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Abstract— Power and bandwidth are scarce resources in dense
wireless sensor networks and it is widely recognized that joint
optimization of the operations of sensing, processing and commu-
nication can result in significant savings in the use of network re-
sources. In this paper, a distributed joint source-channelcommu-
nication architecture is proposed for energy-efficient estimation
of sensor field data at a distant destination and the corresponding
relationships between power, distortion, and latency are analyzed
as a function of number of sensor nodes. The approach is
applicable to a broad class of sensed signal fields and is based on
distributed computation of appropriately chosen projections of
sensor data at the destination – phase-coherent transmissions
from the sensor nodes enable exploitation of the distributed
beamforming gain for energy efficiency. Random projectionsare
used when little or no prior knowledge is available about the
signal field. Distinct features of the proposed scheme include: 1)
processing and communication are combined into one distributed
projection operation; 2) it virtually eliminates the need for in-
network processing and communication; 3) given sufficient prior
knowledge about the sensed data, consistent estimation is possible
with increasing sensor density even with vanishing total network
power; and 4) consistent signal estimation is possible withpower
and latency requirements growing at most sub-linearly withthe
number of sensor nodes even when little or no prior knowledge
about the sensed data is assumed at the sensor nodes.

Index Terms— Compressive sampling, distributed beamform-
ing, scaling laws, sensor networks, source-channel communica-
tion, sparse signals

I. I NTRODUCTION

SENSOR networking is an emerging technology that
promises an unprecedented ability to monitor the physical

world via a spatially distributed network of small and inexpen-
sive wireless devices that have the ability to self-organize into
a well-connected network. A typical wireless sensor network
(WSN), as shown in Fig. 1, consists of a large number of
wireless sensor nodes, spatially distributed over a regionof
interest, that can sense (and potentially actuate) the physical
environment in a variety of modalities, including acoustic,
seismic, thermal, and infrared. A wide range of applications
of sensor networks are being envisioned in a number of areas,
including geographical monitoring (e.g., habitat monitoring,
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Fig. 1. Sensor network with a fusion center (FC). Black dots denote sensor
nodes. FC can communicate to the network over a high-power broadcast
channel whereas the multiple-access channel (MAC) from thenetwork to
the FC is power constrained.

precision agriculture), industrial control (e.g., in a power plant
or a submarine), business management (e.g., inventory tracking
with radio frequency identification tags), homeland security
(e.g., tracking and classifying moving targets) and healthcare
(e.g., patient monitoring, personalized drug delivery).

The essential task in many applications of sensor networks
is to extract relevant information about the sensed data and
deliver it with a desired fidelity to a (usually) distant des-
tination, termed as the fusion center (FC). The overall goal
in the design of sensor networks is to execute this task
with least consumption of network resources – energy and
bandwidth being the most limited resources, typically. In this
regard, the relevant metrics of interest are: (i) the average total
network power consumptionPtot for estimating a snapshot of
the signal field; (ii) the distortionD in the estimate; and (iii)
the latencyL incurred in obtaining the estimate (defined as
the number of network-to-FC channel uses per snapshot). It is
also generally recognized that jointly optimizing the operations
of sensing, processing and communication can lead to very
energy efficient operation of sensor networks.

In this paper, we propose a distributed joint source-channel
communication architecture for energy efficient estimation of
sensor field data at the FC. Under mild assumptions on the
spatial smoothnessof the signal field (cf. Section II), we ana-
lyze the corresponding relationships between power, distortion,
and latency as well as their scaling behavior with the number
of sensor nodes. Our approach is inspired by recent results in
wireless communications [1]–[3] and represents a new, non-
traditional attack on the problem of sensing, processing and
communication in distributed wireless sensing systems. Rather
than digitally encoding and transmitting samples from indi-
vidual sensors, we consider an alternate encoding paradigm
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based on the projections of samples from many sensors onto
appropriate spatial basis functions (e.g., local polynomials,
wavelets). The joint source-channel communication architec-
ture at the heart of our approach is an energy efficient
method for communicating such projections to the FC – the
projections are communicated in a phase-coherent fashion
over the network-to-FC multiple-access channel (MAC). This
architecture was first proposed and analyzed in [2] in the
context of spatially homogeneous signal fields. This paper
generalizes the approach to a broader class of signals classified
as eithercompressibleor sparse(see Section II).

The power of the proposed approach is that, in principle,
one can choose to acquire samples in the domain of any
basis that is particularly well-suited to the spatial structure of
the signal field being sensed (e.g., smooth signals tend to be
well-approximated in the Fourier basis and wavelet bases tend
to be well-suited for the approximation of piecewise smooth
signals [4]). Thus, if one has reasonable prior knowledge about
the signal (e.g., spatial statistics or smoothness characteristics
of the sensed field), then each sensing operation maximizes
the potential gain in information per sample. More generally,
however, we may have little prior knowledge about the sensed
field. And, in some applications, the physical phenomenon of
interest may contain time-varying spatial edges or boundaries
that separate very different physical behaviors in the mea-
sured signal field (e.g., an oceanic oil spill, limited spatial
distributions of hazardous biochemical agents). To handlesuch
scenarios, we introduce the concept ofcompressive wireless
sensing(CWS) in the later part of the paper that is inspired
by recent results in compressive sampling theory [5]–[7] and
fits perfectly into our proposed source-channel communication
architecture.

The key idea in CWS is that neither the sensor nodes nor
the FC need to know/specify the optimal basis elements in
advance, and rests on the fact that a relatively small numberof
random projections of a compressible or sparse signal contain
most of its salient information. Thus, in essence, CWS is a
universal scheme based on delivering random projections of
the sensor data to the FC in an efficient manner. Under the
right conditions, the FC can recover a good approximation
of the data from these random projections. Nevertheless, this
universality comes at the cost of a less favorable power-
distortion-latency relationship that is a direct consequence
of not exploiting prior knowledge of the signal field in the
choice of projections that are communicated to the FC. This
trade-off between universality and prior knowledge in CWS is
quantified in Section VI.

A. Relationship to Previous Work

First, let us comment on the signal model being used in
this paper. We assume that the physical phenomenon under
observation is characterized by an unknown but deterministic
sequence of vectors inRn, where each vector in the sequence
is α-compressible orM -sparse in some orthonormal basis of
R

n (see Section II). Alternative assumptions that are com-
monly used in previous work are that the signal field is either
a realization of a stationary (often bandlimited) random field

with some known correlation function [8]–[11], or it is fully
described by a certain number of degrees of freedom (often
less thann) that are random in nature [3], [12]. All of these
signal models, however, express a notion of smoothness or
complexity in the signal field, and the decay characteristics of
the correlation function (e.g., the rate of decay) or the number
of degrees of freedom (DoF) in the field play a role analogous
to that of α and M in this work. Essentially, the choice
between a deterministic or a stochastic model is mostly a
matter of taste and mathematical convenience, the latter being
more prevalent when it comes to information-theoretic analysis
of the problem (also, see [13] and the discussion therein).
However, the deterministic formulation can be more readily
generalized to include inhomogeneities, such as boundaries,
in the signal field [14].

Secondly, it is generally recognized that the basic oper-
ations of sensing, processing (computation), and communi-
cation in sensor networks are interdependent and, in gen-
eral, they must be jointly optimized to attain optimal trade-
offs between power, distortion and latency. This joint op-
timization may be viewed as a form of distributed joint
source-channel communication (or coding), involving both
estimation (compression) and communication. Despite the
need for optimized joint source-channel communication, our
fundamental understanding of this complex problem is very
limited, owing in part to the absence of a well-developed
network information theory [15]. As a result, a majority of
research efforts have tried to address either the compression
or the communication aspects of the problem. Recent results
on joint source-channel communication for distributed esti-
mation or detection of sources in sensor networks [1]–[3],
[12], [16]–[18], although relatively few, are rather promising
and indicate that limited node cooperation can sometimes
greatly facilitate optimized source-channel communication and
result in significant energy savings that more than offset the
cost of cooperation. Essentially, for a given signal field, the
structure of the optimal estimator dictates the structure of the
corresponding communication architecture. To the best of our
knowledge, the most comprehensive treatment of this problem
to date (in the context of WSNs) has been carried out by
Gastpar and Vetterli in [3] (see also [12]). While some of
our work is inspired by and similar in spirit to [3], Gastpar
and Vetterli have primarily studied the case of finite number
of independent sources that is analogous to that of anM -
sparse signal, albeit assuming Gaussian DoF and multiple
FCs. Moreover, the number of DoF in [3] is assumed to be
fixed and does not scale with the number of nodes in the
network. Our work, in contrast, not only extends the results
of [3] to the case when the number of DoF of anM -sparse
signal scales withn, but also applies to a broader class of
signal fields and gives new insights into the power-distortion-
latency relationships for both compressible and sparse signals
(cf. Section V). Furthermore, we also present extensions of
our methodology to situations in which very limited prior
information about the signal field is available.

