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Abstract— This paper describes a new methodology and
associated theoretical analysis for rapid and accurate ex-
traction of level sets of a multivariate function from noisy
data. The identification of the boundaries of such sets is an
important theoretical problem with applications for digital
elevation maps, medical imaging, and pattern recognition.
This problem is significantly different from classical segmen-
tation because level set boundaries may not correspond to
singularities or edges in the underlying function; as a result,
segmentation methods which rely upon detecting boundaries
would be potentially ineffective in this regime. This issue is
addressed in this paper through a novel error metric sensitive
to both the error in the location of the level set estimate
and the deviation of the function from the critical level.
Hoeffding’s inequality is used to derive a novel regularization
term that is distinctly different from regularization methods
used in conventional image denoising settings. Building upon
this foundation, it is possible to derive error performance
bounds for the proposed estimator and demonstrate that
it exhibits near minimax optimal error decay rates for
large classes of level set problems. The proposed method
automatically adapts to the spatially varying regularity of
both the boundary of the level set and the underlying
function.

I. LEVEL SET ESTIMATION

Level set estimation is the process of using noisy

observations of a d-dimensional function f defined on

the unit hypercube to estimate the region(s) in [0, 1]d

where f exceeds some critical value γ; i.e. S∗ ≡{
x ∈ [0, 1]d : f(x) ≥ γ

}
. Accurate and efficient level set

estimation plays a crucial role in a variety of scientific and

engineering tasks, including the following examples.

• Geospatial Data: Recent developments in the field

of digital terrain elevation data (DTED) compression

hinge on the knowledge of the precise location of key

topographic features such as contour levels [1].

• Bioinformatics: Microarrays are typically prepro-

cessed using segmentation schemes to identify sets

(referred to as “spots” in the microarray literature)

where the intensity of gene expression exceeds some

level relative to the background [2].

• Environmental Studies: Contours of sunlight, rain-

fall and other key environmental factors are critical

to understanding biosystem ecology [3].
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In these and many other image processing applications,

level sets are of principal importance, while the amplitude

of the function (i.e. the image) away from the level

set boundary is secondary, if not irrelevant. This paper

presents a methodology and associated theoretical analysis

for level set estimation. As noted above, the problem arises

in several practical image processing contexts and many

methods have been devised for level set estimation [4], [5],

[6], yet there is very little theoretical analysis of the basic

problem in the literature. One of the key results of the

analysis in this paper is that regularization terms required

for minimax optimal level set estimation are distinctly

different from regularization terms required for minimax

optimal image estimation and denoising.

Because set estimation is intrinsically simpler than

function estimation, explicit level set estimation methods

can potentially achieve higher accuracy than “plug-in”

approaches based on computing an estimate of the entire

function and thresholding the estimate to extract a level

set. This is because function estimates aim to minimize

the total error, integrated or averaged spatially over the

entire function. This does little to control the error at

specific locations of interest, such as in the vicinity of the

level set. In part, plug-in approaches can perform poorly

because they tend to produce overly smooth estimates in

the vicinity of the boundary of the level set.

Significant volumes of research have been dedicated

to the estimation of functions containing singularities,

edges, or more generally, lower-dimensional manifolds

embedded in a higher-dimensional observation space; see

[7], [8], [9], [10] for a few examples. In the context

of level set estimation, however, the lower-dimensional

manifold is an artificial feature which may not correspond

to any form of singularity in the function. Related results

from the classification literature suggest that unless the

underlying function f is guaranteed to lie in a restrictive

global smoothness class (a highly unrealistic assumption

in many typical applications), conventional function esti-

mation methods are neither appropriate nor optimal in this

context [11], [12]. This is because the rates at which plug-

in estimates converge to the true level set may be slowed

down by the complexity of the function away from the

boundary.

The above observations indicate that accurate level

set estimation necessitates the development of new error

metrics, methodologies, and error bounding techniques.

This paper offers an innovative and effective approach

to image level set estimation, based on an adaptively
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selected rectangular partition of the image domain aimed

at efficiently representing the level set of interest, S∗, as

a union of rectangles/squares of varying sizes, as depicted

in Figure 1. Our level set estimation criterion is based on

Fig. 1. Sample partition of image domain, in which white rectangles

indicate regions inside the level set.

two novel components:

1) A new error metric for level set estimation; this error

metric is quite different from the usual mean squared

error or `p error measures commonly used in image

denoising. The basic form of the error metric is:∑
i

(γ − Yi)(I{Xi∈S} − I{Xi∈S̄}), (1)

where Yi is the observed intensity at location Xi, γ
is the intensity level of interest, I{·} is the indicator

function, S is the candidate level set estimate for

which we are computing the error, and S̄ is its

complement. A term of this error metric is positive

whenever a point above (below) γ is excluded from

(included in) the set S.

2) A new penalization method that favors small rect-

angles (which hone in on the level set boundary)

more than larger rectangles (which provide coarser

approximations) and essentially measures the length

of the level set boundary; the basic form for the

penalty is∑
L∈S

√
−volume(L) log(volume(L)) (2)

(ignoring constant factors), where the sum is over

all rectangles in the partition defining S. Note that

in two dimensions this penalty is a weighted sum

of the sidelengths of the rectangles. Conventional

partition-based penalties, proportional to the number

of rectangles independent of their sizes, provide

cruder measures of the length of the boundary, and

do not encourage unbalanced, non-uniform partitions

that one expects to provide accurate approximations

to a level set.

In this paper, we develop such methods and theoretically

characterize their performance. In particular, the estimator

proposed in this paper exhibits several key properties:

• nearly achieves the minimax optimal error decay rate,

• automatically adapts to the regularity of the level set

boundary,

• automatically adapts to the regularity of the underly-

ing function f in the vicinity of the level set boundary,

• admits a computationally efficient implementation,

and

• possesses enough flexibility to be useful in a variety

of applications and contexts.

Each of these properties will be discussed in detail in the

following sections.

A. Paper structure

In this paper, we describe a new method designed

explicitly for minimax optimal level set estimation. The

basic idea is to design an estimator of the form

Ŝ = arg min
S∈S

R̂n(S) + Φn(S),

where S is a class of candidate level set estimates, R̂n
is an empirical measure of the level set estimation error

based on n noisy observations of the function f , and Φn
is a regularization term which penalizes improbable level

sets. We describe choices for R̂n, Φn, and S which make

Ŝ rapidly computable and minimax optimal for a large

class of level set problems. In particular, a novel error

metric, which is ideally suited to the problem at hand,

is proposed in Section II. We examine several of its key

properties, and describe how it can be modified slightly to

solve the closely related problems of (a) simultaneously

extracting multiple level sets, and (b) density (as opposed

to regression) level set estimation. In Section III, we in-

troduce the regularization term Φn, describe its derivation

from fundamental probability concentration inequalities,

and develop a dyadic tree-based framework which can be

used to minimize the proposed objective function. Trees

are utilized for a couple of reasons. First, they both restrict

and structure the space of potential estimators in a way that

allows the global optimum to be both rapidly computable

and very close to the best possible (not necessarily tree-

based) estimator. Second, they allow us to introduce a

spatial adaptivity to the estimator selection criterion which

appears to be critical for the formation of provably optimal

estimators. The nature of this spatial adaptivity and its

role in achieving minimax optimal estimators is detailed

in Section IV. That section contains derivations of error

decay rates under different assumptions on the function f .

In these first sections, we assume that the locations of the

observations are randomly distributed over the domain of

f with an unknown distribution. In Section V-A, we show

that similar performance characterizations hold when the

observations are deterministically and uniformly spaced

over the domain of f , which is the case in many applica-

tions of interest. Section VI tackles computational issues

and describes a method for cycle-spinning (or “voting

over shifts”) level set estimators for improved practical

performance. Finally, Section VII contains several simula-

tion results and Section VIII recapitulates key results and
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discusses avenues for further exploration.

B. Relationship to existing work

Related work in this field was conducted by Mammen

and Tsybakov in [13], but their work focused on using

binary observations to estimate a boundary between two

constant-valued regions, an edge detection problem which

is a special case of the more general level set estimation

problem presented in this paper. The advantage of the

regression level set estimation method proposed in this

paper is that it is capable of utilizing additional infor-

mation available from non-binary observations and from

extracting level sets which do not correspond to edges

or “jumps” in the amplitude of the function. Cavalier

[14] examined a regression level set estimation problem

similar to the one discussed here and based on the work

of Tsybakov [15] for density level set estimation using

piecewise polynomials. The estimators proposed in these

works, however, are not computable and place stronger

assumptions on S. Specifically, it must be “star-shaped”

about the origin, an unrealistic assumption that allows

the problem to be cast in a function estimation setting.

The work presented in this paper is most closely related

to Dyadic Decision Trees, a binary classification method

described in [16]. One of the key contributions of this

paper is the establishment of a connection between the

problems of binary classification and level set estimation.

We demonstrate that the bounding techniques first devel-

oped in the context of classification are portable to more

general settings and useful in a variety of contexts. The

relationship between the two problems will be highlighted

throughout the course of this paper.

