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ABSTRACT 

Over the past decade, the National Oceanic and Atmospheric Administration’s National Geodetic 

Survey, in collaboration with multiple organizations, has conducted research into airport 

obstruction surveying using airborne lidar.  What was initially envisioned as a relatively 

straightforward demonstration of the utility of this emerging remote sensing technology for 

airport surveys was quickly shown to be a challenging undertaking fraught with both technical 

and practical issues.  We provide a brief history of previous work in lidar airport obstruction 

surveying, including a discussion of both past achievements and previously-unsolved problems.  

We then present a new processing workflow, specifically designed to overcome the remaining 

problems.  A key facet of our approach is the use of a new lidar waveform deconvolution and 

georeferencing strategy that produces very dense, detailed point clouds in which the vertical 

structures of objects are well characterized.  Additional processing steps have been carefully 

selected and ordered based on the objectives of meeting Federal Aviation Administration 

requirements and maximizing efficiency.  Tests conducted using lidar waveform data for two 

project sites demonstrate the efficacy of the approach. 
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Introduction  

Airport obstruction surveys enhance the safety of the National Airspace System (NAS) by 

providing accurate spatial coordinates for objects that could potentially pose hazards to aircraft 

on takeoff and landing.  By definition, an obstruction is any natural or manmade object, such as a 

tree, tower, antenna, or building that penetrates an airport’s obstruction identification surfaces 

(OIS) (FAA 1996; FAA 2008).  The OIS are mathematically-defined, imaginary 3D surfaces that 

typically encompass the airfield and approaches.  The data are used by the Federal Aviation 

Administration (FAA) in designing runway approach procedures and also serve a wide variety of 

other applications, ranging from determining takeoff weights to certifying airports for certain 

types of operations, to conducting airport planning studies (FAA 1996; FAA 2008).    

Conventional methods of airport obstruction surveying comprise a combination of 

photogrammetric and field survey techniques (Pates 1950; Smith 1981; Tuell 1987; FAA 1996), 

and these methods have been proven over the past half century and thousands of surveys to yield 

very accurate, reliable obstruction data.  However, the desire to increase efficiency and reduce 

costs in airport obstruction surveying has led to increasing interest in airborne light detection and 

ranging (lidar) for this application.  In one early study into the applicability of airborne lidar in 

airport obstruction surveying (Uddin and Al-Turk 2002), several potential benefits of lidar were 

identified, including cost and time savings.   

One of the first studies to empirically assess the capability to meet FAA specifications for 

obstruction surveying using lidar was conducted jointly by the National Geodetic Survey (NGS), 

the FAA, University of Florida, and Optech, Inc. in 2001 (Anderson et al. 2002).  Data were 
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acquired for approaches to Gainesville Regional Airport (GNV) using commercial airborne lidar 

systems with standard topographic mapping configurations and compared against field-surveyed 

reference data.  Although several field-surveyed obstructions, such as poles and antennas, were 

missed in the lidar surveys, the study yielded the following important conclusions (Anderson et 

al. 2002; Parrish 2003):   

(1) The limiting factor in the ability to meet FAA specifications for obstruction data with 

lidar is not the accuracy with which laser returns can be geolocated.  Rather, the primary 

factors are the ability to achieve sufficient horizontal and vertical point density and 

sufficient received signal strength to detect the tops of small-diameter, low-reflectance 

objects, such as poles and antennas.   

(2) The typical system configurations and data acquisition and processing parameters used 

for topographic mapping (i.e., generation of bare-earth terrain data sets) are poorly suited 

for airport obstruction surveying.   

These conclusions motivated a second phase of research, in which the capability to improve 

obstruction detection results through appropriate selection of the system settings and data 

acquisition and processing parameters was investigated (Parrish et al. 2005).  The data 

acquisition included flights using fourteen different configurations, consisting of different 

settings and combinations of forward tilt angle, beam divergence, and flying height.  The two 

best configurations resulted in 100% detection of the field-surveyed objects at GNV.  A third 

phase of NGS’ research into lidar airport obstruction surveying was then carried out in 2003 to 

investigate the capability to conduct a complete end-to-end obstruction survey using lidar 

(Parrish et al. 2004).  Data were acquired using a dual lidar system (one sensor head at nadir and 

the other configured with a 20o forward tilt angle) for Frederick Municipal Airport (FDK) and 
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Stafford Regional Airport (RMN).  A noteworthy outcome of this work was the development by 

the FAA of the first instrument approach procedure in the U.S. based on a lidar survey (Fred 

Anderson, internal FAA report, 2004).   

While the above-mentioned studies made great strides towards demonstrating the technical 

feasibility of lidar obstruction surveys, the issue of practicality remained largely unaddressed.  A 

major challenge in performing lidar obstruction surveys efficiently and cost effectively stems 

from the fact that, although the FAA is migrating towards acceptance of survey data in a variety 

of Geographic Information System (GIS) compatible formats (FAA 2008), the current 

operational workflow and software used by FAA approach procedure developers are not 

designed to work with raw lidar point clouds.  Rather, they require obstruction data in the form 

of discrete obstacle lists containing coordinate information and feature names for individual 

objects (e.g., trees, poles, buildings, etc.) in text-based Universal Data Delivery Format (UDDF) 

files (FAA 2007; FAA 1996).  Creating these final UDDF obstruction lists from the raw point 

cloud is a non-trivial task.  Using NGS surface modeling software, it is possible to analyze the 

raw lidar point cloud against the OIS and extract penetrating lidar points (Parrish et al. 2004).  

