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Abstract—This paper presents results pertaining to sequential doesn’t belong) taS with sufficient certainty, measurement

methods for support recovery of sparse signals in noise. Spi-  of that component can cease, and resources can be diverted to
cally, we show thatany sequential measurement procedure fails a more uncertain element.

provided the average number of measurements per dimension . . . )
grows slower then D(fo||f1) ‘logs where s is the level of The results presented in this paper are in terms of asyrmptoti
sparsity, and D( fo||f1) the Kullback-Leibler divergence between rate at which the average number of measurements per dimen-
the underlying distributions. For comparison, we show anynon-  sion, denotedn, must increase with to ensure exact recovery
sequential procedure fails provided the number of measurements of g for any fixed distributionsfy and ;. The main contribu-

grows at a rate less thanD( f1||fo) " log n, wheren is the total di- iy
mension of the problem. Lastly, we show that a simple procede tions arel) to present a necessary condition for success of any

termed sequential thresholding guarantees exact support recovery s_equential proc_edure in the Sparse setm)g;hgw Success ofa
provided the average number of measurements per dimension Simple sequential procedure first presentediin [2] is guesth

grows faster than D(fo||f1) " (log s +loglog n), a mere additive provided the average number of measurements per dimension
factor more than the lower bound. is within a small additive factor of the necessary condifion
I. INTRODUCTION any sequential procedure, and compare this procedure to the

High-di ional signal ; i a fund known optimal sequential probability ratio test, aBdlastly,
'gh-dimensional signal Support recovery 1S a fundamen mpare these results to the performance limits of any non-

problem arising in many aspects of science and engineeriggquemial procedure. Talile | summarizes these results.
The goal of the basic problem is to determine, based on noisy

observations, a sparse set of elements that somehow differ

TABLE |
from the others. AVERAGE NUMBER OF MEASUREMENTS PER DIMENSION FOR EXACT
In this paper we study the following problem. Consider a RECOVERY
support setS C {1,...,n} and a random variablg; ; such 1
_ i _Togn
that Non-sequential m > DA necessary
3 : Tog s
N folt) i¢S M Sequential m > pettes necessary
Yioj f1i() ieS Sequential Thresholdind m > 185 __ 4 | sufficient if s
! D(Jol171) lent It
loglog n sub-linear inn
D(follf1)

where fo(-) and f1(-) are probability measures g}, and j

indexes multiple independent measurements of any componen

i € {1,...,n}. The dimension of the problem, is large — Our results are striking primarily for two reasons. First,

perhaps thousands or millions or more — but the suppox§ sesequentialprocedures succeed when the number of measure-

is sparse in the sense that the number of elements followifgnts per dimension increases at a rate logarithmic in tres le

f1 is much less than the dimension, i.85| = s < n. The of sparsity i.e. logs. In contrast,non-sequentiaprocedures

goal of the sparse recovery problem is to identify the&et require the average number of measurements per dimension
In anon-sequentiasettingm > 1 independent observationsto increase at a rate logarithmic in thémension i.e. log n.

of each component are madg (, ..., y;., are observed for For signals where sparsity is sublinear in dimension, thesga

eachi) and the fundamental limits of reliable recovery aref sequential methods are polynomial; in scenarios whege th

readily characterized in terms of Kullback-Leibler divenge Ssparsity grows logarithmically, the gains are exponential

and dimension. Secondly, and perhaps equally as surprising, a simple pro-
Sequential approaches to the high dimensional suppoedure dubbed sequential thresholding achieves neailyalpt

recovery problem have been given much attention recergly (performance provided minor constraints on the level of spar

[1], [2], [B], [4], etc). In thesequentiaketting, the decision to sity are met (specifically, that is sublinear inn). In terms

observey; ; is based on prior observations, i18., ..., ¥; ;—1. Of the average number of measurements per dimension, the

Herein lies the advantage of sequential methods: if priprocedure comes within an additive factor, doubly loganith

measurements indicate a particular component belongs if@odimension, of the lower bound of any sequential procedure
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Il. PROBLEM FORMULATION B. Measurement Budget

Let S be a sparse subset §f, ..., n} with cardinality s = In order to make fair comparison between measurement
|S|. For any indexi € {1,...,n}, the random variablg; ; is Schemes, we limit the total number of observationsypf
independent, identically distributed according [fd (1)afts, in expectation. For any procedure we require
for all j, y; ; follows distribution f, (-) if ¢ belongs taS, and
follows fy(-) otherwise. We refer tg, as the null distribution,
and f, tJr:e( ;Iternative. ¢ E Zm"j = nm 2)

In this paper, we limit our analysis to exact recoverySf I
using coordinate wise methods. DefiniSgas an estimate of for some integern. This implies, on average, we use or
S, the family wise error rate is given as: fewer observations per dimension.