Dyadic partitioning schemes similar in spirit to the one

discussed in Section III of this paper have also been used in

the context of estimating the support of a uniform density

[17]. However, it is important to point out that in the sup-

port set estimation problem studied by [17] the boundary

of the set corresponds to discontinuity of the density, and

therefore more standard complexity-regularization and tree

pruning methods commonly employed in regression prob-

lems suffice to achieve near minimax rates. In contrast, the

approach we propose for level set estimation here is based

on dyadic decision trees [16], and near minimax rates are

achievable for all level sets whose boundaries belong to

certain smoothness classes regardless of whether or not

there is a discontinuity at the given level.

It is important to note here that the level set problem

addressed in this paper can sometimes be approached

using active contour models or snakes [4], [5], [6]. In

two dimensions, the proposed method and active contour

methods both aim to minimize a criterion that is a sum

of a data-fitting term (1) and a boundary length term

(2). The methods differ in the definition of the data-

fitting term and in the fact that many active contour

methods also have a volume-based penalty. In three or

more dimensions, our proposed penalty is neither volume

nor length, but something in between (the square root

of the volume). The relationship between these methods

and our proposed approach is described in more detail

in Section III-A once we have introduced some key

notation and terms. In general, however, the two methods

are derived from significantly different perspectives and

have different advantages and disadvantages. One of the

chief advantages of the active contour setup is that it

is extremely flexible and can be used to solve a large

variety of image processing and computer vision problems,

including level set estimation, motion tracking, and image

segmentation. However, in part due to the flexibility of

these models, it is often very difficult to characterize the

theoretical performance of the method. Furthermore, due

to the complex nature of some active contour objective

functions, it can be very difficult, if not impossible, to

ensure that the globally optimal solution is obtained or

to extend existing methods to high dimensional data. In

contrast, the tree based method described in this paper is

based on an objective function which has been derived

from fundamental statistical principles and admits a thor-

ough theoretical analysis. However, the proposed method

is designed for the specific and well-defined problem of

level set estimation, and its extension to related problems

typically handled by active contour methods may not be

trivial.

II. REGRESSION LEVEL SET ESTIMATION

Let X and Y be random variables jointly distributed

according to some unknown probability law P. In this

paper we consider the problem of estimating the γ-level set

of the regression function f(x) ≡ E[Y |X = x]. Assume

that the range of X is the unit hypercube in d dimensions,

denoted [0, 1]d, and that the range of Y is the bounded

interval [−A,A], A > 0. Our goal is to estimate the set

S∗ ≡ S(f, γ) =
{
x ∈ [0, 1]d : f(x) > γ

}
(3)

based on n independent and identically distributed (i.i.d.)

samples drawn from P. We denote the samples by

{Xi, Yi}ni=1. The classical “signal+noise” model Y =
f(X)+W, where W is a zero-mean noise independent of

X , results in a special case of our problem. In the general

set-up, the difference or “noise” Y − f(X) may depend

on X , but is nonetheless zero-mean. Practically speaking,

we can interpret the general problem to be that of finding

the level set of a function f based on point observations

of f contaminated with independent, but not necessarily

identically distributed, zero-mean noise. For example, in

the image processing application of finding critical contour

lines from a noisy digital terrain elevation data map, we

have d = 2, the Xi’s are the pixel locations, the Yi’s
are the noisy observed elevations, and A is the maximum

absolute elevation.
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For the majority of this paper, we will focus on the case

where both the locations {Xi} and the observations {Yi}
are random. As we will see later in this paper, however,

the analysis framework presented here can be used in

cases where the {Xi} are deterministic (e.g., a uniform

sampling grid). For now, let Pn be the n-fold product

measure on (Xi, Yi)ni=1 induced by P. Let E and En
denote expectation with respect to P and Pn, respectively.

And let PX denote the marginal distribution of P with

respect to X .

A. Error metric selection

Careful selection of an error metric is the first step in

designing an effective level set estimator. While the goal

of function estimation is typically to minimize the mean

squared error between the true function and the estimate,

in level set estimation it is more appropriate to minimize

the symmetric difference between the level set of interest,

S∗, and a candidate set, S, weighted by severity of the

error over the symmetric difference:

1
A

∫
∆(S∗,S)

|γ − f(x)| dPX (4)

where ∆(S∗, S) ≡ {x ∈ (S∗ ∩ S̄) ∪ (S̄∗ ∩ S)} denotes

the symmetric difference, and S̄ is the complement of S.

The normalization factor 1/A makes the error metric a

unit-less quantity.

In effect, this metric penalizes two types of errors: first,

the probability that a new observation will be located in

a region which has been incorrectly designated by S as

inside or outside the level set defined by S∗; second,

the distance between the function value and the level of

interest at each of these locations. For example, if level

set estimation were being used on digital elevation data

to assist in the navigation of unmanned helicopters, this

metric would weight level set boundary localization errors

in the vicinity of a cliff edge more heavily than localization

errors in a plain, and thus minimize the potential for

serious damage to the helicopter. This is illustrated in

Figure 2. On the left is drawn a contour outlining the

level set S∗. The center and rightmost figures show the

boundary of two different candidate level sets. There is

only a small symmetric difference between the set in the

center image and the truth, but the distance of the function

from the level γ is large in this region. In contrast, there

is a large symmetric difference between the set in the

rightmost image and the truth, but the distance of the

function from the level γ is relatively small in that region.

While the expression in (4) is not directly computable

(since S∗ is unknown), we will nevertheless be able to

minimize it through the following definitions. Let the risk

of a candidate set S be defined as:

R(S) ≡
∫
γ − f(x)

2A
[
I{x∈S} − I{x∈S̄}

]
dPX (5)

(a) (b) (c)

Fig. 2. Behavior of level set error metric. (a) Function f and level set

S∗. (b) Level set estimate (solid line) with a small symmetric difference

but large errors within the symmetric difference region. (c) Second level

set estimate (solid line) with same error as estimate in (b); this estimate

has a large symmetric difference but small errors within the symmetric

difference region. Despite these differences, these two set estimates could

have the same weighted symmetric difference risk.

where I{E} = 1 if event E is true and 0 otherwise. The

loss function measures the distance between the function,

f , and the threshold, γ, and weights the distance at location

x by plus or minus one according to whether x ∈ S. (The

1/2A term is used for normalization. Its role will become

more evident in the proceeding analysis sections, but for

now it is sufficient to note that it is a constant scaling factor

and does not change with S.) Thus regions where x ∈ S
but f(x) < γ (that is, x ∈ S̄) will contribute positively

to the risk function. From here, we can define the excess

risk to be

R(S)−R(S∗) =
1
A

∫
∆(S∗,S)

|γ − f(x)|dPX , (6)

which yields the desired weighted symmetric difference.

Note that R(S∗) is a constant, so minimizing R(S) also

minimizes the excess risk.

An additional advantage of the proposed metric is that it

is simple to define an empirical loss metric for a candidate

level set S as

êS(Xi, Yi) =
γ − Yi

2A
[
I{Xi∈S} − I{Xi∈S̄}

]
(7)

such that R(S) = E [êS ] . This results in the empirical

risk function

R̂n(S) =
1
n

n∑
i=1

êS(Xi, Yi). (8)

This metric is distinctly different from the global Lp norms

typically encountered in function estimation and image

denoising.

B. Connection to error metrics in classification

As noted in the introduction, the problems of level

set estimation and classification are closely linked, and

the connection between the two can be illuminated by

comparing and contrasting the proposed level set esti-

mation metric with the generalization error of binary

classification. For example, one might approach the level

set estimation problem by simply thresholding the noisy
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observations at γ and then estimating the set where the

probability of the thresholded observations being one is

greater than 50% using binary classification techniques.

More specifically, define Z ≡ I{Y≥γ}. One might pose

the level set estimation problem as estimating the one-half

level set of the function η(x) ≡ P(Z = 1|X = x). The

Bayes classifier is S∗C ≡ {x ∈ [0, 1]d : η(x) ≥ 1/2}. In

this context, the excess risk is defined as the difference

between

RC(S) ≡
∫
S

(1− η(x))dPX +
∫
S̄

η(x)dPX

andRC(S∗C). Note that from here, the excess classification

risk can be written as

RC(S)−RC(S∗C) =
∫

∆(S∗C ,S)

|1− 2η(x)|dPX ,

which is highly analogous to the excess risk defined in

(6). In fact, the two are equivalent up to a constant factor

when Y −f(X) obeys a uniform distribution over [−B,B]
for some B > 0. This analogy allows us to explore

the difference between a classification-type approach as

described in this subsection and the level set estimation

method proposed in this paper. Tackling this problem

from the classification standpoint and minimizing the

excess classification risk would result in an estimate which

minimizes the probability of a region in [0, 1]d being

incorrectly classified as in or out of the γ-level set of

interest, but it would not weight this by the magnitude

of the deviation between the function value and γ. The

proposed level set estimation error metric, in contrast, does

perform this weighting as described in the beginning of

this section.

From another perspective, supposed we wished to de-

sign a classifier from training data, but rather than the

traditional setup where every observation is labeled zero

or one, we instead have observations labeled by our

confidence that they lie in one of the classes. This setup

arises in many practical situations, such as when each

observation is the result of an experiment, and the class of

the result is ambiguous. The proposed level set estimation

method immediately leads to an optimal classifier which

uses these confidence levels in a principled manner [18].

C. Alternative error norms

The excess risk proposed in (6) facilitates balancing

between errors in level set localization and the magnitude

of the deviation between f and γ in misclassified regions.