However, the removal of non-penetrating lidar points complicates all of the following tasks:  

(1) distinguishing between returns from actual objects and those due to noise or clutter;  

(2) determining which points correspond to returns from the same object; and  

(3) attributing detected obstructions.   

Hence, previous NGS lidar airport obstruction surveys required a great deal of manual analysis, 

largely negating the intended cost and time savings.  An independent study by Wang et al. (2004) 

described a workflow for lidar airport surveying based on National Geospatial-Intelligence 

Agency (NGA, formerly the National Imagery and Mapping Agency) requirements.  As in the 
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NGS studies, the end process was fairly complicated, containing approximately 20 steps and 

relying on aerial imagery and topographic maps.   

In this paper we describe a new workflow for lidar airport obstruction surveying that 

addresses the problems described above.  Two important aspects of our approach are the 

utilization of the additional information contained in full-waveform lidar data to enhance vertical 

object (VO) detection and the sequencing of steps in the workflow to improve both the efficiency 

and end results.  Experiments conducted using lidar waveform data collected for two project sites 

in Madison, Wisconsin, are described, followed by the results and conclusions.   

 

Proposed Workflow for Lidar Airport Obstruction Surveying 

The lidar airport obstruction surveying workflow developed and tested in this research is 

illustrated in Fig. 1.  This workflow has been specifically designed and ordered to form an 

efficient practical methodology for lidar obstruction surveying, while simultaneously improving 

the capability to meet FAA obstruction surveying standards.  As shown in the figure, it 

comprises four steps, with the input consisting of full-waveform lidar data (which will be further 

described below) and aerial imagery, preferably, but not necessarily, collected concurrently.  The 

output consists of final obstruction lists in the FAA-specified format.  Advantages of this 

workflow can be summarized as follows: 

• Utilizes the additional information contained in full-waveform lidar to improve object 

detection. 

• Minimizes the probability of a missed obstruction, because the detection threshold in the 

object extraction step can be set very conservatively, and false alarms can be easily 

(usually automatically) eliminated in the subsequent processing steps. 
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• Facilitates creation of the final FAA-required obstruction lists by placing the object 

extraction step as early in the process as possible and ensuring that all following steps 

operate on objects, not points. 

• Increases efficiency by combining all steps that require manual analysis. 

• Requires only four steps for generation of the final deliverables to the FAA (i.e., 

obstruction information in UDDF format).   

Two assumptions are made regarding the input data: first, the airborne data acquisition has 

been performed using the recommended mission parameters and system settings contained in 

NGS (2004) and Parrish et al. (2005); second, the lidar data include digitized waveforms.  

Waveform digitization is a relatively new advancement in commercially-available airborne lidar 

systems (e.g., Hug et al. 2004; Gutierrez et al. 2005).  Unlike earlier discrete-return systems that 

only recorded a small number of returns (e.g., one to four) per transmitted pulse, full-waveform 

systems are capable of digitizing the entire received signal from each transmitted pulse at very 

high sampling frequencies (e.g., 1 GHz), often producing a few hundred samples per return.  

Full-waveform systems overcome the “minimum pulse separation limitation” of discrete-return 

systems (i.e., the inability to resolve features separated by less than a few meters in the range 

direction), which results from the inevitable limitations of the rangefinder electronics 

(Nayegandhi et al. 2006; Optech 2006).    

To clarify the above statements and more fully describe the workflow, the following is a 

detailed, step-by-step description of the process: 
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Step 1: Deconvolve and Georeference the Lidar Waveform Data 

Fig. 2 shows examples of digitized waveforms collected using an Optech, Inc. Airborne Laser 

Terrain Mapper (ALTM) 3100 and waveform digitizer with a 1 ns sampling period.  On the left 

hand side of the figure, photos of two VOs are shown: a tall TV broadcast tower/antenna (top) 

and a power transmission tower (bottom).  The middle images show the locations of the objects 

on an orthophoto (denoted by the small “+” symbol), and on the right are corresponding lidar 

waveforms (i.e., digitized return signals from laser pulses incident on some portion(s) of these 

objects).  The waveform plots are divided into three sections separated by lines parallel to the 

ordinate axis: the first (leftmost) section contains 40 samples of the transmitted (T0) pulse, and in 

these examples is saturated or clipped; the second (middle) section contains the first 220 

digitized samples of the return; and the third (rightmost) section contains the last 220 digitized 

samples of the return, if available.  The digitized return waveform from the TV broadcast 

tower/antenna exhibits two peaks, separated by approximately 2097 ns (there is a gap of 1870 ns 

between the two sections of the return) or a range difference of approximately 314 m, accounting 

for the round trip travel time of the laser pulse.  Based on visual analysis and this large difference 

in range, the two peaks in the return waveform appear to correspond to reflections from 

somewhere near the top of the tower and the ground.  Similarly, the return waveform in the 

bottom portion of the figure contains three peaks, likely corresponding to reflections from two of 

the crossarms of the transmission tower and from the ground.  (The return waveform shown in 

the bottom graph does not include a second section.)   