. IIl. SEQUENTIAL THRESHOLDING
PE)=PS#8) =P J&ulJ&

s gt Sequential thresholding, first presented lin [2], relies on

a simple bisection idea. The procedure consists of a series
whereé&;, 1 € S is a false positive error event adtd, i € S of K measurement passes, where each pass eliminates from
a false negative error event. To simplify notation, we defimmnsideration a proportion of the components measured on
the false positive and false negative probabilities in teeall the prior pass. After the last pass the procedure terminates
mannera =P(&;|i ¢ S), andg =P(&li € S). and the remaining components are taken as the estimate

The test to decide if componenbelongs toS is based on of S. Sequential thresholding is described in the following
the normalized log-likelihood ratio. Fagy; distributed i.i.d.f, algorithm.

or fi,
m Sequential Thresholding
t(m) . — 1 ZIOg f1(y)) input: K ~ logn steps, threshold
m = foly;) initialize: 7; , = 1 for all i
L . ) fork=1,...,K do

Whlc_h_ls a flmCtIOh of(y1, ..., ym) € Y™. The superscriptn for {i:mx =1} do
explicitly indicates the number of measurements used tm for measure ts
the likelihood ratio and is suppressed when unambiguous. Th 1 >~
log-likelihood ratio is compared against a scalar threghol threshold: ; 41 = { 0 else
to hypothesize if a component follows or fi: end for

¢ 2?(1) 5. end for

OUtpUt:S = {Z T K1 = 1}

Additionally, the Kullback-Liebler divergence of disttib
tion fy from f; is defined as:

fi (y)] A. Example of Sequential Thresholding
fo(y)

whereE; [] is expectation with respect to distributigh.

DAl fo) = Ex [mg

Sequential thresholding is perhaps best illustrated bynexa
ple. Consider a simple case with measurement bucdget 2,
fo ~N(0,1) and f; ~ N(6,1) for somed > 0.
A. Measurement procedures On the first pass, the procedures measuyes for all i,

L . usingn measurements (half of the total budgetras = 2n).

To be_ precise in charac’_ce_rl_zmg a measurement proceduyxg, subsequent passes, the procedure obsgrye i . = 1.
we continue with three definitions. To setw; ;11 the procedure thresholds observations that fall
Definition 11.1. Measurement Proceduré procedure, de- below, for exampley = 0, eliminating a proportion (approx-
noted, used to determine if; ; is measured. lfr; ; = 1, imately half in this case) of components following the null
theny; ; is measured. Conversely,if ; = 0, theny; ; is not  distribution:

measured. 1 yin>0
7‘)
T k+1 =

Definition 11.2. Non-sequential measurement procedéwey 0 wyix<O.

measurement procedure such thatr; ; is not a function of )
y; » for any 5. In words, if a measurement of componentalls below the

threshold on any pass, that componentas measured for the
Definition 11.3. Sequential measurement procedukemea- remainder of the procedure, and not included in the estimate
surement procedure in whichr; ; is allowed to depend on of S. After K ~ logn passes, the procedure terminates, and
prior measurements, specifically; ; : {yi,1,...¥ij-1} = estimatesS as the set of indices that have not been eliminated
{0, 1}. from considerationS = {i : m; k1 = 1}.



B. Details of Sequential Thresholding D. Ability of Sequential Thresholding

Sequential thresholding requires two inputs; K, the We present the first of the three main theorems of the paper
number of passes, arf) v, a threshold. We defing as the to quantify the performance of sequential thresholding.

probability a component following the null is eliminated ORrpeqrem 111.1. Ability of sequential thresholdingProvided
any given pass, which is related to the threshold as | loe]
og s oglogn

+ 3
(ol * DGl ) ©
sequential thresholding recovefswith high probability. More

>
P(t™ < Ali ¢ S) = p. "D

Additionally, we restrict our consideration o € [1/2,1) —

that is, the probability a null component is eliminated on gremsely, i
given pass is one half or greater. lim m S 1
On each passpm (which we assume to be an integer) n—oo log (slogn) = D(fol|f1)

mea;urgments 01_‘ a (i%)sgt of components are made, andtﬁlgﬁp(g) 0.
log-likelihood ratio ¢; is formed for each component.

As measurements are made in blocks of size, we use Proof: From a union bound on the family wise error rate,
boldface; , to indicate a block of measurements are takef€ have
pf component; on the .kth measurement pasg; ; can be P(E) < (n—s)a+sp. 4)
interpreted as a vector:

Employing sequential thresholding, from the definitionof

ik = (T, (km1)pmA1s > Ti,pm )- a=(1-p)¥ and
With v and K = logn as inputs, sequential thresholding K (om) _
operates as follows. First, the procedure initializestiragpt g =P U t; <qlies
;1 = 1. For passes = 1,..., K the procedure measures k=1

IN

tz(.”m) if m,, = 1. To setm; .1, the procedure tests the KP (tz(-pm) <qli € 5)

corresponding log-likelihood ratio against the threshpld
ponding fog-iket 0 aga e where the inequality follows from a union bound.