It may be desirable to shift the fulcrum of this lever in

some applications, however. This can be accomplished by

setting

êqS(Xi, Yi) ≡
(
γ − Yi

2A

)q (
I{Xi∈S} − I{Xi∈S̄}

)

R̂qn(S) ≡ 1
n

n∑
i=1

êqS(Xi, Yi)

Rq(S) ≡ E [êqS ]

= E

[
1

(2A)q

q∑
k=0

(
q

k

)
(f(Xi)− Yi)k

· (γ − f(Xi))
q−k (I{Xi∈S} − I{Xi∈S̄}

)]
(9)

=
1

(2A)q

q∑
k=0

(
q

k

)[∫
S

µk(x) (γ − f(x))q−k dPX

−
∫
S̄

µk(x) (γ − f(x))q−k dPX
]

where q ≥ 1 is an odd integer and µk(x) ≡
∫

(f(x) −
y)kdPY |X=x can be considered the kth moment of the

“noise”. Equation (9) follows from the binomial theorem.

Note that if the distribution of Y |X is such that µk(x) =
0 for all x when k is an odd integer (i.e. if the noise

distribution is always symmetric about the origin), then

we would have an excess risk of

Rq(S)−Rq(S∗) =

2
(q−1)/2∑
k=0

(
q

2k

)∫
∆(S∗,S)

µk(x)
(2A)q

|γ − f(x)|q−2k
dPX .

For q = 1, this is precisely the excess risk defined in (6).

By choosing a larger q, we emphasize correct localization

more heavily in regions where f varies significantly in

the vicinity of the level set. Performance bounds similar

to the ones detailed later in this paper can be derived for

these alternative error metrics; for details, see our technical

report [19].

III. ESTIMATION VIA TREES

We propose to estimate the level set of a function from

noisy observations by using a tree-pruning method akin

to CART [20] or dyadic decision trees [16]. Trees are

emphasized for a number of reasons. First, they allow

us to rapidly compute a globally optimal estimate. In

other words, it adds a structure to the space of candidate

sets which allows us to organize our search through the

solution space and minimize the computational burden.

Furthermore, it allows us a convenient mechanism for pe-

nalizing different estimates and incorporating prior knowl-

edge (such as the presence of noise and our subsequent

desire to avoid improbably complex level set estimates).

As we will see later in this paper, an additional key feature

of trees is that they allow us to incorporate the idea of

spatial adaptivity into our estimation procedure.

In this section, we will define a collection of candidate

tree-based sets, TM , and a “penalty” or regularization term

for each tree T ∈ TM , Φn(T ). We will then define our
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estimator to be

T̂n = arg min
T∈TM

R̂n(T ) + Φn(T ). (10)

Careful selection of TM and Φn(T ) are critical to the

performance of the proposed method. The collection TM
must be big enough that some T ∈ TM is a close

approximation to S, yet small and structured enough

that a computationally tractable optimization algorithm is

feasible. The penalty Φn(T ) must be designed to favor

estimates which correspond to our prior knowledge – that

the observations are bounded, and that our objective is to

localize the boundary of a set rather than perform signal

estimation or regression. The goal of this section is to

propose and justify selections of TM and Φn(T ). Sections

IV and VI will then explore the resulting error performance

and computational efficiency, respectively, in detail.

Before discussing regularization methods, we first spec-

ify the class of tree-based estimators under consideration

and define the associated notation. When the observations

lay in a relatively low dimensional space (i.e. d = 2 or

3), a 2d-ary tree can be an effective tool. In general,

however, 2d-ary trees are only appropriate in regimes

where the number of observations is much larger than the

dimensionality of the observations; for large d, growing a

2d-ary tree with just one level results in 2d cells, which

leads to several computational and statistical problems. To

avoid this issue, we will focus on binary trees, where each

internal node in the tree corresponds to a dyadic split

of a hyperrectangular subset of [0, 1]d in one of the d
coordinate directions.

Each node of a tree T corresponds to a dyadic hyperrect-

angle in [0, 1]d, with the root of T corresponding exactly

to [0, 1]d. If node v of T corresponds to the hyperrectangle

R =
∏d
r=1[ar, br], and v is split in coordinate direction s

to form its children vleft and vright, then vleft corresponds

to the hyperrectangle Rs,left = {x ∈ R : xs ≤ (as +
bs)/2}, where xs is the sth coordinate of x, and vright

corresponds to the hyperrectangle Rs,right = R \ Rs,left.

Let π(T ) denote the partition induced on [0, 1]d by the

binary tree T . That is, if T has k leaf nodes (denoted

|T | = k), then π(T ) = {L1, L2, . . . , Lk} so that each

Li ∈ π(T ) is a dyadic hyperrectangular cell. The location

and size of each Li is determined by the sequence of

coordinate directions assigned to the ancestors of the

corresponding leaf node in T . Note that
⋃
i Li = [0, 1]d,

and λ(Li ∩ Lj) = 0 for i 6= j. (Here λ denotes Lebesgue

measure.) A zero or one is assigned to each leaf node of T
(equivalently, to each L ∈ π(T )), denoted `(L), to indicate

whether that cell of the partition is estimated to be in Ŝ.

A sample tree and corresponding partition is displayed in

Figure 3. We will consider all binary trees such that no

terminal cell has sidelength smaller than 2−J for some

nonnegative integer J . Denote this collection of trees as

TM , where M ≡ 2J .

1

1

1 1

2

2

Fig. 3. Sample partition and corresponding tree.

Ideally, the penalty term Φn(T ) in (10) will produce

an estimate T̂n such that the risk R(T̂n) is as small as

possible. If we choose Φn(T ) such that R(T ) ≤ R̂n(T )+
Φn(T ) for all T ∈ TM , then the estimator in (10) will

minimize an upper bound on the risk and potentially result

in an effective estimator. Towards that end, first note that

it is possible to express the difference between the true

risk and the empirical risk as

R(T )− R̂n(T ) =
∑

L∈π(T )

R(L)− R̂n(L),

where

êL(Xi, Yi) =
γ − Yi

2A
[
I{`(L)=1} − I{`(L)=0}

]
I{Xi∈L}

R̂n(L) =
1
n

n∑
i=1

êL(Xi, Yi)

and

R(L) = E [êL]

=
∫
L

γ − f(x)
2A

[
I{`(L)=1} − I{`(L)=0}

]
dPX .

These definitions are simply local counterparts of the

risk and loss expressions defined in equations (5), (7),

and (8). In addition, define pL ≡
∫
L
dPX and p̂L ≡

1
n

∑n
i=1 I{Xi∈L}. We can now bound the difference be-

tween R(L) and R̂n(L) to achieve a bound leading to

near-optimal error decay rates. In particular, we can use

the relative form of Hoeffding’s inequality [21] to show

that for a single tree leaf L, with high probability the risk

R(L) is bounded by R̂n(L) plus a small quantity that

depends on pL:

Lemma 1 Let δL ∈ [0, 1/2]. With probability at least 1−
δL for any T ∈ TM and any L ∈ π(T ),

R(L)− R̂n(L) <

√
8 log(1/δL)pL

n
− (pL − p̂L) .

This is proved in Section IX. This lemma shows that

for a given tree leaf L, the empirical risk R̂n(L) can

be used to estimate the true risk R(L) with a certain

degree of accuracy and confidence. Now let LM be the

collection of all L such that L ∈ π(T ) for some T ∈
TM . We wish to show that a similar bound holds for
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all L ∈ LM simultaneously. This is necessary because

we ultimately are going to perform a search over all

T ∈ TM and hence consider all L ∈ LM ; conducting

this search is a valid approach only if the bound holds

for each leaf considered during the search procedure. Set

δL = δ2−(JLK+1), where JLK denotes the number of bits

required to encode the position of L. Specifically, consider

the prefix code proposed in [16] for L ∈ π(T ). If L is

at level j in the binary tree T , then j + 1 bits must be

used to describe the depth of L, j bits must be used to

describe whether each branch is a left or right branch,

and j log2 d bits must be used to describe the coordinate

direction of each of the j branches. This results in a total

of j(log2 d+ 2) + 1 bits, and this expression is denoted as

JLK. From here we can derive the following lemma, which

proposes a candidate regularization term Φ′n(T ) and states

that R(T ) ≤ R̂n(T ) + Φ′n(T ) with high probability:

Lemma 2 Let δ ∈ [0, 1/2]

Φ′n(T ) ≡
∑

L∈π(T )

√
8 (log(2/δ) + JLK log 2) pL

n
. (11)

With probability at least 1 − δ, R(T ) ≤ R̂n(T ) +
Φ′n(T ) ∀ T ∈ TM .

This is proved in Section IX. In effect, this expression

penalizes a tree-based estimate by independently penal-

izing each leaf in the tree, where each leaf’s penalty is

proportional to the square root of the probability measure

of the leaf (i.e. the likelihood of an observation being

collected in the function domain associated with the leaf)

and proportional to the square root of the depth of the

leaf in the tree. Intuitively, this penalty is designed to

favor unbalanced trees which focus on the location of the

manifold defining the boundary of the level set; the same

reasoning explains why spatially adaptive penalties are so

effective for binary classification problems using dyadic

decision trees [16]. To see this, note that JLK � j, while

pL(δ) � 2−j . This implies that deep nodes contribute less

to Φ′n(T ) than shallow nodes, and so, for two trees with

the same number of leafs, Φ′n(T ) will be smaller for the

more unbalanced tree.