Even from cursory visual analysis, it is apparent that these return waveforms contain valuable 

information; the question, however, is how to exploit the information for our intended 

application.  For improved airport obstruction detection, we desire a very dense, detailed X,Y,Z,I 
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lidar point cloud (where X, Y, and Z are spatial coordinates, and I denotes intensity), in which the 

vertical structures of objects are well characterized.  Each individual laser reflection should map 

to a point in the point cloud and the intensity value of the point should be proportional to the 

amount of backscattered energy.  The process of generating this point cloud would be trivial if 

we were to start with a set of “ideal” waveforms, as depicted on the left-hand side of Fig. 3.  This 

ideal waveform consists of a train of spikes in time, where each spike corresponds to an 

individual laser reflection, with its amplitude being proportional to the strength of the return and 

its position on the time axis being proportional to the range.  For example, in a forested area, the 

first spike in a particular idealized return might correspond to a reflection from the top-most 

branch or leaf in a tree, while the second spike might correspond to a reflection from the next 

lower branch, and so on down to the ground.   

An actual received waveform, as depicted on the right-hand side of Fig. 3, can be considered 

a blurry, noisy version of the ideal waveform.  One method of estimating the desired parameters 

(e.g., individual ranges and amplitudes) from the observed waveform is through a process called 

Gaussian decomposition, originally proposed as a processing strategy for data from the large-

footprint, NASA-owned-and-operated Laser Vegetation Imaging Sensor (LVIS) system (Hofton 

et al. 2000) and recently applied to data from some of the very early commercial, small-footprint, 

full-waveform systems (e.g., Persson et al. 2005; Reitberger et al. 2006; Wagner et al. 2006).  In 

this approach, each received waveform is modeled as a convex combination of K Gaussian 

density functions (i.e., a K-component Gaussian mixture model), or 
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where αi is the amplitude of the i
th component, σi is its standard deviation, and µi is its mean.  

The objective is to obtain statistically optimal estimates (based on some defined optimality 
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criterion) of the unknown parameters {αi, σi, µi} for K components, where K can be adjusted 

until the fit of the model to the data is within some prescribed tolerance.  A preprocessing step of 

denoising by lowpass filtering is typically employed. 

While some studies have demonstrated quite good results using Gaussian decomposition 

(e.g., Reitberger et al. 2006; Persson et al. 2005), in this research, we investigated a 

deconvolution approach.  Although deconvolution of airborne lidar waveforms has received 

comparatively little attention in the literature to date (Nordin 2006; Walter 2005), the devolution 

strategy investigated in this work offers the following advantages over the Gaussian 

decomposition approach:  

(1) The algorithm is robust against local minima problems and, with slight modification to 

the thresholding step that will be described below (i.e., through use of a soft threshold) 

guarantees convergence to the globally-optimal solution.  

(2) The issue of noise in the data is addressed directly, rather than with an ad hoc 

preprocessing step.  

(3) The inverse problem is solved, rather than attempting to directly fit the return waveform 

data.  

(4) The computational costs are low.   

Specifically, we employed the Expectation Maximization (EM) deconvolution strategy of 

Figueiredo and Nowak (2003), also referred to in the literature as an iterative 

shrinkage/thresholding (IST) algorithm.  We start with the following observation model 

          ][][][][ nwnxngny +∗=                        (2) 

where x[n] is the ideal/undegraded (discrete-time) signal illustrated graphically on the left hand 

side of Fig. 3, y[n] is the observed waveform depicted on the right hand side of the figure, g[n] is 
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an approximately Gaussian impulse response function, w[n] is additive white Gaussian noise 

(WGN) with variance 2
wσ , and ∗  denotes convolution.  The impulse response function, g[n], 

depends on the laser pulse characteristics, system optics, atmospheric conditions at the time of 

data acquisition, and other variables, and can be easily determined in practice by simply 

measuring the received signal from a (near) perfect reflecting surface, such as flat water or 

concrete.  The received signal from such a surface will consist of one “bump,” corresponding to 

the single reflection off the surface.  Averaging several returns of this nature provides an 

approximately noise-free estimate of the impulse response.  

The problem of determining the ideal waveform is challenging, since the deconvolution 

process is typically very ill-conditioned.  To address this challenge, the deconvolution problem 

can be formulated as a Bayesian estimation problem.  Selecting a “hit-or-miss” cost function 

yields the maximum a posteriori (MAP) estimator 

        { })(ln)|(lnmaxarg)()|(maxarg)|(maxargˆ xxyxxyyxx
xxx

ppppp +===         (3) 

where x and y denote vectors formed from the samples of x[n] and y[n], respectively, )|( yxp  is 

the posterior probability density function (pdf) (i.e., the pdf of the unknown signal, x, after the 

data, y, have been observed) and p(x) is the prior pdf (i.e., the pdf of x before any data are 

observed).  The aim of the prior pdf is to incorporate a priori knowledge of the salient 

characteristics of x in order to stabilize the inversion process. 