Thirdly, in the context of compressive sampling theory
[5]–[7], while the idea of using random projections for the
estimation of sensor network data has recently received some



3

attention in the sensor networking community, the focus has
primarily been on the compression or estimation aspects of
the problem (see, e.g., [7], [19]–[21]), and this paper is the
first to carefully investigate the potential of using random
projections from a source-channel communication perspective
(cf. Section VI).

Finally, from an architectural and protocol viewpoint, most
existing works in the area of sensor data estimation em-
phasize the networking aspects by focusing on multi-hop
communication schemes and in-network data processing and
compression (see, e.g., [8], [10], [11], [14]). This typically
requires a significant level of networking infrastructure (e.g.,
routing algorithms), and existing works generally assume this
infrastructure as given. Our approach, in contrast to these
methods, eliminates the need for in-network communications
and processing, and instead requires phase synchronization
among nodes that imposes a relatively small burden on net-
work resources and can be achieved, in principle, by employ-
ing distributed synchronization/beamforming schemes, such as
those described in [22], [23]. Although we use the common
term ‘sensor network’ to refer to such systems, the systems we
envision often act less like networks and more like coherent
ensembles of sensors and thus, our proposed wireless sensing
system is perhaps more accurately termed a ‘sensor ensemble’
that is appropriately queried by an ‘information retriever’ (FC)
to acquire the desired information about the sensed data.

B. Notational Convention

We establish scaling relationships between different quan-
tities that are denoted by the symbols� , ≍ and ∼ (read
as ‘big-oh’, ‘ asymptotically equivalent’ and ‘of-the-order of’
respectively). Specifically, iff(n), g(n) andh(n) are positive-
valued functions ofn ∈ N, then we writef � g if there exists
a constantC > 0 such thatf(n) ≤ C g(n) ∀ n ∈ N, f ≍ g if
f � g andg � f andf ∼ g if f � h andg � h. Sometimes,
we also use the more standard notationf = O(g) for bothbig-
oh andasymptotically equivalentscaling relations. Finally, we
use |A| to denote the cardinality of a finite setA and , to
mean ‘equality by-virtue-of definition’.

C. Organization

The rest of this paper is organized as follows. In Section II,
we describe the system model and associated assumptions on
the signal field and the communication channel. In particular,
in Section II-A, we formalize the notions of compressible
and sparse signals. In Section III, we review the optimal
distortion scaling benchmarks for compressible and sparse
signals under the assumption that the sensor measurements
are available to the FC without any added cost or noise due to
communications. In Section IV, we develop the basic building
block in our source-channel communication architecture for
computing and communicating projections of the sensor field
data to the FC. Using this basic building block, we describe
and analyze an energy efficient distributed estimation scheme
in Section V that achieves the distortion scaling benchmarks of
Section III for both compressible and sparse signals under the

assumption of sufficient prior knowledge about the compress-
ing (and sparse) basis. In Section VI, we introduce the concept
of CWS for the case when sufficient prior knowledge about
the compressing/sparse basis is not available and analyze the
associated power-distortion-latency scaling laws. Up to this
point, we operate under the assumptions that the network is
fully synchronized and transmissions from the sensor nodesdo
not undergo fading. We relax these assumptions in Section VII
and study the impact of fading and imperfect phase synchro-
nization on the scaling laws obtained in Sections IV, V and VI.
Finally, we present some simulation results in Section VIIIto
illustrate the proposed methodologies and concluding remarks
are provided in Section IX.

II. SYSTEM MODEL AND ASSUMPTIONS

We begin by considering a WSN withn nodes observing
some physical phenomenon in space and discrete-time1, where
each node takes a noisy sample at time indexk of the form

xk
j = sk

j + wk
j , j = 1, . . . , n, k ∈ N, (1)

and the noiseless samples
{
sk

j , k ∈ N
}

at each sensor cor-
respond to a deterministicbut unknownsequence inR. We
further assume that|sk

j | ≤ B (∀ j = 1, . . . , n, k ∈ N) for
some known constantB > 0 that is determined by the sensing
range of the sensors, and the measurement errors

{
wk

j

}
are

zero-mean Gaussian random variables with varianceσ2
w that

are independent and identically distributed (i.i.d.) across space
and time.

Notice that the observed data
{
xk

j = sk
j + wk

j

}n

j=1
at time

k can be considered as a vectorxk ∈ R
n such thatxk =

sk + wk, wheresk ∈ R
n is the noiseless data vector and

wk ∼ N (0n×1, σ
2
wIn×n) is the measurement noise vector.

Therefore, the physical phenomenon under observation can be
characterized by the deterministic but unknown sequence of
n-dimensional vectors

S ,
{
sk
}

k∈N
=
{
s1, s2, . . .

}
. (2)

Furthermore, we assume no dependence between different
time snapshots of the physical phenomenon. Note that if
we were to modelS as a stochastic signal, this would
be equivalent to saying thatS is a discrete (vector-valued)
memoryless source.

A. Sensor Data Model

It is a well-known fact in the field of transform coding that
real-world signals can often be efficiently approximated and
encoded in terms of Fourier, wavelet or other related transform
representations [13], [24]–[27]. For example, smooth signals
can be accurately approximated using a truncated Fourier or
wavelet series, and signals and images of bounded variation
can be represented very well in terms of a relatively small
number of wavelet coefficients [4], [6], [28]. Indeed, features
such as smoothness and bounded variation are found in im-
ages, video, audio, and various other types of data, as evident

1The discrete-time model is an abstraction of the fact that the field is being
temporally sampled at some rate ofTs seconds that depends upon the physics
of the observed phenomenon.
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from the success of familiar compression standards such as
JPEG, MPEG and MP3 that are based on Fourier and wavelet
transforms.

We take the transform coding point of view in modeling the
signal observed by the sensor nodes. Specifically, we assume
that the physical phenomenon described byS is (deterministic
and) spatially compressible in the sense that each noiseless
snapshotsk is well-approximated by a linear combination
of m vectors taken from an orthonormal basis ofR

n. We
formalize this notion in the following definition.

Definition 1 (Compressible Signals):Let Ψ , {ψi}n
i=1 be

an orthonormal basis ofRn. Denote the coefficients ofsk in
this basis (inner products betweensk and the basis vectors
ψi) by θk

i , ψi
Tsk =

∑n
j=1 ψijs

k
j , where (·)T represents

the transpose operation. Re-index these coefficients and the
corresponding basis vectors so that

|θk
1 | ≥ |θk

2 | ≥ · · · ≥ |θk
n|. (3)

The bestm-term approximationof sk in terms ofΨ is given
by

sk,(m) ,

m∑

i=1

θk
i ψi , (4)

and we say thatS is α-compressible inΨ (or thatΨ is theα-
compressing basis ofS) if the average squared-errorbehaves
like

1

n

∥∥∥sk − sk,(m)
∥∥∥

2

2
,

1

n

n∑

j=1

(
sk

j − s
k,(m)
j

)2

≤ Com
−2 α, k ∈ N, (5)

for some constantsCo > 0 andα ≥ 1/2 , where the parameter
α governs the degree to whichS is compressible with respect
to Ψ .

In addition, we will also consider the special case where,
instead of being merely compressible,S is spatially sparse in
the sense that each noiseless temporal samplesk can be fully
described by a fewΨ -coefficients. We formalize this notion
as follows.

Definition 2 (Sparse Signals):We say thatS is M -sparse
in Ψ (or thatΨ is theM -sparse basis ofS) if

sk =
∑

i∈Ik

θk
i ψi , k ∈ N, (6)

whereIk ⊂ {1, 2, . . . , n}, k ∈ N, andmax
k

|Ik| ≤ M < n,

i.e., each noiseless data vectorsk has at mostM < n non-zero
coefficients corresponding to some basisΨ of R

n.
Remark 1:An equivalent definition of compressibility or

sparsity may be defined by assuming that, for some0 < p ≤ 1
and someR = R(n) > 0, theΨ -coefficients ofsk belong to
an ℓp ball of radiusR [6], [29], [30], i.e.,




n∑

j=1

|θk
j |p



1/p

≤ R, k ∈ N . (7)

To see that this is indeed an equivalent definition, first note
that (7) can hold only if the cardinality of the set{θk

j : |θk
j | >

1/N, N ∈ N, j = 1, 2, . . . , n} is upper bounded byRN1/p

[30], [31]. Hence, theℓp constraint of (7) in turn requires
that thej-th largest (and re-indexed according to magnitude)
coefficientθk

j is smaller than or equal toR j−1/p, resulting in

∥∥∥sk − sk,(m)
∥∥∥

2

2
=

n∑

j=m+1

|θk
j |2

≤ Cp R
2m1−2/p, k ∈ N, (8)

for some constantCp that depends only onp [6], [29], [30].
Thus, our definition of compressible signals is equivalent to
assuming that the orderedΨ -coefficients of each noiseless data
vectorsk exhibit a power law decay

|θk
j | ≤ Rj−1/p, j = 1, . . . , n, k ∈ N, (9)

where1/p = α + 1/2 andR =
√

n Co

Cp
in our case (cf. (5),

(8)). Indeed, power law decays like this arise quite commonly
in nature and we refer the readers to [6], [13], [29], [31] for
some of those instances. Finally, with regard to the notion of
sparsity, note that theℓp constraint of (7) simply reduces to
measuring the number of non-zeroΨ -coefficients asp → 0
and thus, corresponds to our definition of sparse signals with
R = M .2

Remark 2:The above sensor data model can be relaxed
to allow temporal dependence between time snapshots of the
physical phenomenon by assumingspatio-temporalcompress-
ibility (or sparsity) of the source signal in an appropriatespace-
time basis. While a detailed analysis of this setup is beyond
the scope of this paper, some of the techniques presented in
this paper can be extended to incorporate this scenario.