Lemma 2 implies that if we were to select a tree

which minimized the sum R̂n(T ) + Φ′n(T ), then our

estimate would have a low risk with high probability.

However, since pL must be known to compute Φ′n(T ),

such a strategy is not practically feasible. We can, however,

produce a computable bound as follows. First, we recall

the following lemma, which was proved in [16]. For δ ∈
[0, 1/2], define p̂′L(δ) ≡ 4 max

(
p̂L ,

JLK log 2+log(1/δ)
n

)
and p′L(δ) ≡ 4 max

(
pL ,

JLK log 2+log(1/δ)
2n

)
.

Lemma 3 [16] Let δ ∈ [0, 1/2]. Then with probability at

least 1− δ, pL ≤ p̂′L(δ) ∀ L ∈ LM , and with probability

at least 1− δ, p̂L ≤ p′L(δ) ∀ L ∈ LM .

Using this lemma, we can design a penalty term Φn based

on Φ′n which is computable from the data themselves:

Φn(T ) ≡
∑

L∈π(T )

√
8 (log(2/δ) + JLK log 2) p̂′L(δ)

n
. (12)

This penalty can be understood using the same argu-

ments used to explain the uncomputable penalty (11)

from Lemma 2. As we will see in the next section, this

penalty leads to near minimax optimal error decay rates

for broad classes of level set problems. Note that the

form of this penalty is distinctly different from penalty

terms used to achieve near minimax optimal error de-

cay rates for function estimation and image denoising.

For example, [22] demonstrated that the optimal tree-

based penalty for denoising applications had the form

Φdenoising
n (T ) =

∑
L∈π(T ) c for some constant c > 0; that

is, it was proportional to the number of leafs in the tree.

In contrast, the penalty term we have developed for near

minimax optimal level set estimation does not weigh all

leafs equally; rather, “smaller” leafs (with respect to the

underlying probability measure) receive a smaller penalty,

allowing us to favor the deep, unbalanced trees most likely

to accurately represent the true level set of interest.

We now have the following main result:

Theorem 4 Let Φn(T ) be defined as in (12). Then with

probability at least 1− 2δ,

R(T ) ≤ R̂n(T ) + Φn(T )

for all T ∈ TM .

Proof of Theorem 4 This follows trivially from Lemmas 2

and 3.

The key impact of Theorem 4 is to give us a principled

way to choose a good tree-based level set estimate: by

choosing an estimate which minimizes R̂n(T ) + Φn(T ),

we are also choosing an estimate which makes the excess

risk small with very high probability. In addition, the

estimator defined by (10) and (12) is rapidly computable,

as described in Section VI. Furthermore, as shown in

the following section, the estimator is nearly minimax

optimal. This is a key feature which, to the best of our

knowledge, is not possible without a spatially adaptive

“leaf-wise” penalty as we have here. For example, as

a first pass one might have chosen to determine how

well R̂n(T ) predicts R(T ) is through (the classical, non-

relative form of) Hoeffding’s inequality. However, this

form of concentration inequality is not as tight as the

relative form, especially in cells with very low pL, and

so leads to suboptimal estimators.

A. Relationship to Active Contour Models

The proposed approach of minimizing R̂n(T ) + Φn(T )
and active contours have similar high level objectives:
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active contours minimize an energy functional which

measures contour roughness due to bending plus “image

forces” such as image intensity and gradient in the vicinity

of the contour, while the proposed level set estimation

method minimizes an objective function which measures

certain smoothness properties of the set boundary plus a

risk function which measures the image intensity deviation

(from the desired level) in the vicinity of the set boundary.

Specifically, consider the approach described in [23]. In

the notation of this paper, they minimize the “energy

functional”

1
n

n∑
i=1

(
ρ1|Y S − Yi|2I{Xi∈S} + ρ2|Y S̄ − Yi|2I{Xi∈S̄}

)
+ ρ3 · Length(∂S) + ρ4 · Volume(S), (13)

where ρ1, ρ2, ρ3, ρ4 are tuning parameters and

Y S =
∑
i

YiI{Xi∈S}/
∑
i

I{Xi∈S}

Y S̄ =
∑
i

YiI{Xi∈S̄}/
∑
i

I{Xi∈S̄}

are the sample averages inside and outside of S. The “data-

fitting” term of (13) is based upon a k-means approach

rather than a user-specified level γ, and so the set estimated

here will depend heavily upon the respective values of

the tuning parameters ρ1 and ρ2. (The authors of [23] do

not claim to be performing level set estimation, but rather

more general image segmentation.) Like R̂n(S), however,

this data-fitting term provides a measure of how well S
“matches” the observed data. The second two terms of (13)

penalize the estimate by assigning less weight to S when

its volume is smaller or its boundary is shorter (smoother).

This is similar to the role played by Φn in our proposed

approach, since p̂′L is proportional to the sidelength of each

tree leaf, and so the overall penalty is proportional to the

length of the boundary in the two dimensional setting.

Thus the chief difference in the proposed penalty term

and the terms proposed by [23] is the decreased penalty

on level set volume.

IV. PERFORMANCE ANALYSIS

Many of the key points in the following theoretical

analysis were derived using the error bounding techniques

developed by Scott and Nowak [16] in the context of

binary classification. As discussed in the introduction,

there are many striking similarities between classification

and level set estimation, and we take advantage of these

similarities and the extensive literature available on clas-

sification to analyze the performance capabilities of the

proposed level set estimators.

Not only does the above framework give us a principled

way to choose a good level set estimator, but it also

allows us to bound the expected risk for a collection of n
observations. In particular, we have the following theorem:

Theorem 5 Let T̂n be as in (10) with Φn(T ) as in (12),

with δ = 1/n. Let

Φ̃n(T ) ≡
∑

L∈π(T )

√
32p′L

log(2n) + JLK log 2
n

be a data-independent analog of Φn(T ). With probability

at least 1− 3/n,

R(T̂n)−R(S∗) ≤ min
T∈TM

{
R(T )−R(S∗) + 2Φ̃n(T )

}
.

As a consequence,

En
[
R(T̂n)−R(S∗)

]
≤

min
T∈TM

(
R(T )−R(S∗) + 2Φ̃n(T )

)
+

3
n
.

Proof of Theorem 5 This can be proved by closely

following the proof of Theorem 3 in [16] and using the

above lemmas and theorems.

Note that in the above theorem we take δ = 1/n in (12).

This setting is optimal in that it leads to near-minimax

optimal estimators, as we will see later in this section.

The bound on the expected error in Theorem 5 allows

us to analyze the proposed method in terms of rates of

error convergence. In particular, because this problem has

been posed as a generalization of the binary classification

problem, we may draw extensively from the results of

[16] to highlight several advantageous features of the error

convergence of the proposed method. In this analysis, for

sequences an and bn let the notation an � bn imply there

exists some C > 0 such that an ≤ Cbn for all n. We will

examine rates of convergence for two classes of functions

f and distributions PX to demonstrate that the proposed

method both (a) adapts to the regularity of f in the vicinity

of ∂S∗ and (b) adapts to the regularity of the curve ∂S∗.

A. Adaptation to the regularity of f

Define DBOX(κ, γ, c0, c1, c2), for c0, c1, c2 > 0 and 1 ≤
κ ≤ ∞ to be the set of all (f,PX) pairs such that

1) PX(L) ≤ c0λ(L) for all measurable L ⊆ [0, 1]d;

2) for S = {x ∈ [0, 1]d : f(x) ≥ γ}, ∂S is in a

box-counting class; i.e. if [0, 1]d is partitioned into

md equal sized cells, each with sidelength 1/m and

volume m−d, and NS(m) denotes the number of

such cells intersected by the boundary of S, then

NS(m) ≤ c1md−1 for all m; and

3) for all dyadic m, there exists some T ′m ∈ Tm such

that R(T ′m)−R(S∗) ≤ c2/mκ.

This class is designed to include functions whose level

sets are not highly-irregular space-filling curves. The role

of condition III is to provide a means of exploring how

the estimator behaves for various amplitudes of f in the

vicinity of ∂S∗. Recall

R(T ′m)−R(S∗) =
1
A

∫
∆(T ′m,S)

|γ − f(x)|dPX .
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For large κ, the third condition will only hold when f is

close to γ in the vicinity of ∂S∗ (e.g. when the slope of

f is very small near ∂S∗). In this case, it will be very

difficult to estimate S∗ accurately, but the estimate could

be wrong over a large volume and still only incur a small

error, resulting in faster rates of convergence. In contrast,

small κ allows a jump in f near ∂S∗ (e.g. a very large

slope of f ) and so is a relatively “easy” problem (i.e.

edge detection); however, an estimate which is incorrect

on a small volume will result in a large error, resulting

in slower rates of convergence. Condition III allows us to

examine the performance of the proposed estimator under

these different conditions.

This definition, when combined with Theorem 3 and

Lemma 8 of [16] yields the following result:

Theorem 6 Choose M such that M � (n/ log n)1/d. For

d ≥ 2 we have

sup
DBOX(κ,γ,c0,c1,c2)

{
En
[
R(T̂n)−R(S∗)

]}
� min

m

{
m−κ +md/2−1

√
log n
n

}

�
(

log n
n

) κ
d+2κ−2

. (14)

That is, the expected value of the excess risk for the hardest

possible problem in DBOX decreases with n at a rate which

adapts to κ, while the algorithm has no prior knowledge

of κ.