If we begin by assuming x and y to be jointly Gaussian distributed, then it follows that (Kay 

1993):  

(1) The marginal pdf, p(x) is Gaussian.  

(2) The posterior pdf, )|( yxp , is also Gaussian.  
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(3) The MAP estimator and minimum mean square error (MMSE) estimator are the same, 

since the mean and mode (location of the maximum) of a Gaussian are identical. 

In this case, the MAP estimator is equivalent to the well-known Wiener filter (linear MMSE 

estimator).  (As an aside, Wiener filtering as a strategy for lidar waveform processing was 

discussed in Jutzi and Stilla (2006), although in that work it was utilized primarily as a denoising 

step preceding Gaussian decomposition of the signal.)   

While the Wiener filter is a commonly-used approach for signal/image restoration, it suffers 

some serious drawbacks for this particular application.  Specifically, the prior pdf assumed in the 

Wiener filter essentially models the signal, x, as a white Gaussian noise process with a certain 

power, 2
xσ , and does not reflect prior knowledge about the structure of the waveforms.  However, 

based on the physics of the problem, we know our signals are not arbitrary, noise-like 

waveforms; rather they are much better modeled as trains of spikes in time, with each spike 

corresponding to an individual laser reflection (c.f. Fig. 3).  The advantage of the approach 

developed by Figueiredo and Nowak (2003) is that it solves for the MAP estimate (Eq. (3)) while 

allowing us to incorporate knowledge of the waveform structure through selection of the prior 

pdf.  The prior pdf employed here models the ideal waveforms as random spike trains, and is 

essentially determined by specifying the probability, p, of observing a spike at each point in time. 

In this model, each time point is treated as statistically independent of all other time points (i.e., 

the probability of a spike at one time point is independent of all other time points).  This prior 

pdf is quite different from the Gaussian white noise pdf implicit in the Wiener filter.  Because a 

closed form solution for the MAP estimator does not exist, it is computed numerically, iterating 

between a partial deconvolution step (the E-step) and a thresholding step (M-Step), which, in our 

implementation, can be expressed in the time domain as 
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In Eq. (4), ][ˆ )( nx t  is the estimate of the signal x[n] at the tth iteration of the algorithm; ][ˆ )( nz t  is 

the estimate of the missing data in the EM procedure (as explained in Figueiredo and Nowak 

2001, 2003; Nowak and Figueiredo 2001); g[n] is the impulse response function, estimated as 

described above; and, at the implementation level, the nonnegative parameter τ can be 

considered a tunable parameter controlling the number of spikes in the output.  In particular, τ 

can be inversely related to the prior probability of a spike at a given location.  The specific form 

of the denoising M-step in Eq. (4) results from the selection of the prior described in Figueiredo 

and Nowak (2003).  The procedure above is iterated until convergence, which can be declared 

using any number of reasonable stopping criteria, such as stopping when the relative difference 

between successive iterations is less than a specified tolerance of 10-3.  It is important to note that 

each iteration can be rapidly computed.  The E-Step requires two convolutions with the impulse 

response function.  This can be computed in N log N operations (where N is the number of 

samples in the received signal) using the Fast Fourier Transform (FFT).  The M-Step applies a 

scalar thresholding operation to each element of the output of the E-Step, and hence requires 

only N operations.  Thus, the overall computational complexity of each iteration is O(N log N), 

roughly the same complexity as the Wiener filter. 

Fig. 4 shows examples of deconvolving two actual lidar waveforms (top, green) using the 

EM deconvolution algorithm (bottom, red) and, for comparison, a Wiener filter (middle, blue).  

From these examples, the superiority of the EM deconvolution algorithm in this application is 

clear: the output signals are much sharper (in fact, we have produced the desired train of spikes 

in time), and the noise has been completely suppressed.  Additionally, the EM deconvolution 
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algorithm output does not contain the ringing (artificial oscillations around sharp edges) evident 

in the Wiener-filtered waveforms—especially important, since, if the Wiener-filtered waveforms 

are subsequently georeferenced, the ringing artifacts carry over into the output point clouds 

(Parrish 2007a).   

Since the location on the time axis of each spike in the graphs on the bottom portion of Fig. 4 

is proportional to the range, and since the post-processed Global Positioning System/Inertial 

Measurement Unit (GPS/IMU) and scanner angle data are presumably already available through 

the standard processing, point clouds can be generated at this point through straightforward 

application of the laser geolocation equation (e.g., Vaughn et al. 1996; Filin 2001).  The 

amplitude of each spike is the value assigned to the intensity of the corresponding point in the 

output point cloud.   