Remark 3:Note that while this paper is not concerned with
the issue of sensor placement (sampling) in the signal field,the
choice of a good compressing basis is inherently coupled with
the sensors’ locations within the WSN. For example, while
Fourier basis would suffice as a compressing basis for a sensor
network observing a smooth signal field in which sensors
are placed on a uniform grid, random (irregular) placement
of sensors within the same field may warrant the use of an
irregular wavelet transform as the appropriate compressing
basis [32].

B. Communication Setup

Given the observation vectorxk at timek, the aim of the
sensor nodes (and the network as a whole) is to communicate
a reliable-enough estimatêsk of the noiseless data vectorsk

to a distant FC, where the reliability is measured in terms
of the mean-squared error (MSE). Before proceeding further,
however, we shall make the following assumptions concerning
communications between the sensor nodes and the FC:

1) Each sensor and the FC are equipped with a single
omni-directional antenna and sensors communicate to
the FC over a narrowband additive white Gaussian noise
(AWGN) multiple-access channel (MAC), where each
channel use is characterized by transmission over a

2For anM -sparse signal, no particular decay structure is assumed for the
M non-zero coefficients ofsk in Ψ.
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period ofTc seconds. Furthermore, the FC can commu-
nicate to the sensor nodes over an essentially noise-free
broadcast channel.

2) Transmissions from the sensor nodes to the FC do not
suffer any fading [33]–[35], which would indeed be the
case in many remote sensing applications, such as desert
border monitoring, with little or no scatterers in the
surrounding environment and static sensor nodes having
a strong line-of-sight connection to the FC [36].

3) Each sensor knows its distance from the FC and thus,
can calculate the channel path gain

√
hj given by [33]–

[35]
√
hj ,

1

dj
ζ/2

, j = 1, 2, . . . , n, (10)

where 1 ≤ dj ≤ du < ∞ is the distance between
the sensor at locationj and the FC, andζ ≥ 2 is the
path-loss exponent [36], [37]. In principle, even when
the distances and/or path loss exponent are unknown,
these channel gains could be estimated at the FC using
received signal strength and communicated back to the
sensors during network initialization.

4) The network is fully synchronized with the FC in the
following sense [34], [35]: (i)Carrier Synchronization:
All sensors have a local oscillator synchronized to the
receiver carrier frequency; (ii)Time Synchronization:
For each channel use, the relative timing error between
sensors’ transmissions is much smaller than the channel
symbol durationTc ; and (iii) Phase Synchronization:
Sensors’ transmissions arrive at the FC in a phase
coherent fashion, which can be achieved by employing
the distributed phase synchronization schemes described
in [22], [23].

5) Sensor transmissions are constrained to a sum transmit
power ofP per channel use. Specifically, letyj be the
transmission of sensorj in any channel use. Then, it is
required that

n∑

j=1

E

[
|yj |2

]
≤ P. (11)

6) The network is allowedL network-to-FC channel uses
per source observation, which we term as the latency
of the system. If, for example, theseL channel uses
were to be employed using time division multiple access
(TDMA) then this would require that the temporal
sampling timeTs ≥ LTc ; hence, the term latency. In
a system with no bandwidth constraints, this could also
be interpreted as the effective bandwidth of the network-
to-FC MAC.

Given this communication setup, an estimation scheme
corresponds to designingn source-channel encoders
(F 1, . . . ,F n) – one for each sensor node, and the decoder
G for the FC such that at each time instantk, given the
observations

{
xκ

j

}k

κ=1
up to timek at nodej, the encoders

generate anL-tupleyk
j , F j

({
xκ

j

}k

κ=1

)
=
(
yk

j1, . . . , y
k
jL

)T

corresponding toL-channel uses per source observation
(that also satisfy the power constraint of (11)). And at

... ... ...
s

Source
s1

s2

sn

w1

w2

wn

x1

x2

xn

F 1

F 2

F n

G

y
2

= (y21, . . . , y2L)
T

z = (z1, . . . , zL)
T

yn = (yn1, . . . , ynL)
T

y
1

= (y11, . . . , y1L)
T

ŝ

r = (r1, . . . , rL)
T

=
∑n

j=1

√
hj yj + z

√

h1

√

h2

√

hn

Fig. 2. L-channel use snapshot of the sensor network per source observation.
The superscript corresponding to the time index has been dropped in the figure
to simplify notation.

the end of theL-th channel use, the decoderG produces
an estimateŝk of the noiseless data vectorsk given by
ŝ

k
, G

(
{rκ}k

κ=1

)
, where rκ =

∑n
j=1

√
hj y

κ
j + zκ

and zκ ∼ N (0L×1, σ
2
zIL×L) is the MAC AWGN vector

corresponding to theL-channel uses at time instantκ (see
Fig. 2), and the goal of the sensor network is to minimize
(i) the average total network power consumption per source
observation

Ptot , lim
K→∞

1

K

K∑

k=1

L∑

ℓ=1

n∑

j=1

E

[∣∣yk
jℓ

∣∣2
]
; (12)

(ii) the mean-squared error distortion measure

D , lim
K→∞

1

K

K∑

k=1

E

[
1

n

∥∥∥sk − ŝk
∥∥∥

2

2

]
; (13)

and (iii) the latencyL (# of channel uses per source observa-
tion) of the system.3 Thus, for a fixed number of sensor nodes
n, the performance of any estimation scheme is characterized
by the triplet(Ptot(n), D(n), L(n)) and rather than obtaining
an exact expression for this triplet, our goal would be to
analyze how do these three quantities scale withn for a given
scheme. Moreover, minimization of all three quantities in the
triplet is sometimes a conflicting requirement and there is often
a trade-off involved between minimizingPtot,D andL, and we
shall also be analyzing this power-distortion-latency trade-off
as a function ofn.

Remark 4:Notice that implicit in this formulation is the
fact that no collaboration among the sensor nodes is allowed
for the purposes of signal estimation, i.e., encoderF j does not
have access to the inputs of any sensor other than sensorj.

Remark 5:Note that while stating the performance metrics
of power and latency, we have ignored the cost of initializ-
ing the sensor network (primarily corresponding to the cost
of channel gain estimation/phase synchronization algorithms
under the current communication setup and the cost of initial
route/topology discovery algorithms under the more traditional
multi-hop communication setups). This is because the average
cost of this initialization (over time) tends to zero ask – the
time scale of the network operation – tends to infinity. Of
course, in practice, a one-time initialization may not suffice
and these procedures may have to be repeated from time to

3Notice that with the distortion metric as defined in (13), the
MSE of any arbitrary length signal can at worst be a constant since
lim

K→∞

1

K

PK
k=1

E

h
1

n



sk


2

2

i
≤ B2.
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time, but we will assume that the corresponding costs are
negligible compared to the routine sensing and communication
operations.

III. O PTIMAL DISTORTION SCALING IN A CENTRALIZED

SYSTEM

In this section, we consider a system in which the sensor
measurements

{
xk

j

}n

j=1
at each time instantk are assumed

to be available at the FC with no added cost or noise due to
communications, and we review the corresponding classical
estimation theory results (see, e.g., [13], [38], [39]). Note that
such a system corresponds to a sensor network with a noise-
free network-to-FC MAC and thus, the optimal distortion
scaling achievable under thiscentralizedsetting serves as a
benchmark for assessing the distortion related performance of
any scheme under the original setup.

A. Compressible Signals

Given the observation vectorxk at the FC, an optimal
centralized estimator for anα-compressible signal can be
easily constructed by projectingxk onto them basis vectors
of Ψ corresponding tom largest (in the absolute sense)Ψ -
coefficients ofsk (see, e.g., [13]), i.e., ifΨk

m is the n × m
matrix of those basis vectors, where the superscriptk indicates
that the re-indexing in (3) may be a function of the time index
k, thensk can be estimated as

ŝ
k
cen , Ψk

m

(
Ψk

m

T
xk
)

= sk,(m) + Ψk
m

(
Ψk

m

T
wk
)
, (14)

which results in

E

[
1

n

∥∥∥sk − ŝk
cen

∥∥∥
2

2

]
=

1

n

∥∥∥sk − sk,(m)
∥∥∥

2

2
+

1

n
E

[∥∥∥Ψk
m

(
Ψk

m

T
wk
)∥∥∥

2

2

]
(15)

≤ Com
−2α +

(m
n

)
σ2

w . (16)

Furthermore, from (15), we also have the trivial lower bound
of

E

[
1

n

∥∥∥sk − ŝk
cen

∥∥∥
2

2

]
≥ 1

n
E

[∥∥∥Ψk
m

(
Ψk

m

T
wk
)∥∥∥

2

2

]

=
(m
n

)
σ2

w (17)

and combining the upper and lower bounds of (16) and (17),
we obtain
(m
n

)
σ2

w ≤ E

[
1

n

∥∥∥sk − ŝk
cen

∥∥∥
2

2

]
≤ Com

−2α +
(m
n

)
σ2

w .