This theorem may be proved using an argument very

similar to the one used to prove Theorem 6 of [16]. In

particular, condition III above leads to the m−κ term in

(14), and Lemma 8 of [16] leads to the second term

in (14). Careful examination of minimax lower bounds

derived in the context of binary classification (Theorem 5,

[16]) indicates that the same lower bounds should hold

for the level set estimation problem posed here. This

implies that the rate in Theorem 6 is within a log factor

of the minimax lower bound and hence near optimal.

Specifically, recall that the excess risk in this setting is

R(T )−R(S∗) = 1
A

∫
∆(S∗,T )

|f(x)− γ|dPX . The excess

risk in the classification setting has the same form, except

γ = 1/2, f ≥ 0, and
∫
f(x)dPX = 1.

B. Adaptation to the regularity of ∂S∗

It is also possible to show that the proposed method

adapts to the regularity of ∂S∗. In particular, define the

“boundary fragment” class DBF(α, γ, c0, c1) for α < 1 to

be the set of all (f,PX) such that

1) PX(L) ≤ c0λ(L) for all measurable L ⊆ [0, 1]d;

and

2) one coordinate of ∂S∗ is a function of the others,

where the function has Hölder smoothness α < 1
and constant c1.

This class imposes constraints on the regularity of the

boundary of the level set S∗. The analysis here would

also apply to compositions of members of DBF, even if the

“orientation” (which coordinate is a function of the others)

varies member to member. The orientation does not need

to be known. Following the argument Theorem 9 in [16],

it is straightforward to prove the following theorem:

Theorem 7 Choose M such that M � (n/ log n)1/(d−1).

For d ≥ 2 and α < 1, we have

sup
DBF(α,γ,c0,c1)

{
En
[
R(T̂n)−R(S∗)

]}
� min

m

{
m−α +m(d−α−1)/2

√
log n
n

}

�
(

log n
n

) α
α+d−1

.

That is, the expected excess risk is uniformly bounded

above for all boundaries in DBF and the upper bound is

adaptive to the smoothness of the boundary of the level

set even though the proposed method assumes no prior

knowledge of this smoothness. As before, an examination

of the lower bounds derived in [16] indicates that this

rate is within a log factor of the minimax optimal rate.

Note that α < 1 implies fractal-like boundaries, which are

important for a variety of scientific applications and similar

to the ones displayed in the simulation section later in this

paper.

C. Scaling the penalty

The above theoretical analysis demonstrates that the

estimator in (10) can be derived from fundamental sta-

tistical concentration inequalities and results in a prin-

cipled regularization strategy with minimax near-optimal

rates of error convergence. We now explore the rami-

fications of damping the regularization term. In many

practical scenarios, the theoretical penalty results in over-

regularized (i.e. over-smoothed) estimates, and damping

the regularization term can result in substantial empirical

improvements. Since the theoretical analysis focuses on

rates of convergence, multiplication by the empirical risk

or penalty should not effect the error bounds, aside from

possibly altering the leading constant factors. This insight

is formalized in the following result communicated to the

authors by Clayton Scott [24].

Let

T̂ ρn ≡ arg min
T∈TM

R̂n(T ) + ρΦn(T ) (15)

for ρ > 0 be the damped version of the proposed set

estimator; typically we are interested in 0 < ρ < 1.

Theorem 8 [24] With probability at least 1− 2δ

R(T̂ ρn)−R(S∗) ≤ max
(

1
ρ
, 1
)
·
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min
T∈TM

{R(T )−R(S∗) + (1 + ρ)Φn(T )} .

This is proved in Section IX. Theorem 8 implies that we

may compute an estimate using a damped form of the

regularization term Φn(T ) without impacting the minimax

near-optimal rates derived earlier in this section.

V. ALTERNATIVE LEVEL SET ESTIMATION PROBLEMS

A. Samples on a Regular Lattice

The above analysis assumes that the locations of the

observations are random and distributed according to PX .

In many domains, however, the locations of the observa-

tions are dictated by the measurement device and lay on

a grid (e.g. pixels in an image or voxels in a volume). In

this case, the analysis above must be modified slightly, as

described in this section. Specifically, we will examine two

types of sampling: (a) integration sampling and (b) point

sampling. It suffices to consider cases where n = 2dk

for some nonnegative integer k, so that n points can

be distributed uniformly on [0, 1]d. Specifically, divide

[0, 1]d into n equally sized non-intersecting hypercubes,

C1, . . . , Cn, where the volume of Ci, denoted |Ci|, is 1/n
and its sidelength is n−1/d

For the case of integration sampling, let fi ≡
1
|Ci|

∫
Ci
f(x)dx and E[Yi] = fi. The empirical loss and

risk metrics remain the same as they were in the random

observation location case, and the terms êT (Xi, Yi) remain

independent and lie within the interval [0, 1]. Next define

eT (x) ≡ γ − f(x)
2A

[
I{x∈T} − I{x∈T c}

]
.

Note that this is the integrand in the risk function proposed

under random sampling conditions. We define the risk

in the case of gridded observations to be RG(T ) =∫
eT (x)dx, and the quantity RG(L) is defined accord-

ingly. It now becomes necessary to derive a corollary to

Lemma 1 and bound the differenceRG(L)−R̂n(L). Using

this setup, we have

RG(T )− R̂n(T )

=
n∑
i=1

(∫
Ci

γ − f(x)
2A

dx− γ − fi
2nA

)
·
[
I{Ci∈T} − I{Ci∈T c}

]
+

1
n

n∑
i=1

eT (Xi, Yi)− R̂n(T )

=
1
n

n∑
i=1

eT (Xi, Yi)− R̂n(T ).

For point sampling, we assume E[Yi] = f(Xi) as in the

random sample location case, except that Xi lies on the ith

of n uniformly placed grid points on [0, 1]d. Specifically,

let Xi be the center of Ci. In the point sampling case,

we must assume something about the smoothness of f ;

specifically, assume that for some constant K > 0, f
satisfies the Lipschitz condition

|f(x1)−f(x0)| ≤ K‖x1−x0‖12 ∀ x0, x1 ∈ [0, 1]d. (16)

If f meets the criterion in (16), then eT also satisfies the

criterion in the interior of each Ci. Note that

RG(T )− R̂n(T )

=
n∑
i=1

∫
Ci

(eT (x)− eT (Xi, Yi)) dx

+

(
1
n

n∑
i=1

eT (Xi, Yi)− R̂n(T )

)

≤ K
√
d

2A
n−1/d +

(
1
n

n∑
i=1

eT (Xi, Yi)− R̂n(T )

)

= O(n−1/d) +

(
1
n

n∑
i=1

eT (Xi, Yi)− R̂n(T )

)
,

where the inequality holds because of the condition on

f and because each Ci is either completely in T or

completely in T c. Note that, unlike integration sampling,

point sampling results in a limit on the rate of risk decay at

O(n−1/d). This is the minimax optimal rate when d = 2 or

when κ = 1 (i.e. when the level set boundary corresponds

to an edge or boundary in the function), but is slower than

the optimal rate otherwise.

In both the point sampling and integration sampling

cases, it becomes necessary to bound the expression(
1
n

∑n
i=1 eT (Xi, Yi)− R̂n(T )

)
. Our analysis from the

random sample locations example can easily be used to

show the following analog to Theorem 4.

Corollary 9 Let δ ∈ [0, 1/2], and define

ΦGn (T ) ≡
∑

L∈π(T )

√
8 (log(2/δ) + JLK log 2)

n
λ(L),

where λ denotes Lebesgue measure. With probability at

least 1− δ for all T ∈ TM ,

1
n

n∑
i=1

eT (Xi, Yi)− R̂n(T ) < ΦG(T ).

B. Simultaneous extraction of multiple level sets

In some applications one may wish to extract a collec-

tion of level sets, e.g. for the generation of a contour plot.

This has proven to be very useful in the context of digital

elevation map storage and retrieval [1]. Simultaneous

(rather than sequential) extraction of multiple level sets

is important when it ensures that the estimated level sets

are nested.

Consider the case in which we are interested in a

collection of levels, {γk}Kk=1, where −A ≤ γ1 < γ2 <
· · · < γK ≤ A. For each γk, let S∗k ≡ {x ∈ [0, 1]d :
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f(x) ≥ γk}, so that [0, 1]d ⊇ S∗1 ⊇ S∗2 ⊇ · · · ⊇ S∗K , and

denote the collection of level sets as S∗ ≡ {S∗k}Kk=1. In

order to ensure that the estimated level sets are likewise

nested, we will solve the equivalent problem of estimating

the function

gS∗(x) ≡ max{k ∈ {0, 1, . . . ,K} : x ∈ S∗k}. (17)

Thus for every x ∈ [0, 1]d, we have that x ∈ S∗k for all k ∈
{0, . . . , gS∗(x)}. Note that there is a bijective relationship

between the collection of potential level sets S∗ and the

space of functions gS∗ : [0, 1]d −→ {0, 1, . . . ,K}. In

particular, for S∗k ∈ S∗, S∗k = {x ∈ [0, 1]d : gS∗(x) ≥ k}.
By estimating the function gS∗(x), we necessarily estimate

a nested collection of level sets, as desired. To see this,

let gS(x) denote the estimate. For any x ∈ [0, 1]d, having

gS(x) = k implies x ∈ Sk (f(x) ≥ γk), and hence we

must have x ∈ Sk−1 (f(x) ≥ γk−1) because γk > γk−1.