An extremely attractive feature of this EM deconvolution algorithm is provision of the 

tunable parameter τ, capable of being adjusted based on the considerations of the particular end-

user application.  Decreasing τ has the effect of increasing the number of spikes in the output 

(and, hence, the density of the output point clouds), but also increases the probability of “false 

spikes”; increasing τ has the opposite effect.  For our application of airport obstruction 

surveying, it is highly desirable to decrease τ to produce very dense output point clouds to assist 

in minimizing the probability of a missed obstruction.  The increased probability of “false 

objects” output from the next step in the workflow turns out not to be a major concern, since 

these false objects can be easily (usually automatically) eliminated in the final two steps, as will 

be discussed.   
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Step 2: Detect Vertical Objects (VOs) 

The vertical object detection (Step 2) can be performed using any of a number of algorithms or 

approaches, including a Hough transform to detect vertical cylinders, cones, and spheres; 

morphological filtering algorithms (Woods et al. 2004); a 3D wavelet domain approach (Parrish 

2007a,b); or approaches based on eigenvalues of covariance matrices for spherical and 

cylindrical environments (Gross et al. 2007).  While analysis and comparison of different object 

detection strategies is beyond the scope of this paper, two aspects of the detection are of critical 

importance in the application of lidar obstruction surveying, regardless of the specific algorithm 

utilized: 1) the data model used to store and operate on the lidar data, and 2) the selection of the 

detection threshold.  Regarding the data model, the primary concern is avoidance of surface 

representations, such 2D elevation images/grids, commonly referred to as digital elevation 

models (DEMs) or digital surface models (DSMs), or triangulated irregular networks (TINs).  

These representations all suffer a serious drawback for our application: namely, it is impossible 

to adequately model true vertical surfaces, convex or concave vertical surfaces, and objects 

containing multiple, discrete components at the same (X,Y) location but different heights, all of 

which leads to severe loss of information about vertical structure (Stoker 2004).  For example, it 

is impossible to accurately represent roof overhangs, building sidewalls, transmission towers 

with multiple crossarms, water towers, and complex-shaped tree canopies.  Furthermore, these 

surface representations greatly complicate the task of distinguishing between a return from an 

actual vertical object, such as a pole, and a return due to noise or clutter (e.g., a bird); in the 

elevation image representation both appear as bright pixels (higher elevation) surrounded by 

darker pixels (lower elevation).  Two suitable alternatives to the use of surface representations 
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are: 1) raw point clouds, or 2) volume, or “voxel,” representations (e.g., Stoker 2004; Vosselman 

et al. 2004); the VO detection algorithm should operate on lidar data in one of these formats.   

The second consideration is the detection threshold.  In signal detection, there are always 

tradeoffs between probability of detection, PD, and probability of false alarm, PFA.  A common 

method of displaying and analyzing the pattern of tradeoffs for a particular detection algorithm is 

through the so-called receiver operating characteristic (ROC) curve, a plot of PD versus PFA as 

the detector threshold is varied.  Although ROC curves vary from detector to detector (and, 

therefore, are frequently used in comparing different detection algorithms), there exists a general 

trend: decreasing the detector threshold increases both PD and PFA.  The sequence of steps in our 

workflow has been ordered such that, irrespective of the specific detection algorithm used, the 

detection threshold can be set very low to minimize the probability of a miss (or, equivalently, 

maximize PD).  Object detection is performed first, followed by the OIS analysis, followed by 

quality assurance and quality control (QA/QC) and object-type attribution.  False alarms (or 

“false objects”) due to ground clutter or noise and randomly distributed throughout the project 

area will typically be automatically eliminated in the OIS analysis step, due to not penetrating or 

falling outside the OIS, and the remainder can be easily removed during the attribution and 

QA/QC step.  This inherent tolerance of conservative detection thresholds in the object 

extraction step is an important aspect of our workflow, since the key consideration in airport 

obstruction surveying is to avoid missed obstructions that could potentially jeopardize flight 

safety. 
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Step 3: Analyze Detected Objects against OIS  

The OIS analysis can be performed easily and quickly using NGS’ Surface Model Library 

(SML), a downloadable software library that enables users to mathematically model an airport’s 

OIS and perform related analysis (NGS 2008).  SML is available as a dynamic-link library 

(DLL) that is compatible with Microsoft Visual Basic (VB), C++, and .NET.  The library 

comprises dozens of functions, which allow users to calculate surface penetrations, analyze 

features relative to specified OIS, and numerous other related tasks.  NGS is responsible for 

updating SML as needed to reflect any changes in the definitions of the OIS (FAA 2008).   

Since the implementation is straightforward, the only aspect of this step that merits additional 

discussion is its order in the overall workflow; it is critical that the OIS analysis be performed 

after, not prior to, the object detection.  The reason for this is threefold.  First, as already noted, 

performing OIS analysis on raw point clouds to extract penetrating points greatly complicates 

tasks such as distinguishing between returns from actual objects and noise, grouping returns from 

the same object, and performing attribution.  Second, this sequence enables the detection 

threshold in Step 2 to be set very conservatively (see Step 2 discussion above).  Third, since the 

final deliverable to the FAA consists of information for obstructions (i.e., objects, not individual 

laser reflection locations), it is beneficial to extract objects as early in the process as possible and 

to ensure subsequent processing steps operate on those objects.   