(18)

From this expression, we see that the choice ofm affects the
classic bias-variance trade-off [39]: increasingm causes the
boundCom

−2α on the approximation error1n
∥∥sk − sk,(m)

∥∥2

2
(the squared “bias”) to decrease, but causes the stochas-
tic component of the error due to the measurement noise
1
n E

[∥∥∥Ψk
m

(
Ψk

m

T
wk
)∥∥∥

2

2

]
=
(

m
n

)
σ2

w (the “variance”) to

increase. The upper bound is tight, in the sense that there
exist signals for which the upper bound is achieved, and in
such cases the upper bound is minimized (by choice ofm) by
making the approximation error and the stochastic component
of the error scale at the same rate, i.e.,

m−2α ≍ m

n
⇐⇒ m ≍ n1/(2α+1), (19)

resulting in the following expression for optimal distortion
scaling of anα-compressible signal in a centralized system4

D∗
cen = lim

K→∞

1

K

K∑

k=1

E

[
1

n

∥∥∥sk − ŝk
cen

∥∥∥
2

2

]
≍ n−2α/(2α+1).

(20)

B. Sparse Signals

Similar to a compressible signal, an optimal centralized
estimator for anM -sparse signal corresponds to projecting
the observation vector onto theM basis vectors ofΨ corre-
sponding toM non-zeroΨ -coefficients ofsk (see, e.g., [38]),
i.e., if Ψk

M is then ×M matrix of those basis vectors, then
sk can be estimated as

ŝ
k
cen , Ψk

M

(
Ψk

M

T
xk
)

= sk + Ψk
M

(
Ψk

M

T
wk
)
, (21)

which results in the usual parametric rate

E

[
1

n

∥∥∥sk − ŝk
cen

∥∥∥
2

2

]
=

1

n
E

[∥∥∥Ψk
M

(
Ψk

M

T
wk
)∥∥∥

2

2

]

=

(
M

n

)
σ2

w, (22)

resulting in the following expression for optimal distortion
scaling of anM -sparse signal in a centralized system

D∗
cen =

(
M

n

)
σ2

w ≍ M

n
. (23)

Note that it might very well be that the number of DoF of
an M -sparse signal scales with the number of nodesn in
the network. For example, two-dimensional piecewise constant
fields with one-dimensional boundaries separating constant re-
gions can be compressed using the discrete wavelet transform
and haveM ≍ n1/2 log(n) non-zero wavelet coefficients [14].
Therefore, we modelM asM ≍ nµ, where0 ≤ µ < 1 and
hence, the inclusion ofM in the scaling relation in (23).

Remark 6:Note that the optimal distortion scaling relations
of (20) and (23) for compressible and sparse signals have
been obtained under the assumption that the FC has precise
knowledge of the ordering of coefficients ofsk in the com-
pressing basis (indices of non-zero coefficients ofsk in the
sparse basis). This is not necessarily a problem in a centralized
setting and in cases where this information is not available,
coefficient thresholding methods can be used to automatically
select the appropriate basis elements from the noisy data, and
these methods obey error bounds that are within a constant
or logarithmic factor of the ones given above (see, e.g., [40],
[41]).

4
∗ in D∗

cen refers to the fact that this is theoptimal centralized distortion
scaling.



7

IV. D ISTRIBUTED PROJECTIONS INWIRELESSSENSOR

NETWORKS

In this section, we develop the basic communication archi-
tecture that acts as a building block of our proposed estimation
scheme. As evident from the previous section, each DoF of
a compressible or sparse signal corresponds to projection of
sensor network data onto ann-dimensional vector inR

n

and at the heart of our approach is a distributed method of
communicating such projections to the FC in a power efficient
manner by exploiting the spatial averaging inherent in an
AWGN MAC.

To begin, assume that the goal of the sensor network is
to obtain an estimate of the projection of noiseless sensor
data, corresponding to each observation of the physical phe-
nomenon, onto a vector inRn at the FC. That is, let us suppose
that at each time instantk, we are interested in obtaining an
estimateυ̂k of

υk , ϕTsk =
n∑

j=1

ϕjs
k
j , (24)

whereϕ ∈ R
n. One possibility for realizing this goal is to

nominate a clusterhead in the network and then, assuming
all the sensor nodes know their respectiveϕj ’s and have
constructed routes which form a spanning tree through the
network to the clusterhead, each sensor node can locally
computeϕjx

k
j = ϕj(s

k
j + wk

j ) and these values can be
aggregated up the tree to obtain̂υk =

∑n
j=1 ϕjx

k
j at the

clusterhead, which can then encode and transmit this estimate
to the FC. However, even if we ignore the communication cost
of delivering υ̂k from the clusterhead to the FC, it is easy to
check that such a scheme requires at leastn transmissions. For
a similar reason, gossip algorithms such as the ones described
in [42], [43], while known for their robustness in the face of
changing network topology, might not be the schemes of first
choice for these types of applications.

Another, more promising, alternative is to exploit recent
results concerning uncoded (analog) coherent transmission
schemes in WSNs [1]–[3], [16]. The proposed distributed
joint source-channel communication architecture requires only
one channel use per source observation (Lυ = 1) and is
based on the notion of so-called “matched source-channel
communication” [2], [3]: the structure of the network com-
munication architecture should “match” the structure of the
optimal estimator. Under the current setup, this essentially
involves phase-coherent, low-power, analog transmissionof
appropriately weighted sample values directly from the nodes
in the network to the FC via the AWGN network-to-FC MAC
and the required projection is implicitly computed at the FC
as a result of the spatial averaging in the MAC. In light of the
communication setup of Section II, full characterization of this
architecture essentially entails characterization of thecorre-
spondingscalar-outputsource-channel encoders(F1, . . . , Fn)
at the sensor nodes and thescalar-inputdecoderG at the FC,
where scalar nature of the encoders and the decoder is owing
to the fact that (by construction)Lυ = 1 in this scenario.

To begin with, each sensor encoderFj in this architecture
corresponds to simply multiplying the sensor measurementxk

j

with
(√

ρ
hj
ϕj

)
to obtain5

yk
j , Fj

({
xκ

j

}k

κ=1

)
=

√
ρ

hj
ϕjx

k
j , j = 1, . . . , n,

(25)

whereρ > 0 is a scaling factor used to satisfy sensors’ sum
transmit power constraintP , and all the nodes coherently
transmit their respectiveyk

j ’s in an analog fashion over the
network-to-FC MAC. Under the synchronization assumption
of Section II and the additive nature of an AWGN MAC, the
corresponding received signal at the FC is given by

rk =
n∑

j=1

√
hj y

k
j + zk =

√
ρ

n∑

j=1

ϕjx
k
j + zk

=
√
ρ υk +

(√
ρ ϕTwk + zk

)
, (26)

wherezk ∼ N (0, σ2
z) is the MAC AWGN at timek (indepen-

dent ofwk). In essence, the encoders(F1, . . . , Fn) correspond
to delivering to the FC a noisy projection ofsk ontoϕ that is
scaled by

√
ρ (cf. (26)). Givenrk, the decoderG corresponds

to a simple re-scaling of the received signal, i.e.,

υ̂k , G
(
{rκ}k

κ=1

)
=

rk

√
ρ

= υk +ϕTwk +
zk

√
ρ
. (27)

We are now ready to characterize the power-distortion-latency
triplet (Ptot,υ , Dυ , Lυ) of the proposed joint source-channel
communication architecture for computing distributed projec-
tions in WSNs.6

Theorem 1:Let ϕ ∈ R
n and let υk = ϕTsk. Given the

sensor network model of Section II, the joint source-channel
communication scheme described by the encoders in (25)
and the decoder in (27) can achieve the following end-to-
end distortion by employing only one channel use per source
observation

Dυ , lim
K→∞

1

K

K∑

k=1

E

[∣∣υk − υ̂k
∣∣2
]

= σ2
w ‖ϕ‖2

2 +

(
σ2

z du
ζ
(
B2 + σ2

w

)

λP

)
‖ϕ‖2

2 , (28)

where υ̂k is the estimate ofυk at the FC,σ2
w is the mea-

surement noise variance,σ2
z is the channel noise variance,

B is the bound on|sk
j |, du is the bound on the maximum

distance between the sensor nodes and the FC,ζ is the path-
loss exponent,P is the sum transmit power constraint per
channel use andλ = λ(n) ∈ (0, 1] is a design parameter
used to control total network power consumption. Moreover,

5Practical schemes of how each sensor encoder might get access to its
respectiveϕj is discussed in Section V-C.