{ 1 if e S ~ We can further bound the false negative error event using the
Tik+1 = ’ Chernoff-Stein Lemma_ [5], p. 384. Consider a simple binary
hypothesis test with a fixed probability of false positive at

ag = 1 — p. By the Chernoff-Stein Lemma, the false negative
That is, if tz(.”m) is below v, no further measurements ofprobability is then given as
component are taken. Otherwise, componenis measured (om) _ o
on the subsequent pass. By definitiongfapproximatelyp P (tip <7vli€e 3) = g~ #mDUoll)
times the number of remaining components followifygwill
be eliminated on each pass; if < n, each thresholding
step eliminates approximately times the total number of . 1
corrF:ponents remalianping. y i m loga=—D.

After passkK, the procedure terminates and estimafeas Thjs implies, for anye; > 0, for sufficiently largem,
the indices still under consideratio§:= {i : m; x+1 = 1}.

0 else.

wherea = e~™P is equivalent to

P (tEPm) <~vlie S) < e—PmUD(follf1)=e1)
C. Measurement Budget

. ) o Letting K = (1+¢2) logn, for sufficiently largen andm, (4)
Sequential thresholding satisfies the measurement budggtomes

in (@) provideds grows sublinearly withn. For brevity, we (n—s)
argue the procedure comes arbitrarily close to safisfyig t P(€) <~ + s(1 + 2) log(n) e~ PP follfr) =€)
measurement budget for large n

Hence,P(€) goes to zero provided
K-

—

B _—— 1— oV (n — 8)pm + som >1og((1+62)310gn)
2] = 2 (el ) ™= Dl 1) - )
< m(n—s)+msKp. which, ase; ande; can be made arbitrarily small, andcan
be made arbitrarily close tb, directly gives the theorem:
Letting K = logn, the procedure comes arbitrarily close to
satisfying the constraint as grows large. To be rigorous in m> M.
showing the procedure satisfidd (2), can be replaced by D(follf1)

m — 1, and the analysis throughout holds. [ ]



IV. LOWERBOUND ON SEQUENTIAL PROCEDURES Dropping the sF;[N]| term from [8), we need to find

In this section we derive a lower bound on the rate at whi@pnditions under which the inequality

m must grow withn for any sequential procedure, and relate n — s Q@
Sequential Thesholding to the high dimensional extensfon op (7,7, alog 1-3 +(1-a)log
the well known sequential probability ratio test (SPRT).

1_a)<mn
3 <

impliesP(£) — 1. Dividing by n log s, the inequality becomes
A. Limitation of any sequential procedure

n—s o 11—« m
The lower bound for any sequential procedure is present alog — 3 +(1—a)log 3 < log s’

: . follf1)nlog s
in the following theorem. ] o ]

Imposing the condition in({5) and cancelliig(fo||f1) from
Theorem IV.1. Consider any sequential measurement procgoth sides, the above inequality requires

dure. Provided

1
+ (1 —a)log

log s lim ——> < log —a) <1. (9

m< —a—— n—oo nlog s

D(follf1)

the family wise error rate tends to one. More precisely, if

1- ﬁ
It is sufficient to show that[{9) implies either > - or
B> L in the high dimensional limit.

.oom 1 With this in mind, lets = 1=*, anda = =<2 for some
lim < 5 _ s .o n—s .
n—oologs — D(follf1) €1, € € [0,1). Taking the limit asn — oo in (@) and reducing
thenP(£) — 1. terms we have:
Proof: First, we show conditions under which the family Jim () =1 (10)

wise error rate goes to one: which contradicts[{9), and negates our assumption that both

B=1=% anda = L=< for ¢, €; € [0,1). Hence, byl[(l7), the

PE) = U & U U & family wise error rate must go to one, completing the proof.
igs €S [ |
B. The SPRT
= (& n (& _ . _
igs ics The sequential probability ratio test can be extended from
s e simple binary hypothesis tests to the high dimensional case
= 1-(1-pr1-a) by simply consideringn parallel SPRTs. Each individual
> 1—e Premalnms) (6) SPRT operates by continuing to measure a component if the

corresponding likelihood ratio is within an upper and lower

which goes to one provided either boundary, and terminating measurement otherwise. Foaurscal