Let S ≡ {Sk}Kk=1 be a candidate collection of level sets.

For multiple level sets, let the empirical loss be computed

as

êKS (Xi, Yi) =
1
K

K∑
k=1

êSk(Xi, Yi)

=
1

2KA

K∑
k=1

(γk − Yi)
[
I{Xi∈Sk} − I{Xi∈Sck}

]
=

1
2KA

K∑
k=1

(γk − Yi)
[
2I{gS(Xi)≥k} − 1

]
.

Note that this empirical loss is increased for each incorrect

level set in which x is placed by S. If we define the risk

as before to be RK(S) ≡ E
[
êKS
]
, then the excess risk is

simply

RK(S)−RK(S∗) =
1
K

∑
k

(R(Sk)−R(S∗k))

=
1
KA

K∑
k=1

∫
∆(S∗k ,Sk)

|γk − f(x)|dPX .

As before, the empirical risk can be computed as R̂k(S) =
1
n

∑n
i=1 ê

K
S (Xi, Yi).

In this context, regularization terms can be developed

using the same methodology as described above. Let

`(L) ∈ {0, 1, . . . ,K} denote the label of leaf L, which

corresponds to the maximum k such that L is estimated

to belong to the level set S∗k , as described above. Also, let

êKL (Xi, Yi) ≡
K∑
k=1

γk − Yi
2AK

[
I{`(L)≥k} − I{`(L)<k}

]
I{Xi∈L}

R̂Kn (L) ≡ 1
n

n∑
i=1

êKL (Xi, Yi)

RK(L) ≡ E
[
êKL
]

=

∫
L

K∑
k=1

γk − f(x)
2AK

[
I{`(L)≥k} − I{`(L)<k}

]
dPX .

These definitions lead to the following corollary:

Corollary 10 For K ≥ 1 an integer, let

ΦKn (T ) ≡
∑

L∈π(T )

√
8Q(δ, JLK,K)p̂′L(δ)

n
,

where

Q(δ, JLK,K) = (log(1/δ) + JLK log 2 + log(K + 1)) .

Then with probability at least 1−2δ, RK(T ) ≤ R̂Kn (T )+
ΦKn (T ) for all T ∈ TM .

This is proved in Section IX. The corollary suggests

that T̂n = arg minT∈TM R̂
K
n (T ) + ΦKn (T ) would be

an effective estimator in this setting. Each leaf of this

tree has a label k ∈ {0, 1, . . . ,K} which denotes the

highest (and hence smallest) level set S∗k to which the

corresponding domain of f is estimated to belong. The

optimization method used to compute this estimate is

detailed in Section VI.

C. Density level set estimation

The above proposed error metric can be altered slightly

to become appropriate for density level set estimation.

Specifically, given n iid observations of some density

f : [0, 1]d −→ [0, A], A ≥ 1 we wish to identify the set

S∗ ≡ {x ∈ [0, 1]d : f(x) ≥ γ} as before. This problem

is important in a variety of applications because of its

close ties to anomaly detection. For example, researchers

studying computer networks may wish to identify worms

or malicious agents by identifying packets with “unusual”

routing behavior. By estimating the level set of a density,

we estimate patterns of behavior whose likelihoods are

below some critical level.

The formulation of this problem is slightly different

from the one above because we do not make noisy

observations of the amplitude of f . Let λ(S) denote the

Lebesgue measure of S, and define the empirical loss to

be

êDS (Xi) ≡ (18)

1
2A
[(
γλ(S)− I{Xi∈S}

)
−
(
γλ(S̄)− I{Xi∈S̄}

)]
.

To see why this is an effective metric in this context, first

observe that

RD(S) ≡ E
[
êDS
]

=
∫
γ − f(x)

2A
[
I{x∈S} − I{x∈S̄}

]
dx

(19)

and the excess risk is RD(S)−RD(S∗) = 1
A

∫
∆(S,S)

|γ−
f(x)|dx. As before, define the empirical risk to be

R̂Dn (S) ≡ 1
n

n∑
i=1

êDS (Xi). (20)
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This is precisely the excess risk we explored in the context

of regression level set estimation (6). Note that here, just

as in regression level set estimation, the empirical loss

function êDS is bounded, and this will play a critical role

in our analysis.

The problem of density level set estimation has been

explored in other contexts, notably [15] and [25]. In

[25], Scott and Nowak use dyadic trees and build upon

the bounding techniques described in this paper to solve

the closely related problem of minimum volume set es-

timation; i.e. finding the set S with minimum volume

subject to the constraint that
∫
S
f(x)dx = γ. Tsybakov

[15] addresses the density level set estimation problem

described in this subsection. In his formulation, estimators

attempt to maximize an excess mass metric, which is

defined to be M(S) ≡
∫
S

(f(x)− γ) dx. Clearly this is

closely related to the error metric proposed in this paper,

sinceRD(S) =
(
M(S̄)−M(S)

)
/(2A). Tsybakov’s esti-

mator exhibits rates of error convergence for estimation of

density level sets similar to the ones derived in this paper,

and in fact can nearly optimally estimate much smoother

boundaries of level sets than those considered here by

fitting polynomials to the boundary. However, his problem

is formulated in the plane (d = 2) and his approach

does not exhibit the spatial adaptivity accompanying the

proposed tree-based method.

In the context of density level set estimation, regulariza-

tion terms can be developed using the same methodology

as described above. To this end, set

êDL (Xi) ≡
γλ(L)− I{Xi∈L}

2A
[
I{`(L)=1} − I{`(L)=0}

]
R̂Dn (L) ≡ 1

n

n∑
i=1

êDL (Xi)

=
γλ(L)− p̂L

2A
[
I{`(L)=1} − I{`(L)=0}

]
RD(L) ≡ E

[
êDL
]

=
∫
L

γ − f(x)
2A

[
I{`(L)=1} − I{`(L)=0}

]
dx.

Note that these definitions correspond with the defi-

nitions (19), (20) and (19). In particular, RD(T ) =∑
L∈π(T )RD(L). These definitions can be used in the

same manner as before to arrive at the following corollary:

Corollary 11 Let δ ∈ [0, 1/2], and define

ΦDn (T ) ≡
∑

L∈π(T )

√
Q(δ, L)
nA

,

where

Q(δ, L) = 2 (log(2/δ) + JLK log 2)
·
[
p̂′L(δ)I{`(L)=0} + γλ(L)I{`(L)=1}

]
.

With probability at least 1−2δ, for all T ∈ TM , RD(L)−
R̂Dn (L) < ΦD(T ).

This is proved in Section IX. Similar to the case of

regression level set estimation, Corollary 11 suggests

that minimizing R̂Dn (T ) + ΦD(T ) will make RD(T )
small with very high probability, and hence T̂n =
arg minT∈TM R̂

D
n (T ) + ΦDn (T ) would be an effective

estimator in this setting.

VI. COMPUTATION AND CYCLE SPINNING

In this section we explore computational techniques for

computing the estimator in (10) in two different cases: the

general case (d ≥ 2) and the low-dimensional case (d = 2
or d = 3). We do this because two- or three-dimensional

problems occur frequently in many applications, and when

the dimensionality of the data is low it is possible to

perform a technique we call “exhaustive voting over shifts”

in a computationally tractable manner. This technique will

be detailed later in this section.

Fast methods for binary classification in arbitrary di-

mensions using dyadic decision trees are described in

[26], [16] and can easily be extended to the level set

estimation problem. Specifically, let J = log2M be

the maximum number of dyadic refinements along any

coordinate used to form a tree T . Then T̂n can be com-

puted in O(ndJd log(nJd)) operations using a dynamic

programming algorithm.

Recall that LM is the collection of all dyadic hyperrect-

angles L such that L ∈ π(T ) for some T ∈ TM . A label

is assigned to a leaf L ∈ π(T ) by choosing `(L) ∈ {0, 1}
to minimize R̂n(L). Specifically,

`(L) =
{

1,
∑
i:Xi∈L(γ − Yi) ≤ 0

0, otherwise.

In the case of estimating K level sets simultaneously,

`(L) ∈ {0, 1, . . . ,K} is assigned as

`(L) = max

{
k ∈ {0, 1, . . . ,K}

∣∣∣∣∣ ∑
i:Xi∈L

(γk − Yi) ≤ 0

}
,

where γ0 ≡ −A, which minimizes R̂Kn (L).

For some L ∈ LM , let TL denote a subtree rooted at L,

and let T ∗L be the subtree TL which minimizes R̂n(TL) +
Φn(TL), where R̂n(TL) = 1

n

∑
i:Xi∈L êT (Xi, Yi). Re-

call that Ls,left and Ls,right denote the hyperrectangles

corresponding to splitting L in half in the s coordinate

direction, and denote by MERGE(L, T1, T2) the tree rooted

at L having T1 and T2 as its right and left branches. The

estimate in (10) can then be computed by

T ∗L = arg min
{
R̂n(TL) + Φn(TL) |

TL = {L} or TL = MERGE(L, T ∗Ls,1 , T
∗
Ls,2),

s = 1, . . . , d} .
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That is, the estimate TL is computed by choosing the best

of d+1 trees: the tree associated with make L a leaf node

and assigning the label as above to minimize the empirical

risk, and the d trees associated with merging the two

optimal tree estimates for the two halves of L split in the

sth coordinate direction. This method is highly analogous

to lower-dimensional dynamic programming methods. One

of the key observations made in [26] is that most L ∈ LM
will not contain data when d is large; this eliminates the

need for computation on many nodes and thus reduces the

computational complexity of the method substantially.