6(Ptot,υ , Dυ , Lυ) triplet here corresponds to power, distortion and latency
of the projection coefficient as opposed to(Ptot, D, L) in Section II that
corresponds to power, distortion and latency required to estimate the entire
signal.
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the total network power consumption per source observation
associated with achieving this distortion is given by

λP

(
σ2

w

du
ζ (B2 + σ2

w)

)
≤

Ptot,υ , lim
K→∞

1

K

K∑

k=1

n∑

j=1

E

[∣∣yk
j

∣∣2
]

≤ λP. (29)

Proof: To establish this theorem, first observe that (27)
implies that∀ k ∈ N

E

[∣∣υk − υ̂k
∣∣2
]

= E

[∣∣∣∣ϕ
Twk +

zk

√
ρ

∣∣∣∣
2
]

= σ2
w ‖ϕ‖2

2 +
σ2

z

ρ
, (30)

resulting in the following expression for the projection coef-
ficient MSE

Dυ = σ2
w ‖ϕ‖2

2 +
σ2

z

ρ
. (31)

As for obtaining an expression forPtot,υ , note that (25) implies
that ∀ k ∈ N,

ρ σ2
w

n∑

j=1

|ϕj |2 ≤
n∑

j=1

E

[∣∣yk
j

∣∣2
]

=
n∑

j=1

E

[
ρ

hj

(
sk

j + wk
j

)2 |ϕj |2
]

≤ ρ du
ζ
(
B2 + σ2

w

) n∑

j=1

|ϕj |2, (32)

and thus,

ρ = λP

(
1

du
ζ (B2 + σ2

w) ‖ϕ‖2
2

)
(33)

would suffice to satisfy the sum transmit power constraint of
(11), whereλ = λ(n) ∈ (0, 1] is a power scaling factor to be
used by the designer of a WSN to control total network power
consumption. This in turn results in the following expression
for total network power consumption per source observation

λP

(
σ2

w

du
ζ (B2 + σ2

w)

)
≤ Ptot,υ ≤ λP. (34)

Finally, to complete the proof of the theorem, we substitutein
(31) the value ofρ from (33) to obtain (28).

Notice that the projection coefficient distortionDυ achieved
by the proposed joint source-channel communication architec-
ture has been expressed in terms of two separate contributions
(cf. (28), (31)), the first of which is independent of the
proposed communication scheme. This term is solely due
to the noisy observation process (σ2

w 6= 0) and scales like
‖ϕ‖2

2. The second contribution is primarily due to the noisy
communication channel and scales like‖ϕ‖2

2/λ. Moreover,
given the observation model of Section II, it is easy to check
thatD∗

υ ≍ ‖ϕ‖2
2 is the best that any (centralized or distributed)

scheme can hope to achieve in terms of an order relation
for distortion scaling [38]. Therefore, for optimal distortion

scaling, it is sufficient that the second term in (31) also scales
like ‖ϕ‖2

2 and hence,λ = O(1) would suffice to ensure that

Dυ ≍ ‖ϕ‖2
2 ≍ D∗

υ . (35)

Consequently, the total network power consumption associated
with achieving this optimal distortion scaling would be given
by Ptot,υ = O (1) (cf. (34)). We summarize this insight as
follows.

Corollary 1: Let ϕ ∈ R
n and letυk = ϕTsk. Given the

sensor network model of Section II and assuming that the
system parameters(B, σ2

w, σ
2
z , du, ζ, P ) do not vary with the

number of nodesn in the network, the joint source-channel
communication scheme described by the encoders in (25) and
the decoder in (27) can obtain an estimateυ̂k of υk at the FC,
such thatDυ ≍ ‖ϕ‖2

2 ≍ D∗
υ , by employing only one channel

use per source observation,Lυ = 1, and using a fixed amount
of total network power,Ptot,υ = O (1).

Observation 1:While the original problem has been setup
under afixed sum transmit power constraintP , one of the
significant implications of the preceding analysis is that even
if one allowsP to grow with the number of nodes in the
network – say, e.g.,P = O(n) – one cannot improve on
the distortion scaling law ofO

(
‖ϕ‖2

2

)
. In other words, when

it comes to estimating a single projection coefficient in the
presence of noise, using more than a fixed amount of total
power per channel use is wasteful as the distortion due to the
measurement noise (first term in (31)) is the limiting factorin
the overall distortion scaling.

Observation 2:Even though the joint source-channel com-
munication architecture described in this section is meant
to be a building block for the signal estimation scheme,
the architecture is important in its own right too. Often
times, for example, rather than obtaining an estimate of the
noiseless sensor data at the FC, the designer of a WSN is
merely interested in obtaining the estimates of a few of its
linear summary statistics. And, given that any linear summary
statistic is nothing but the projection of noiseless sensordata
onto a vector inRn, preceding analysis implies that one can
obtain such linear summary statistics at the FC with minimal
distortion (and latency) and consumption of only a small
amount of total network power.

Example 1 (Sensor Data Average):To illustrate the idea
further, consider a specific case where the designer of a
WSN is interested in obtaining an estimate of the average
s̄k = 1

n

∑n
j=1 s

k
j of noiseless sensor data at each time instant

k. This would correspond to the projection vector being given
by ϕ = (1/n, . . . , 1/n)

T and thus, using the communication
architecture described in this section, an estimate ofs̄k can be
obtained at the FC such thatDs̄ ≍ 1/n ≍ D∗

s̄ (the parametric
rate),Ls̄ = 1 andPtot,s̄ = O (1).

V. D ISTRIBUTED ESTIMATION FROM NOISY

PROJECTIONS: KNOWN SUBSPACE

In this section, we build upon the joint source-channel com-
munication architecture of Section IV and using it as a basic
building block, present a completely decentralized schemefor
efficient estimation of sensor network data at the FC. The
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analysis in this section is carried out under the assumption
that the designer of the WSN has complete knowledge of
the basis in whichS is compressible (or sparse) as well
as precise knowledge of the ordering of its coefficients in
the compressing basis (indices of non-zero coefficients in the
sparse basis) at each time instantk. We refer to this scenario as
the ‘known subspace’ case and, under this assumption, analyze
the corresponding power-distortion-latency scaling lawsof the
proposed scheme as a function of number of sensor nodes
in the network. As to the question of whether the known
subspace assumption is a reasonable one, the answer depends
entirely on the underlying physical phenomenon. For example,
if the signal is smooth or bandlimited, then the Fourier or
wavelet coefficients can be ordered (or partially ordered)
from low frequency/resolution to high frequency/resolution.
Alternatively, if the physical phenomenon under observation
happened to be spatially Hölder smooth at each time instantk,
then it would be quite reasonable to treat the resulting sensor
network data under the known subspace category (see, e.g.,
[2], [44]).

A. Estimation of Compressible Signals

To begin with, letΨ = {ψi}n
i=1 be the compressing basis

of S such that 1
n

∥∥sk − sk,(m)
∥∥2

2
= O(m−2α) ∀ k ∈ N. In

Section IV, we showed that using the communication scheme
described by the encoders in (25) and the decoder in (27), one
projection per snapshot can be efficiently communicated to the
FC by employing only one channel use (Lυ = 1). By a simple
extension of the encoders/decoder structure of Section IV,
however, the network can equally well communicateL (> 1)
projections per snapshot inL consecutive channel uses (one
channel useper projectionper snapshot). Essentially, at each
time instantk, theL-tuples generated by the encodersF j are
given by (cf. Section II, Fig. 2)

yk
j = F j

({
xκ

j

}k

κ=1

)
=
(
yk

j1, . . . , y
k
jL

)T

=

√
ρ

hj

(
ψ1j x

k
j , . . . , ψLj x

k
j

)T
, j = 1, . . . , n, (36)

whereρ = (λP )/(du
ζ(B2 + σ2

w)), and at the end of theL-th
channel use, the received signal at the input of the decoderG

is given by

rk =

n∑

j=1

√
hj y

k
j + zk

=
√
ρ
( n∑

j=1

ψ1j x
k
j , . . . ,

n∑

j=1

ψLj x
k
j

)T

+ zk

=
√
ρ θk

L +
(√

ρΨk
L

T
wk + zk

)
, (37)

whereΨk
L is the n × L matrix of the basis vectors corre-

sponding toL largest (in magnitude)Ψ -coefficients ofsk,
θk

L , (θk
1 , . . . , θ

k
L)T = Ψk

L

T
sk andzk ∼ N (0L×1, σ

2
zIL×L)

is the MAC AWGN vector (independent ofwk). Thus, at the
end of theL-th channel use, the decoder has access toL
scaled, noisy projections ofsk ontoL distinct elements ofΨ

and, using these noisy projections, it produces an estimateof
the noiseless data vectorsk given by

ŝ
k = G

(
{rκ}k

κ=1

)
= Ψk

L

(
rk

√
ρ

)

= sk,(L) + Ψk
L

(
Ψk

L

T
wk
)

+
Ψk

L z
k

√
ρ

. (38)

Notice the intuitively pleasing similarity between̂sk and ŝk
cen

(cf. (14), (38)): the first two terms in the above expres-
sion correspond identically to the centralized estimate ofa
compressible signal (withm replaced byL) and the last
term is introduced due to the noisy MAC communication.
Consequently, this results in the following expression for
distortion of a compressible signal at the FC

(
L

n

)
σ2

w +

(
L

n

)(
σ2

z du
ζ
(
B2 + σ2

w

)

λP

)
≤

D ≤ Co L
−2α +

(
L

n

)
σ2

w +

(
L

n

)(
σ2

z du
ζ
(
B2 + σ2

w

)

λP

)
. (39)

Finally, simple manipulations along the lines of the ones in
Section IV result in the following expression for total network
power consumption

λLP

(
σ2

w

du
ζ (B2 + σ2

w)

)
≤ Ptot ≤ λLP. (40)

The above two expressions essentially govern the interplay
betweenPtot, D andL of the proposed distributed estimation
scheme and in the sequel, we shall analyze this interplay in
further details.