 

Step 4: Perform Object-Type Attribution and QA/QC in a Softcopy Photogrammetry or GIS 

Environment 

While some previous studies have shown that classification (e.g., of tree species) can be 

improved using full-waveform data (Reitberger et al. 2006), in airport obstruction surveys, fully-
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automated classification is arguably an unrealizable objective, because airport obstructions can 

include literally any type of natural or manmade object.  Fortunately, in this application, manual 

attribution can be done without significantly increasing time or cost of the survey, since manual 

analysis is already required in the QA/QC step to meet the stringent quality assurance controls.  

As shown in previous phases of NGS’ research into lidar obstruction surveying (e.g., Parrish et 

al. 2004), this QA/QC is most easily and efficiently performed using stereo imagery in a 

softcopy photogrammetry environment, or somewhat less desirably, using orthoimages viewed 

monoscopically in a GIS environment.  (An advantage of the stereo option is that it enables an 

independent check of an object’s top elevation.)  By combining of all steps requiring manual 

analysis (i.e., attribution and QA/QC), as shown in Step 4 of Fig. 1, an efficient workflow that 

minimizes human time is enabled.   

 

Experiment 

The workflow described above was tested using airborne and field data for two project sites in 

Madison, Wisconsin, as shown in Fig. 5.  The airborne data consisted of lidar waveform data 

collected with an Optech, Inc. Airborne Laser Terrain Mapper (ALTM) 3100 and waveform 

digitizer on June 23-24, 2006, as well as high-resolution digital aerial imagery acquired with an 

Applanix, Inc. Digital Sensor System (DSS) 322 on September 14-15, 2006.  Received signals 

were split in the lidar system, enabling simultaneous acquisition and recording of both discrete-

return and full-waveform data.  Mission parameters for the airborne lidar and digital imagery 

data acquisition are shown in Tables 1 and 2, respectively.  The field data consisted of 35 field-

surveyed reference objects in each of the two project sites (70 objects total).  The motivating 

factors in selecting these sites included:  
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(1) numerous objects representative of “typical” airport obstructions, including buildings, 

towers, antennas, poles, and trees of differing heights and species;  

(2) ease of access by field personnel; and  

(3) existing ground control.   

Since neither site contained an actual airport, for purposes of this study, we simulated a 1,829 

m (6,000 ft) runway with a 6,096 m (20,000 ft) Area Navigation Approach (ANA) surface for a 

Localizer Performance with Vertical Guidance (LPV) approach in the southwest project site, as 

shown in Fig. 5.   

Several preprocessing steps were necessary before initiating the workflow depicted in Fig. 1.  

First, the airborne kinematic GPS observables and IMU data were post-processed to create a 

“blended navigation solution” using POSPac v4.2 (Applanix, Inc.).  The discrete-return (non-

waveform) lidar data were processed using REALM v3.5.3 (Optech, Inc.).  Additionally, 0.5-m 

resolution orthophotos were generated from the DSS imagery using RapidOrtho v4.3 (Applanix, 

Inc.) and a U.S. Geological Survey (USGS) 1/3-arcsecond DEM to correct for relief 

displacement.  It would certainly have been possible to perform the orthorectification using a 

DEM derived from the lidar data.  However, the USGS DEM was determined to enable 

sufficiently accurate orthophotos for use in Step 4, thus obviating the need for an additional 

DEM generation step. 

Following the initial preprocessing, the workflow depicted in Fig. 1 was executed.  The 

waveform deconvolution (Step 1) was carried out using the EM deconvolution algorithm 

described above and expressed mathematically in Eq. (4).  The VO detection (Step 2) was 

performed using the algorithm described in Parrish (2007a).  The OIS analysis (Step 3) was 

completed using NGS’ SML software.  The input to the manual QA/QC and object-type 
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attribution step (Step 4) consisted of both the orthophotos generated from the DSS imagery and 

the “raw” stereo imagery, imported into ArcGIS v9.1 (ESRI, Inc.) and a Leica, Inc. stereo 

viewer, respectively.  Final output consisted of obstruction lists in UDDF format, suitable for 

comparison against the field-surveyed reference data, or in an actual obstruction survey, delivery 

to the FAA.   

 

Analysis  

The objective of the analysis was to investigate and quantify the ability to improve and 

streamline generation of final FAA-formatted obstruction data sets using the workflow depicted 

in Fig.1.  The three specific topics of investigation included:  

(1) the achievable densification of point clouds on and around airport obstructions using the 

full-waveform data;  

(2) the effectiveness of the workflow in automatically eliminating any “false objects” 

(thereby enabling conservative VO detection, while maintaining efficiency); and  

(3) the percentage change in end-to-end processing time using this workflow, as compared 

with previous NGS airport obstruction surveys. 