To counteract partition boundary artifacts which result

from the use of binary trees, it is possible to perform a

“voting over shifts” routine similar to the “averaging over

shifts” or “cycle spinning” methods commonly used in

function estimation. These methods eliminate the arbitrary

choice of alignment between RDPs and the function and

thus effectively smooth to reduce the partition boundary

artifacts. Rather than averaging the results of shifted

estimators, we determine whether each of the initial cells

is more often in or out of the level set of interest and make

the corresponding set assignment. While observations may

or may not be aligned to a grid, we advocate considering

shift amounts which are multiples of the smallest possible

hyperrectangle sidelength, 1/M ; this means that some

cells will appear at multiple shifts which can lead to com-

putational savings. Ideally, one might like to compute an

estimate at each of the Md potential shifts, which we call

exhaustive voting over shifts. When d is large, however,

Md will be large also and the exhaustive technique may be

computationally prohibitive. Gains can instead be realized

by voting over random shifts.

When d is small (i.e. d = 2 or d = 3), exhaustive voting

over shifts can be very computationally efficient. For this

low-dimensional problem, we may use quadtrees or 8-

ary trees instead of the binary trees emphasized in much

of this paper because presumably n � 2d. This allows

us to use a bottom-up tree-pruning minimization routine

in place of the dyadic programming method described

above. The key to making exhaustive voting over shifts

computationally efficient is the observation that many tree-

pruning decisions occur at multiple different shifts; we can

exploit this redundancy as described below.

For the case where Md is the maximum number of

leaf nodes allowed in the tree-based estimate, a tree-

pruning algorithm requires computing R̂n(TL) on O(Md)
different dyadic hypercubes. Since there are Md different

shifts to consider, naively voting over shifts can require

computation of R̂n(TL) on as many as O(M2d) hyper-

cubes. However, each hypercube corresponds to a node

in several different shifted trees, which means there are

Md log2M
d unique pruning decisions to be made on

Md log2M
d unique hypercubes.

Once these pruning decisions have been made, the next

task is to convert the resulting leaf nodes and their labels

to an estimate. In the case where only one level set is

being extracted, this can be accomplished by mapping the

pruning decisions and labels to Haar wavelet transform

coefficients, computing the inverse wavelet transform, and

thresholding the result at one-half. The thresholding step

is necessary because the inverse wavelet transform essen-

tially averages the labels over shifts; when the average

is greater than one-half, the majority vote must be for

a label of one. Both of these operations can be done in

O(Md log2M
d) time. The relationship between the prun-

ing decisions and the wavelet coefficients is delicate and

does not correspond to traditional hard or soft thresholding

schemes. In the case of multiscale penalized likelihood

estimation, wavelet coefficients are scaled depending on

their ancestors’ pruning decisions. That is, each wavelet

coefficient is weighted by the percentage of different shifts

in which the corresponding node was not pruned.

It is important to note that this scaling can be done one

level at a time for increased efficiency. Specifically, once

all Md log2M
d pruning decisions have been made, the

estimate can be calculated with a breadth-first traversal

of the tree associated with the wavelet coefficients. The

coefficient weight is initialized to one for each node in

the tree. Then, at the top of the tree, each coefficient

weight is multiplied by a zero or a one, depending on

the pruning decision. Next, the 2d children coefficients

have their weight reduced by a 1/2d factor of the total

weight loss of the parent. This way, the grandchildren and

other descendants will be appropriately weighted when the

breadth-first traversal reaches their scales, and a nested

loop for updating these weights is unnecessary.

In the case where multiple level sets are being extracted

simultaneously, application of the inverse wavelet trans-

form introduces a small error. In particular, each pruned

node is assigned a label in {0, 1, . . . ,K}; the majority

vote at a given location would correspond to the mode

of the labels over all shifts, not the thresholded mean

label we can calculate using the inverse wavelet transform.

This means that the process of converting the leaf nodes

and their labels to an estimate is necessarily more com-

putationally demanding under the onus of multiple level

sets. That said, averaging labels over shifts is not always

a poor approximation for voting over shifts in practice,

particularly when the boundaries of the different level sets

are far from each other. When the boundary of level set Sk
is relatively isolated from the others, the label associated

with points near the boundary will be typically be k − 1
or k at most shifts, and so computing the mean label

and thresholding may result in only a small reduction in

accuracy in return for a large increase in computational

efficiency. We find that this is an effective approach in our

simulations. Note that assigning a label to each partition

cell in the final estimate ultimately produces an estimate

of g∗S(x), and so the estimated level sets remain nested.
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VII. SIMULATION RESULTS

To test the practical effectiveness of the proposed

method, we simulated observations of the elevation of

New Orleans, where the true elevations were obtained

in DTED Level 0 files from the National Geospatial-

Intelligence Agency Raster Roam website (http:

//geoengine.nga.mil/geospatial/SW_

TOOLS/NIMAMUSE/webinter/rast_roam.html)

and are displayed in Figure 4(a). Organizations such as the

US Geological Survey are often interested in identifying

flood plains, which shift as a result of erosion and natural

disasters. The true flood plain (the level set of interest)

is displayed in Figure 4(b); note that it encompasses

low-lying regions outside the river, distinguishing this

problem from an edge detection problem. Our goal is to

extract the flood plain from the set of noisy observations

displayed in Figure 4(c). The noisy observations were

obtained by adding zero-mean beta-distributed noise

with a variance of 3, 333 to the true image. (Note that

this implies that the Xi’s are deterministic.) As shown

in Figure 4(d), simply thresholding the observations to

obtain the level set Ŝthresh is highly insufficient in the

presence of noise.

In contrast, the application of the proposed method to

this data results in an accurate estimate of the level set,

T̂ ρn , as displayed in Figure 4(e). Because the number of

dimensions in this example (two) is small relative to the

number of observations, we employ a quad-tree structure

instead of the binary tree described above. While this

would not be feasible for much larger dimensions, in

two dimensions it is both easy to implement and subject

to all the performance characterizations derived earlier

in this paper. For this simulation, we selected the value

of ρ = 0.0124 by searching over a range of values

to minimize the risk (as defined in (5)); the risk was

calculated clairvoyantly using the true function f . We

present this clairvoyant estimate to objectively highlight

the difference between the proposed approach and a “plug-

in” approach (which was given the same advantage, as

described below). Furthermore, we employed “voting over

shifts”, a process analogous to averaging over shifts or

using an undecimated wavelet transform. Careful thought

reveals that voting over shifts, as described in Section VI,

can be accomplished in O(n log n) time; on a 1.67 GHz

PowerPC G4 with 1 GB of memory, this voting-over-shifts

estimate was computed in 12.5 seconds for the 512× 512
images.

Compare this result with the result of a more indi-

rect approach: namely, performing wavelet denoising and

thresholding the denoised image to obtain a level set

estimate, Ŝwavelet, to produce to image in Figure 4(f). We

used undecimated Haar wavelet denoising [27], and hard

threshold the wavelet coefficients at a level 3.39 times

the noise variance; as above, this value was selected by

searching over a range of values to minimize the risk,

which was calculated clairvoyantly using the true function

f .

We observed the following mean risks over one hun-

dred noise realizations: R(Ŝthresh) − R(S∗) = 0.0944,

R(Ŝwavelet)−R(S∗) = 0.00450, and R(T̂n)−R(S∗) =
0.00377. Roughly speaking, wavelet denoising is analo-

gous to choosing a partition with a penalty proportional

to the size of the tree or partition, as opposed to the

spatially adaptive penalty employed in this method. This

example demonstrates that, as expected, the spatially adap-

tive penalty results in a partition which drills down on

the location of the boundary; the wavelet-based approach,

in contract, appears to oversmooth the boundary. Further-

more, since the level set of interest does not correspond

to an edge in the image, we would not expect curvelets

or wedgelets to significantly outperform wavelets in this

context.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Simulation results. (a) True function f : [0, 1]2 →
[−99.5, 99.5]. DTED values were in the range [0, 199]; recentering the

elevations to lie in [−99.5, 99.5] does not impact the result. (b) Level

set S∗ = {x ∈ [0, 1]2 : f(x) > −29.5}. (c) Noisy observations,

Yi ∈ [−200, 200], i = 1, . . . , 5122. (d) Level set of observationsbSthresh = {Xi : Yi − 29.5}. R(bSthresh) − R(S∗) = 0.0944.

(e) Level set estimated with the proposed method. R( bT ρn)−R(S∗) =
0.00365. (f) Level set estimated by TI Haar wavelet denoising followed

by thresholding. R(bSwavelet)−R(S∗) = 0.00463.

We see similar performance in the case to multiple

simultaneous level set extraction, as displayed in Figure 5.