1) Minimum Power and Latency for Optimal Distortion
Scaling: Similar to the case of distortion scaling in the
centralized setting, (39) shows that the choice of number
of projections per snapshot in the distributed setting also
results in a bias-variance trade-off: increasingL causes the
boundCo L

−2α on the approximation error1n
∥∥sk − sk,(L)

∥∥2

2
to decrease, but causes the stochastic components of the error

due to the measurement noise1n E

[∥∥∥Ψk
L

(
Ψk

L

T
wk
)∥∥∥

2

2

]
=

(
L
n

)
σ2

w and the communication noise1n E

[∥∥∥Ψk
L z

k/
√
ρ
∥∥∥

2

2

]
=

(
L
n

)(σ2
z du

ζ(B2+σ2
w)

λP

)
to increase. Consequently, the tight-

est upper bound scaling in (39) is attained by making the
approximation error, the measurement noise error and the
communication noise error scale (as a function ofn) at
the same rate. That is, assuming that the system parameters
(Co, B, σ

2
w, σ

2
z , du, ζ, P ) do not depend onn,

L−2α ≍ L

n
≍ L

λn
, (41)

implying thatL must be chosen, independently ofλ, as

L ≍ n1/(2α+1), (42)
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which in turn requires thatλ = O(1), resulting in the
following expression for optimal distortion scaling

D∗ ≍ L−2α ≍ n−2α/(2α+1) (43)

that has the same scaling behavior as that ofD∗
cen (cf. (20)).

Moreover, the total network power consumption associated
with achieving this optimal distortion scaling is given by
(see (40))

Ptot ≍ L ≍ n1/(2α+1). (44)

Combining (42), (43) and (44), we can also compactly charac-
terize the relationship between optimal distortion scaling and
the associated power and latency requirements in terms of the
following expression

D∗ ∼ Ptot
−2α ∼ L−2α. (45)

Note that this expression does not mean that a WSN with
fixed number of sensor nodes using more power and/or latency
can provide better accuracy. Rather, power, distortion and
latency are functions of the number of nodes and the above
relation indicates how the three performance metrics behave
with respect to each other as the density of nodes increases.

Remark 7:Equation (44) shows that the total network
power requirement of our proposed scheme for optimal dis-
tortion scaling (D∗ ≍ n−2α/(2α+1)) is given by Ptot ≍
n1/(2α+1). A natural question is:How good is this scheme
in terms of power scaling?While a comparison with all
conceivable schemes does not seem possible, in order to
give an idea of the performance of our proposed scheme we
compare it to a setup where all the nodes in the network
noiselessly communicate their measurements to a designated
cluster of 1 ≤ ñ ≤ n nodes. Each node in the cluster
computes the requiredL projections of the measurement data
for each snapshot and then all theñ nodes coherently transmit
these (identical) projections to the FC over the MAC; in
this case, thẽn × 1 MAC is effectively transformed into a
point-to-point AWGN channel with añn-fold power-pooling
(beamforming) gain. One extreme,ñ = 1, corresponds to a
single clusterhead (no beamforming gain), whereas the other
extreme,̃n = n, corresponds to maximum beamforming gain.
Note that in our proposed scheme, nodes transmit coherently
(and hence benefit from power-pooling) but there is no data
exchange between them. An exact comparison of our scheme
with the above setup involving in-network data exchange is
beyond the scope of this paper since quantifying the cost
of required in-network communication is challenging and
requires making additional assumptions. Thus, we ignore the
cost of in-network communication and provide a comparison
just based on the cost of communicating the projections to
the FC – though, in general, we expect the in-network cost to
increase with the sizẽn of the cluster. Under this assumption,
the analysis in Appendix I shows that our scheme requires
less communication power compared to theñ = 1 case,
whereas it requires more power compared to theñ = n case.
In particular, the power scaling achieved by our proposed
scheme (for optimal distortion scaling) is identical to that
in the case when there arẽn = n

L ≍ n2α/(2α+1) nodes in

the designated cluster to coherently communicate the required
L ≍ n1/(2α+1) projection coefficients to the FC. Note that
sincen2α/(2α+1) ր n for highly compressible signals(α ≫
1), the performance of our proposed estimation scheme in this
case approaches that of theñ = n extreme, without incurring
any overhead of in-network communication.

2) Power-Distortion-Latency Scaling Laws for Consistent
Estimation: Preceding analysis shows that in order to achieve
the optimal centralized distortion scalingn−2α/(2α+1), the
network must expend powerPtot and incur latencyL that
scale (with n) at a sublinear rate ofn1/(2α+1). This may
pose a bottleneck in deploying dense WSNs for certain types
of applications that might require extended battery life or
faster temporal sampling of the physical phenomenon. Cursory
analysis of (39) and (40), however, shows that it is possible
to lower these power and latency requirements at the expense
of sub-optimaldistortion scaling, and for the remainder of
this subsection, we shall be analyzing these power-distortion-
latency scaling regimes.

Notice that under the assumption of system parameters
(Co, B, σ

2
w, σ

2
z , du, ζ, P ) not varying withn, L andλ are the

only two quantities that bear upon the required network power
and achievable distortion of the estimation scheme (see (39),
(40)). Therefore, we begin by treatingL (effective number of
projections per snapshot) as an independent variable and model
its scaling behavior asL ≍ nβ for β ∈ (0, 1), while we model
the scaling behavior ofλ asλ ≍ n−δ for δ ∈ [0,∞) (recall,
0 < λ ≤ 1).7 Note thatβ = β∗ , 1/(2α+1) has already been
solved previously (resulting inδ = δ∗ , 0) and corresponds
to the optimal distortion scaling of (43).

Bias-Limited Regime. Recall thatL ≍ n1/(2α+1) is the
critical scaling of the number of projections at which point
the distortion component due to the approximation error scales
at the same rate as the distortion component due to the
measurement noise (cf. (41), (42)). If, however, we letL
(≍ nβ) scale at a rate such thatβ < β∗, then the first term in
the upper bound in (39) that is due to the approximation error
(bias term) starts to dominate the second term that is due to
the measurement noise and, ignoring constants, the resulting
distortion at the FC scales as

n−1+β+δ � D � n−2αβ + n−1+β+δ, (46)

and the corresponding choice ofoptimal δ is given by

δ = 1 − (2α+ 1)β, (47)

where optimal here refers to the fact that (i)δ < 1−(2α+1)β
is wasteful of power since distortion component due to the
approximation error (first term in the upper bound in (46))
in that case decays slower than the distortion component to
the communication noise (second term in the upper bound in
(46)); and (ii)δ > 1−(2α+1)β is wasteful of projections (i.e.,
latency) since distortion component due to the approximation
error in that case decays faster than the distortion component

7There is nothing particular about choosingL as the independent variable
except that it makes the analysis slightly easier. Nevertheless, we might as
well start off by treatingλ as the independent variable and reach the same
conclusions.
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due to the communication noise. With this balancing ofL and
λ, distortion goes to zero at the rate

D ≍ n−2αβ , (48)

as long as the chosenβ ∈
(
0, 1/(2α + 1)

)
, and the corre-

sponding total network power consumption is given by (cf.
(40))

Ptot ≍ n(2α+2)β−1, (49)

resulting in the following expression for power-distortion-
latency scaling relationship in the bias-limited regime

D ∼ Ptot
−2αβ

(2α+2)β−1 ∼ L−2α. (50)

Variance-Limited Regime. On the other hand, if we let
L scale at a rate such thatβ > β∗, then the second term
in the upper bound in (39) that is due to the measurement
noise (variance term) starts to dominate the bias term and the
resulting distortion at the FC scales as

D ≍ n−1+β + n−1+β+δ, (51)

and the corresponding choice of optimalδ is given byδ = 0
(= δ∗). This implies that as long as the chosenβ ∈

(
1/(2α+

1), 1), distortion in the variance-limited regime goes to zero
at the rate

D ≍ n−1+β , (52)

and the corresponding total network power consumption is
given by

Ptot ≍ nβ , (53)

resulting in the following expression for power-distortion-
latency scaling relationship in the variance-limited regime

D ∼ Ptot
− 1

β
+1 ∼ L− 1

β
+1. (54)

Notice that asβ → β∗, both (50) and (54) collapse
to the power-distortion-latency scaling relationship of (45),
indicating that the optimal distortion scalingD∗ corresponds
to the transition point between the bias-limited and variance-
limited regimes. Thus, (50) and (54) completely characterize
the power-distortion-latency scaling relationship of thepro-
posed distributed estimation scheme for a compressible signal
in the known subspace case. This scaling relationship is also
illustrated in Fig. 3, where the scaling exponents ofPtot and
D are plotted againstβ ∈ (0, 1) (the chosen scaling exponent
of L) for different values ofα.