To investigate the achievable densification of point clouds for obstructions using the full-

waveform data, the point clouds output from Step 1 were compared against the point clouds 

output from REALM using the discrete-return data.  The first step in the analysis was to create 

point cloud subsets around each of the field-surveyed objects in the southwest project area and to 

use the “Measure Point Density” tool in TerraScan v5.005 (TerraSolid, Ltd.) to count the number 

of points on each object.  This semi-automated analysis was supplemented by manual analysis, 

which entailed visually examining the output point clouds for each object in profile mode in 
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TerraScan to compare both the relative point densities and the relative amounts of noise.  The 

results of this analysis were quite promising: the use of the full-waveform data led to a 252% 

increase in the average number of points on the objects, as shown in Table 3, with very slight 

increase in the amount of noise in the point clouds on or near the objects, as seen in Fig. 6.  This 

figure shows photos (left column) and profile views of point cloud subsets for two different VOs, 

a tree and TV broadcast tower, generated using the discrete-return lidar data (middle column) 

and full-waveform data (right column).  The gray values in the point cloud subsets represent 

intensity and have been linearly stretched to span the available 8-bit (0-255) dynamic range.  The 

increase in point density on VOs that can be achieved using the full-waveform data is readily 

apparent through comparison of the point cloud subsets in the middle and rightmost sections of 

the figure.  This increase in point density is especially important in detection of small, low-

reflectance objects, such as poles.  For example, two laser points on an object may be too few to 

enable detection or to reliably distinguish between object and noise, while four may be sufficient 

(e.g. Object #24).  

The next step was to investigate the ability to automatically eliminate false alarms and 

correctly identify required objects in Steps 3 and 4 of our workflow.  This was performed by 

analyzing the input and output to Step 3 (OIS analysis) and comparing the final output from Step 

4 (manual QA/QC and attribution) against the results obtained using the field-surveyed reference 

data.  The input to Step 3 consisted of 531 registered detections output from Step 2, including 

both correct detections of real objects and false alarms (“false objects”).  These detections were 

analyzed against the OIS, depicted in Fig. 7, using the SML software.  Software variables were 

set to only output objects that penetrated, or came within 1.5 m of penetrating the OIS, resulting 

in 529 objects being automatically eliminated and 2 being flagged as penetrating.  The output 
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objects were then attributed using the DSS imagery in ArcGIS (Step 4).  The final results were 

compared with the output generated by running the reference data through NGS’ OIS analysis 

software, and were found to match exactly: in both final data sets, Objects 17 and 18 were listed 

as penetrating and attributed as antennas.  No “false objects” needed to be analyzed and 

eliminated in Step 4, as they were all automatically eliminated in Step 3 (OIS analysis).   

The final analysis step was to compare the total time required to complete the obstruction 

survey, as well as the required human time, with the corresponding times from NGS’ 2003 lidar 

obstruction survey of Stafford Regional Airport (RMN) (described in Parrish et al. 2004).  (This 

comparison focused solely on the times required to survey obstructions and generate final 

obstruction lists with object-type attributes; times required to complete other aspects of airport 

surveys, such as profiling runways and geolocating navigational aids (FAA 1996; FAA 2008) 

that were outside the scope of this study were not considered.)  The results of the comparison 

clearly demonstrated the efficiency of our workflow; the decrease in total (end-to-end) 

obstruction survey time was approximately 46%, and the decrease in required human time was 

38%.   

 

Discussion and Conclusions 

Following a decade of research by NGS and others into the capability to perform airport 

obstruction surveys using lidar, we have developed and tested a new workflow with the goal of 

making such surveys not only feasible, but also efficient and cost-effective.  One key to the 

workflow presented here is the use of the full-waveform data, which was shown to enable 

generation of dense, detailed point clouds, which are well suited for this application.  Equally 

important is the ordering of steps in the workflow, in particular the placement of the VO 
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detection step before the OIS analysis and QA/QC.  This sequence was shown to enable the 

detection threshold to be set very conservatively, minimizing the probability of a missed 

obstruction.  Additionally, the amalgamation of steps requiring manual analysis minimizes the 

amount of human time in the process, and the overall workflow has been designed to reduce the 

total survey time.  The 46% decrease in total (end-to-end) obstruction survey completion time 

and 38% decrease in required human time, as compared with the most recent NGS lidar 

obstruction survey, are quite encouraging.  

Future work being planned by NGS includes conducting additional tests at two airports in 

different parts of the United States with differing terrain and land cover/land use types, testing 

and comparing different VO detection algorithms in Step 2 of the workflow described in this 

paper, and continuing to refine the procedures for production use.  It is anticipated that these 

efforts, building upon the results presented here, will enable implementation of a wide-scale, 

production lidar airport obstruction surveying program in the very near future.   
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Table 1: Mission parameters for Madison, WI, airborne lidar data acquisition. 