VIII. CONCLUSIONS

This paper demonstrates that tree-based partitioning

approaches to level set estimation exhibit near minimax

optimal performance and can be computed rapidly to pro-

duce effective and practical estimates. This new estimator

is especially promising in image processing applications

such as Digital Terrain Elevation Data (DTED) analysis,

microarray image analysis, and spatial environmental anal-

ysis. Extensions to the simultaneous estimation of multiple

level sets and to general regression level set and density

http://geoengine.nga.mil/geospatial/SW_TOOLS/NIMAMUSE/webinter/rast_roam.html
http://geoengine.nga.mil/geospatial/SW_TOOLS/NIMAMUSE/webinter/rast_roam.html
http://geoengine.nga.mil/geospatial/SW_TOOLS/NIMAMUSE/webinter/rast_roam.html
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Simulation results. (a) True function f : [0, 1]2 →
[−99.5, 99.5]. (b) Level sets with γ1 = −59.5 and γ2 = 0.5. (c) Noisy

observations, Yi ∈ [−200, 200], i = 1, . . . , 5122. (d) Level sets of

observations. R(bSthresh)−R(S∗) = 0.0791. (e) Level sets estimated

with the proposed method. R( bT ρn) − R(S∗) = 0.00325. (f) Level

sets estimated by TI Haar wavelet denoising followed by thresholding.

R(bSwavelet)−R(S∗) = 0.00402.

level set estimation are also presented. The introduction

of a new error metric allows us to bound the weighted

symmetric difference between the true level set and the

estimate using the relative form of Hoeffding’s inequality.

This has proven to yield much more accurate results than

those achievable with a plug-in method, such as denoising

followed by computing the level set from the denoised

data. In particular, we demonstrated that, while classical

near minimax optimal tree-based image denoising methods

penalize the estimator based on the number of leafs in

the tree, a substantially different penalization method is

necessary for near minimax optimal level set estimation.

The new penalty term weighs tree leafs according to their

size (with respect to the underlying probability measure),

thereby favoring deep, unbalanced trees most likely to

accurately represent the true level set of interest.

While the analysis presented in this paper results in an

effective tool for level set estimation, there are several

areas of ongoing research. One such area is the incorpo-

ration of additional information about the noise process

(such as noise variance) into the estimation procedure.

This may result in an useful estimation technique for a

broader spectrum of potential applications. In addition,

the proposed method has interesting ties with classical set

estimation methods based on snakes or active contours.

In particular, the optimization criterion we develop is

similar to criteria employed in active contour methods (in

that our risk function can be interpreted as an “image

force” and our penalty as a measure of active contour

energy due to bending [4]), yet was derived from funda-

mental probabilistic concentration inequalities and admits

a thorough theoretical analysis of performance bounds.

Nevertheless, the level set estimation method presented in

this paper cannot yet address the scope of problems solved

using active contours. Ongoing work includes the further

development of this analysis in order to better design and

characterize set estimation methods for a wider variety of

problems.

IX. PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 1 First, recall the relative form of

Hoeffding’s inequality:

Theorem 12 [21] Let the random variables

U1, U2, . . . , Un be independent, with 0 ≤ Ui ≤ 1
for each i. Let Sn =

∑
i Ui and let µ = En[Sn]. Then

for any ε > 0,

Pn [Sn ≤ (1− ε)µ] = Pn [µ− Sn ≥ εµ] ≤ e−ε
2µ/2.

Now let Ui ≡ (êL(Xi, Yi) + I{Xi∈L})/2; note that since

γ − Yi ∈ [−2A, 2A], Ui ∈ [0, 1], as required by Theorem

12. This means that Sn = (nR̂n(L) + np̂L)/2 and µ =
(nR(L) + npL)/2. From these definitions, we find that

the following statements are equivalent:

Pn
[
µ− Sn ≥

√
2 log(1/δL)µ

]
≤ δL

Pn
[n

2

(
R(L)− R̂n(L)

)
+
n

2
(pL − p̂L) ≥√

log(1/δL) (nR(L) + npL)
]
≤ δL

Pn
[
R(L)− R̂n(L) ≥√

4 log(1/δL) (R(L) + pL)
n

− (pL − p̂L)

]
≤ δL.

Next, note that

R(L) + pL

=
∫
L

[
γ − f(x)

2A
[
I{`(L)=1} − I{`(L)=0}

]
+ 1
]
dPX

≤ 2pL

where the inequality follows from the fact that −1 ≤
γ−f(x)

2A ≤ 1 since both γ and f(x) ∈ [−A,A]. This yields

Pn
[
R(L)− R̂n(L) ≥

√
8 log(1/δL)pL

n
− (pL − p̂L)

]
≤ δL.

Proof of Lemma 2 (This closely follows the proof of

Theorem 2 in [16], but since the risk cannot be expressed

in terms of probability measures in this context, some

technical details are different.) Applying Lemma 1, we

have that for a particular L, with probability not exceeding

1− δ2−(JLK+1),

R(L)− R̂n(L)
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<

√
8 ((JLK + 1) log 2 + log(1/δ)) pL

n
− (pL − p̂L)

≤
√

8 (JLK log 2 + log(2/δ)) pL
n

− (pL − p̂L) .

We now wish to show that a similar bound holds uniformly

for all T ∈ TM and all L ∈ π(T ) by applying the

union bound. However, we want to avoid summing over

redundant leaf-label pairs since this will introduce slack

into the bound. Note the for a given L ∈ LM , T will

have the sole effect of assigning a label to L, indicating

whether it is estimated to be in S. Thus we can sum over

all L ∈ LM and, for each L, over just two trees which

assign different labels to L. Applying the union bound in

this manner, and letting EL denote the event that

R(L)− R̂n(L)

>

√
8 (JLK log 2 + log(2/δ)) pL

n
− (pL − p̂L) ,

we have

Pn
 ⋃
T∈TM

⋃
L∈π(T )

EL

 ≤
∑

L ∈ LM
label = 0 or 1

δ2−(JLK+1)

≤
∑
L∈LM

δ2−JLK ≤ δ

where the last inequality follows from the Kraft inequality,

which is applicable since JLK is a prefix codelength.

Thus, with probability at least 1− δ, R(T )−R̂n(T ) ≤
Φ′n(T )−

∑
L∈T (pL − p̂L) for all T ∈ TM . The statement

of the lemma follows from the fact that
∑
L∈T pL =∑

L∈T p̂L = 1.

Proof of Theorem 8 First note that the collection of

potential set estimates TM is closed with respect to com-

plimentation. Furthermore, R(T ) = −R(T c), R̂n(T ) =
−R̂n(T c), and Φn(T ) = Φn(T c), which means

R̂n(T )−R(T ) = R(T c)− R̂n(T c) ≤ Φn(T c) = Φn(T )

and so |R(T ) − R̂n(T )| ≤ Φn(T ). Now, assume the

n observations {(Xi, Yi)}ni=1 are such that R(T ) ≤
R̂n(T ) + Φn(T ) holds for all T ∈ TM ; Theorem 4 states

that the observations meet this criterion with probability

at least 1− 2δ. We then have

R(T̂ ρn) ≤ R̂n(T̂ ρn) + Φn(T̂ ρn)

≤ max
(

1
ρ
, 1
)(
R̂n(T̂ ρn) + ρΦ(T̂ ρn)

)
= max

(
1
ρ
, 1
)

min
T∈TM

{
R̂n(T ) + ρΦ(T )

}
≤ max

(
1
ρ
, 1
)

min
T∈TM

{R(T ) + (1 + ρ)Φ(T )} .

Subtracting R(S∗) from both sides, we arrive at the

statement of the theorem.

Proof of Corollary 10 Since each γk ∈ [−A,A], we

can define Ui as before to be (êKL (Xi, Yi) + I{Xi∈L})/2
and will have Ui ∈ [0, 1]. This allows us to apply the

relative form of Hoeffding’s inequality as before to derive

the penalty. The log(K + 1) term is used because, while

before only two labels were considered during the union

bound in the proof of Lemma 2, we must now consider

K + 1 different possible labels.

Proof of Corollary 11 Let Ui ≡ êDL (Xi) + (I{Xi∈L}+
γλ(L))/(2A); note that since γ ∈ [0, A], A ≥ 1, and

λ(L) ∈ [0, 1], Ui ∈ [0, 1], as required by Theorem 12. This

means that Sn = nR̂Dn (L) + np̂L/(2A) + nγλ(L)/(2A)
and µ = nRD(L) + npL/(2A) + nγλ(L)/(2A). From

these definitions, we find that the following statements are

equivalent for δL ∈ [0, 1/2]:

Pn
[
µ− Sn ≥

√
2 log(1/δL)µ

]
≤ δL

Pn
[
n
(
RD(L)− R̂Dn (L)

)
+

n

2A
(pL − p̂L) ≥√

2n log(1/δL) (RD(L) + (pL + γλ(L))/(2A))
]

≤ δL

Pn
[
RD(L)− R̂Dn (L) ≥ −pL − p̂L

2A
+√

log(1/δL)
An

(RD(L) + (pL + γλ(L)))

]
≤ δL.

Next note that

RD(L) +
γλ(L)

2A
+
pL
2A

=
{
γλ(L)/A, `(L) = 1
pL/A, `(L) = 0 .

Following the proof of Lemma 2 and applying Lemma 3,

we arrive at the desired bound.
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