Observation 3:Analysis of (50), (54) and Fig. 3 shows that
(i) any distortion scaling that is achievable in the variance-
limited regime is also achievable in the bias-limited regime;
and (ii) scaling of Ptot in the variance-limited regime is
uniformly worse than in the bias-limited regime. This implies
that any WSN observing anα-compressible signal in the
known subspace case should be operated only either in the
bias-limited regime or at the optimal distortion scaling point,
i.e.,β ∈ (0, 1/(2α+1)]. Thus, givenα and a target distortion
scaling ofD ≍ n−γ , 0 < γ ≤ 2α/(2α + 1), the number
of projections computed by the WSN per snapshot needs to
be scaled asL ≍ nβ, where β = γ/2α (cf. (50)), and
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Fig. 3. Power-distortion-latency scaling relationship ofcompressible signals
in the known subspace case. The scaling exponents ofPtot andD are plotted
againstβ ∈ (0, 1) for different values ofα. The filled black square on each
curve corresponds to the operating point for optimal distortion scaling (β =
β∗), with bias-limited and variance-limited regimes corresponding to the curve
on its left and right side, respectively.

the corresponding total network power consumption would be
given by (49).8

Observation 4:Another implication of the analysis carried
out in this section is that the more compressible a signal is in
a particular basis (i.e., the higher the value ofα), the easier
it is to estimate that signal in the bias-limited regime/at the
optimal distortion scaling point (easier in terms of an improved
power-distortion-latency relationship).9

Observation 5:One of the most significant implication of
the preceding analysis is that, while operating in the bias-
limited regime, ifβ is chosen to be such thatβ < 1/(2α+2)
then the scaling exponent ofPtot would be negative (cf. (49),
Fig. 3). This is remarkable since it shows that, in principle,
consistent signal estimation is possible (D ց 0 asn → ∞)
even if the total network power consumptionPtot goes to zero!

3) Power-Density Trade-off:Viewed in a different way,
Observation 5 also reveals a remarkable power-density trade-
off inherent in our approach:increasing the sensor density,
while keeping the latency requirements the same, reduces
the total network power consumption required to achieve
a target distortion level. This essentially follows from the
fact that the power-distortion scaling law in the bias-limited
regime (including the optimal distortion scaling point) follows
a conservation relation given by (cf. (48), (49))

PtotD ≍ n2β−1. (55)

Specifically, letβ2 < β1 denote two latency scalings in the
bias-limited regime and letn2 > n1 denote the corresponding
number of nodes needed to achieve a target distortion level
D(n1, β1) = D(n2, β2) = Do. Then, we have from (48) that

D(n1, β1) = D(n2, β2) ⇒ n−2αβ1

1 = n−2αβ2

2 , (56)

8The designer of a WSN could also reverse the roles ofD and L by
specifying a target latency scaling and obtaining the corresponding distortion
(and power) scaling expression.

9Note that the power-distortion-latency scaling in the variance-limited
regime is independent ofα (cf. (54)).
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and therefore, the corresponding latency requirements are
rather trivially related to each other as

L2(n2, β2)

L1(n1, β1)
=

nβ2

2

nβ1

1

= 1. (57)

Moreover, it follows from (55) that the total network power
consumptions in the two cases are related by

Ptot(n2, β2)

Ptot(n1, β1)
=

n2β2−1
2

n2β1−1
1

=
n1

n2
, (58)

where we have used the fact that (56) implies thatn2β1

1 =
n2β2

2 . Relations (57) and (58) show that increasing the sensor
density by a factor ofN , while keeping the number of
projections (per snapshot) communicated by the network to
the FC the same, reduces the total network power required to
attain a given target distortion by a factor ofN .

This power-density trade-off is also illustrated in Fig. 4,
where various power and distortion scaling curves (corre-
sponding to different values ofβ) are plotted on a log-
log scale against the number of nodes forα = 1. For the
sake of illustration, these plots assume that the constantsof
proportionality in the scaling relations are unity. In order to
illustrate the power-density trade-off, suppose that we want
to attain a target distortion ofDo = 0.02. With optimal
distortion scaling (solid curve in Fig. 4(a) correspondingto
β1 = β∗ = 1/3), the desired distortion can be attained
with n1 ≈ 353 nodes, consuming a total network power
Ptot(n1, β1) ≈ 7.07, as calculated from the solid curve in
Fig. 4(b). On the other hand, however, if we operate on a
sub-optimal distortion scaling curve (say, e.g., the thirddotted
feasible curve from the bottom in Fig. 4(a) corresponding
to β2 = 8/33), we would attain the desired distortion of
Do = 0.02 with n2 ≈ 3192 nodes – roughly a factor of 9
increase in sensor density – but would only consume a total
network power ofPtot(n2, , β2) ≈ 0.78, as calculated from the
third dotted feasible curve from the top in Fig. 4(b). Thus, as

predicted, increasing the sensor density roughly by a factor of
9 reduces the total network power consumption by a factor of
9, while the latency requirements stay the same(nβ1

1 = nβ2

2 ).

B. Estimation of Sparse Signals

The analysis for the estimation of anM -sparse signal
in the known subspace case using the joint source-channel
communication architecture of Section IV can be carried out
along almost the same lines as for compressible signals in
Section V-A, with the only obvious difference being thatS
now lies exactly in anM -dimensional subspace ofRn and
therefore,L has to be taken exactly equal toM , i.e., is no
longer a variable parameter in the hands of the designer of a
WSN. This results in the following expressions for the end-to-
end distortion at the FC and the corresponding total network
power consumption and system latency

D =

(
M

n

)
σ2

w +

(
M

n

)(
σ2

z du
ζ
(
B2 + σ2

w

)

λP

)
, (59)

λMP

(
σ2

w

du
ζ (B2 + σ2

w)

)
≤ Ptot ≤ λMP, (60)

L = M. (61)

Unlike the compressible signal case, however, the only con-
trollable parameter in this case is the power scaling factorλ,
modeled asλ ≍ n−δ for δ ∈ [0,∞),10 and in the sequel, we
analyze the effect of various scaling behaviors ofλ on the
power-distortion-latency scaling relationship of the proposed
estimation scheme.

1) Power-Distortion-Latency Scaling Laws for Consistent
Estimation: We start out by first analyzing the optimal distor-
tion scaling that is achievable for anM -sparse signal. Notice

10Recall that while we do model the scaling behavior ofM as M ≍ nµ,
0 ≤ µ < 1, the choice ofµ is not in our hands in this case and depends
upon the underlying physical phenomenon. Essentially,µ here plays the role
analogous to that ofα in the compressible case.
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Fig. 5. Power-distortion-latency scaling relationship ofsparse signals in
the known subspace case. The scaling exponents ofPtot and D are plotted
against the scaling exponent ofM (≍ nµ) for 0 ≤ µ < 1, while the scaling
exponent ofL is the same as that ofM . The solid curves correspond to
the optimal distortion scaling exponents and the corresponding total network
power scaling exponents, while the dotted curves correspond to various power-
limited regime (PLR) scalings that result in consistent signal estimation. The
dashed curves are the cut-off scalings for consistent signal estimation.

that for fastest distortion reduction, the first term (due tothe
measurement noise) in (59) should scale at the same rate as
the second term (due to the communication noise). This in
turn requires thatλ = O(1) (or δ = δ∗ , 0), resulting in the
following expression for optimal distortion scaling

D∗ ≍ M

n
≍ n−1+µ, (62)

which has the same scaling behavior as that ofD∗
cen (cf. (23)).

Moreover, the total network power consumption associated
with achieving this optimal distortion scaling is given by

Ptot ≍ L = M ≍ nµ. (63)

Equations (61), (62) and (63) can also be combined together
for µ ∈ (0, 1) to express the relationship between optimal
distortion scaling and the corresponding power and latency
requirements in terms of the following expression

D∗ ∼ Ptot
−

1
µ

+1 ∼ L−
1
µ

+1 . (64)

Notice that the above relationship has the same form as
that of (54) (the power-distortion-latency relationship of a
compressible signal in the variance-limited regime) whichis
precisely what one would expect since there is no bias related
distortion component for a sparse signal (cf. (59)).

Remark 8:Equations (61), (62), and (63) show that for the
case ofµ = 0, i.e., M = O(1), optimal distortion scaling
D∗ ≍ n−1 can be obtained by consuming only a fixed amount
of total network power and incurring a fixed latency, i.e.,
Ptot = L = O(1). This result is similar in spirit to the one
obtained in [3] that primarily studies the case analogous tothat
of a sparse signal with non-scaling DoF(M = O(1)), albeit
assuming Gaussian sources and multiple FCs (see Theorems
1 and 3 therein).

