSLHPSL’ (24)
P§ — Pgy; = Ps PuPy = Pu= PuPs, (25)
PsyPs =PgPs = Psy=1—Ps— Py. (26)

we get, from equations (13), (14), (23), as N — oo,

Ls(y) = La(y)
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This implies that t3(y) asymptotically has the same distribution as t3(y), i.e., non-central

F,5v-1)(SNR), and thus asymptotically has CFAR property.
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