1 1
os L s> 1. ) A and B _
Second, for a simple binary hypothesis test, we can bound Tij+1 = § 7 J

the expected number of measurementsity sequential pro-

cedure with false positive and false negative probalslitie G) _ . . _
and 3. To simplify notation, define: wheret;”’ is the normalized log-likelihood ratio comprised

of all prior measurements (unlike sequential thresholding, in
which the likelihood rat|o is only formed using measurensent
> mijli¢S| Ea[N|=E|> mjlies from a single pass). ¥) < A/j, the SPRT labels indexas
J J not belonging toS, and |ft @ 5 B/j, indexi is assigned to
that is, Eo[N] and E,[N] are the expected number of meas- For a thorough discussion of the SPRT, <ée [6].

surements undef, and f, respectively. From[]6] p.21, we Sequential probability ratio tests are optimal for binary
have hypothesis tests in terms of minimum expected number of

) measurements for any error probabilitiesand g (shown

1 (a log a originally in [7]), and this optimality can be translated to
D(follf1) 1-8 the high dimensional case. Consider a single component
which is derived from a simple argument using Jenseresid the corresponding binary hypothesis test. To be théroug
inequality. The total expected number of measurements, cave restate the optimal property of the SPRT in the following
strained by the measurement budget, is lemma.

Ey[N] > —l—(l—a)logl_

Lemma IV.2. Optimality of the SPRT for simple binary
(n — 8)Ey[N] + sE1[N Zw” < mn (8) tests [8] (p.63).Consider an SPRT with expected number
of measurement&,[N] and E;[N], and corresponding error



probabilitiesa and 3. Any other sequential test with expectethe family wise error rate goes to 1. To be precige] (11) is
number of measurement [N]' and E,[N]" and error prob- equivalent to
abilities o/ < o and 8’ < g will also haveEq[N]' > Eq[N] m 1

> lim < .

n—oo logn

In short, no procedure with the smaller error probabilites | hich implieslim,_, . P(§) = 1.
have fewer measurements in expectation than the SPRT. To e .
translate the optimality of the SPRT to the high dimensional Proof: From [S], p. 386, (Chernoff Information) and by

case, we introduce the following lemma. (@) any non-sequential test fails provided
Lemma IV.3. Optimality of the SPRTConsidern component- a = e~ mPUAAlfo) 1
wise sequential probability ratio tests used to estim&te n-—s
each with error probabilitiesa: and 8, and with a total of Of
E[>>, ; mi,;] measurements in expectation. Any other compo- B = e=mD(HlIf) 5 1
nent wise test with' < « and 8’ < § will also have expected S
number of measuremeriﬁzm mi ;) > ]E[Zm. i 5] where
Proof: We can write the total expected number of mea- f fofi

. D e R w—

surements as: I, M A dy

for A € [0,1]. Hence, any sequential procedure fails provided

E | mi;| = (n— s)Eo[N] + sEa[N] (1( ) | )
i,J AT Al

m < min max

which is monotonically increasing in bofly[N] andE,[N]. A€[0,1] D(fAllfo) " D(AAIIf1)
Together witH 1V.2, this implies the lemma. B which is implied if
C. Comparison of the SPRT to Sequential Thresholding m < logn

Although a fully rigorous proof is quite involved, using D(fillfo)
standard approximations for the sequential probabilitjora completing the proof. m
test (again, see [6]) it is relatively straightforward tamahthe
SPRT does achieve the lower bound presented above. VI. CONCLUSION

Sequential thresholding is similar in spirit to the SPRT. In This paper showed sequential methods for support recovery
many scenarios, however, implementing the SPRT can be sobhigh dimensional sparse signals in noise can succeed usin
stantially more complicated, if not infeasible, when comggla far fewer measurements than non-sequential methods.fSpeci
to sequential thresholding. To set the stopping boundaaigs ically, non-sequential methods require the number of mea-
SPRT requires knowledge of the underlying distributions a&sirements to grow logarithmically with the dimension, hil
well as the level of sparsity. Even when these are availablesequential methods succeed if the number of measurements
only approximations relating error probabilities to thepgiing grows logarithmically with the level of sparsity. Additialty, a
boundaries can be derived in closed-form. simple procedure termed sequential thresholding comdsnwit

On the contrary, sequential thresholding does not requaiesmall additive factor of the lower bound in terms of number
knowledge ofs. Since its sample requirements are within af measurements per dimension.
factor a small factor of the lower bound, sequential thré&sho
ing is automaticallyadaptiveto unknown levels of sparsity.
Moreover, in practice, sequential thresholding needs orly J. Haupt, R. Castro, and R. Nowak, “Distilled sensingteStéve sampling

. s . for sparse signal recovenyittp://arxiv.org/abs/1001.5311
approximate knowledge of the distributions to operate Nsu&] M. Malloy and R. Nowak, “Sequential analysis in high-dimsional
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