Mission Parameter Value 

Dates of data acquisition June 23-24, 2006 

Aircraft Dynamic Aviation Beechcraft King Air 

Flying speed over ground 70 m/s (135 kts)  

Survey altitude 800 m (AGL) 

Lidar system Optech ALTM 3100 w/ waveform digitizer 

Pulse energy 80 - 90 µJ @ 70 kHz 

Pulse width 11 ns (+/- 2 ns) 

Laser rep rate 70 kHz 

Beam divergence Narrow (0.3 mrad) 

Laser wavelength 1064 nm 

Scan angle +/- 17.3° 

Scan rate 49.8 Hz 

Swath width 500 m 

Nominal horizontal point spacing 0.7m x 0.7m 

 
 
 

Table 2: Mission parameters for Madison, WI, digital imagery acquisition. 

Mission Parameter Value 

Dates of data acquisition September 14-15, 2006 

Aircraft NOAA Cessna Citation 

Flying speed over ground 77 m/s (150 kts)  

Survey altitude 1,370 m (AGL) 

Camera Applanix DSS 322 

Focal length 60 mm 

Pixel size 9 µm 
CCD array dimensions 4092 x 5436 pixels (along x across) 

Ground Sample Distance (GSD) 21 cm 

Bands RGB 

Endlap 60% 

Sidelap 30% 

Footprint 840 x 1120 m (along x across) 
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Table 3: Comparison of number of points on objects in point clouds generated from discrete-return lidar data 

and full-waveform lidar data.   

ID Object Type UTM 

Easting 

(NAD 83) 

UTM 

Northing 

(NAD 83) 

# Points on Object 

in Discrete-Return 

Lidar Point Cloud 

# Points on Object 

in Full-Waveform 

Lidar Point Cloud 

01 Cell tower 298238.92 4769245.46 20 29 
02 Tree coniferous 298323.75 4769282.46 136 541 
03 Tree deciduous 297218.01 4769221.56 317 1235 
04 Tree deciduous 298376.03 4768978.59 549 2351 
05 Tree deciduous 297154.63 4769264.68 951 4990 
06 Tree deciduous 297416.02 4769158.35 315 1374 
07 Light pole 297503.01 4769288.81 8 41 
08 Tree deciduous 297332.61 4769177.18 98 400 
09 Cell tower 296317.79 4769552.05 8 34 
10 Light pole 297456.10 4769321.14 9 14 
11 Tree deciduous 296213.83 4769644.49 293 1437 
12 Antenna 296288.65 4769550.51 5 9 
13 Tree deciduous 295423.81 4769253.43 153 389 
14 Tree deciduous 295333.60 4769357.72 829 3860 
15 Transmission tower 295060.06 4770004.02 12 24 
16 Tree deciduous 295130.66 4769980.78 86 418 
17 Antenna 293549.21 4770122.78 1738 5564 
18 Antenna 297455.24 4769449.05 1199 3383 
19 Antenna 298189.71 4769599.46 56 214 
20 Microwave antenna 298160.65 4769634.38 158 608 
21 Antenna 298279.73 4769606.85 321 1669 
22 Antenna on tower 296916.12 4769233.56 61 107 
23 Antenna on building 296991.22 4769252.49 39 81 
24 Light pole 296073.54 4769882.00 2 4 
25 Transmission tower 295626.76 4769814.53 34 47 
26 Cell tower 294237.25 4770413.94 65 72 
27 Steeple 294596.31 4769571.97 107 331 
28 Water tank 294877.82 4768931.97 728 2492 
29 Light pole 296369.84 4770666.86 11 44 
30 Tree deciduous 297787.87 4770050.27 312 1241 
31 Building 298191.35 4769865.84 4827 13164 
32 Tree deciduous 296428.16 4770535.24 64 343 
33 Tree deciduous 296527.90 4770263.49 153 552 
34 Light pole 298322.94 4770609.67 5 8 
35 Building 298361.09 4770728.58 868 4016 

   Average 415 1460 
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Fig. 1. Workflow diagram for lidar airport obstruction surveying using full-waveform data. 
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Fig. 2. Examples of digitized lidar waveforms. 

 

 

Fig. 3: Illustration of an “ideal” lidar waveform consisting of a train of spikes in time (left) and a more 

realistic representation of an actual observed waveform (right).   
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Fig. 4. Examples of two observed lidar waveforms (top, green), Wiener-filtered versions (middle, blue), and 

output of EM deconvolution algorithm (bottom, red). 

 
 

 

Fig. 5. Madison, Wisconsin project areas.  The full-waveform lidar coverage is shown in orange and light 

blue.  The simulated ANA LPV approach for the southwest project site is shown in yellow. 
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Fig. 6. Comparison of point density for two different VOs, a tree (top) and tower (bottom), in point clouds 

generated using the discrete-return lidar data (middle) and full-waveform lidar data (right).  Photos of the 

two objects are shown at left.  The gray values in the point cloud subsets represent intensity, and have been 

linearly stretched to take advantage of the available 8-bit dynamic range.  The achievable increase in point 

density using full-waveform data is clearly seen through this comparison.     

 
 

 

Fig. 7. OIS analysis for simulated runway and ANA LPV approach in southwest Madison project area.   The 

red points indicate locations of field-surveyed reference objects.   

 

 
 

 