Power-limited Regime.On the other hand, if we takeδ >
0 then the distortion component due to the communication

noise (second term in (59)) starts to dominate the distortion
component due to the measurement noise (first term in (59))
and, ignoring the constant parameters, the resulting distortion
at the FC scales as

D ≍ n−1+µ+δ (65)

in the power-limited regime. This implies that as long asδ ∈
(0, 1 − µ), distortion can still be driven to zero, albeit at a
slower, sub-optimalrate of n−1+µ+δ (≻ D∗). In particular,
this means thatD can be asymptotically driven to zero even
if the total network powerPtot (≍ nµ−δ) scales just a little
faster thann2µ−1 (cf. (60)). This observation is similar in spirit
to the one made for compressible signals since it shows that,in
principle, consistent signal estimation is possible in thelimit
of a large number of nodes forµ ∈ [0, 1/2] (i.e., the number
of DoF M scaling at most as fast as

√
n) even if the total

network powerPtot goes to zero. Finally, this power-distortion-
latency scaling relationship in the power-limited regime can be
expressed as

D ∼ Ptot
−1+µ+δ

µ−δ ∼ L
−1+δ

µ
+1. (66)

2) Discussion:While quite similar in spirit, there are still
some key differences between the power-distortion-latency
scaling laws of the proposed estimation scheme for com-
pressible and sparse signals. To begin with, unlike for com-
pressible signals, the latency scaling requirements for sparse
signals are dictated by the underlying physical phenomenon
(L = M ≍ nµ) and cannot be traded-off for power and/or
distortion without making further assumptions on the decay
characteristics of theM non-zero coefficients ofS. Secondly,
the scenario of consistent signal estimation of sparse signals
with decaying total network power consumption exists if and
only if the number of DoFM scales at a rate less than or
equal to

√
n, i.e., µ ≤ 1/2 (see Fig. 5).11 And finally, as a

flip side to this observation, the power-density trade-off for
sparse signals exists only when0 ≤ µ < 1/2, happens to be
a function ofµ and is not as pronounced for0 < µ < 1/2.
Specifically, for an increase in the sensor density by a factor
of N , the total network power consumption requirements can
only be reduced by a factor ofN1−2µ, 0 ≤ µ < 1/2, in order
to attain the same target distortion for a sparse signal (cf.(65)).

C. Communicating the Projection Vectors to the Network

Recall that an implicit requirement for employing the pro-
posed distributed estimation scheme in the known subspace
case is that the sensor encoders have access to the respective
projection vectors’ elements at each time instantk (cf. (36)).
In this subsection, we address the issue of how one might
communicate this information to the sensor nodes. One viable
option in this regard could be the pre-storage of relevant
information in each sensor node. However, pre-storage of the
entire compressing (sparse) basisΨ or a subset of it,{ψi}L

i=1,
where 1 ≤ L ≤ n, in each sensor node is not feasible in
large-scale WSNs since this would require at leastn storage
elements per sensor node, and a better alternative is to store

11Recall that for compressible signals, this observation holds true for allα.
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only the correspondingnon-zeroelements of theL projection
vectors,{ψij : ψij 6= 0}L

i=1, in the j-th sensor node. In the
context of [2], for example, this would mean having only
O(1) storage elements per sensor node, since the structure
of the proposed projection vectors in [2] is such that the
cardinality of the set{ψij : ψij 6= 0}L

i=1 is identically equal to
one∀ j = 1, . . . , n. Other instances when pre-storage might be
a feasible option could be, for example, when the projection
vectors’ elements come from an analytical expression. Pre-
storage, however, suffers from the drawback that sensor nodes
pre-stored with one compressing (sparse) basis vectors might
not be readily deployable in signal fields compressible (sparse)
in some other basis.

Another more feasible, but not always practical, approach
to the communication of projection vectors to the network
could be that the FC transmits this information over the FC-to-
network broadcast channel at either the start of the estimation
process or at the start of each network-to-FC channel use.
For the case of basisΨ whose vectors have some sort of
spatial regularity in their structure such that they do not
require addressing each sensor node individually (e.g., vectors
describable by a few parameters such as in [2]), this could
be readily accomplished by broadcasting a few command
signals from the FC to the network. One could also increase
the addressing resolution of the FC by equipping it with
multiple transmit antennas and using some of the techniques
described in [45]. However, depending upon the structure of
the compressing (sparse) basis, this approach may require the
FC to be able to address each sensor node individually which
may or may not be practical in large-scale dense WSNs.
We will show in Section VI, however, that one benefit of
compressive wireless sensingis a straightforward treatment of
this issue.

VI. D ISTRIBUTED ESTIMATION FROM NOISY

PROJECTIONS: UNKNOWN SUBSPACE

In Section V, we proposed an efficient distributed estimation
scheme that achieves the optimal centralized distortion scaling
D∗

cen for both compressible and sparse signals under the
assumption that the WSN has complete knowledge of the basis
in which S is compressible or sparse. Generally speaking,
however, even if the basis in whichS is compressible (sparse)
is known, it is quite likely that the precise ordering of its
coefficients (indices of its non-zero coefficients) in that basis
at each time instantk might not be known ahead of time
– a scenario that we refer to as the ‘unknown subspace’
or ‘adaptive subspace’ case. As an example, consider the
following simple case. SupposeS is very sparse in some basis
Ψ = {ψi}n

i=1 such that each temporal samplesk has only
one non-zero coefficient of amplitude

√
nB corresponding to

someelementψi of Ψ andi is drawn at random from the set
{1, 2, . . . , n}. This is an example of the case where we know
the basis in whichS is sparse but do not know the indices of
its non-zero coefficients in that basis.

One naı̈ve approach to this problem would be to use the dis-
tributed estimation scheme described in Section V. However,
since the network does not have a precise knowledge of the

index of the true basis vector, it would need to be determined
by trial and error (e.g., deterministically or randomly selecting
basis vectors in some fashion). As an illustration, consider
a randomized selection process: the network computes the
projection of the sensor data ontoψi and i is selectedL
times uniformly at random (without replacement) from the set
{1, 2, . . . , n}. Ignoring the distortion due to the measurement
and communication noise, the squared distortion error would
be 0 at the FC if the spike in theΨ domain corresponds to one
of the uniformly pickedψi’s andB2 otherwise, and the proba-

bility of not finding the spike inL trials is
∏L−1

i=0

(
1 − 1

n−i

)
.

If n is large enough andL ≪ n, we can approximate the
resulting distortion byD ≈

(
1 − 1

n

)L
B2 ≈ e−L/nB2 → B2

asn→ ∞, i.e., equivalent to the MSE that is achievable even
without any information.

Another more general, and perhaps relevant, example is
a situation in which the signal field is spatially piecewise
smooth. Signals of this type do lie in a low-dimensional
subspace of the wavelet domain, but precisely which subspace
depends on the locations of the change points in the signal,
which of course are unlikely to be known a priori. Broadly
speaking, any signal that is generally spatially smooth apart
from some localized sharp changes or edges will essentiallylie
in a low-dimensional subspace of a multiresolution basis such
as wavelets or curvelets, but the subspace will be a functionof
the time indexk and thus, will preclude the use of methods like
the one in Section V that require prior specification of the basis
vectors to be used in the projection process. This is where the
universalityof compressive wireless sensing (CWS) scheme,
presented in this section, comes into play. As we shall see,
CWS provides us with a consistent estimation scheme (Dց0
as node density increases), even if little or no prior knowledge
about the sensed data is assumed, whilePtot andL grow at
most sub-linearly with the number of nodes in the network.

A. Compressive Wireless Sensing

Recall that ifυk = ϕT sk =
∑n

j=1 ϕjs
k
j is the projection

of sk onto a vectorϕ ∈ R
n then, using the communication

architecture described in Section IV and consuming onlyO(1)
amount of power, the FC can obtain an estimate ofυk in one
channel use that is given by

υ̂k = υk +ϕTwk + z̃k, (67)

wherez̃k ∼ N (0, σ2
z/ρ) is the scaled MAC AWGN (cf. (27)).

The basic idea behind CWS is that instead of projecting the
sensor network data onto a subset of a deterministic basis of
R

n, the FC tries to reconstructsk from random projectionsof
the sensor network data. Specifically, let{φi ∈ R

n}n
i=1 be an

i.i.d. sequence of (normalized) Rademacher random vectors,
i.e., {φij}n

j=1 = ±1/
√
n, each with probability1/2, and the

FC tries to reconstructsk by projectingxk onto L of these
random vectors.12 Because the entries of each projection vector
φi are generated at random, observations of this form are
called random projections of the signal.

12The L Rademacher vectors are to be generated independently at each
time instantk. However, we omit the superscript corresponding to the time
index to simplify the notation.
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Remark 9:An important consequence of using Rademacher
random vectors for projection purposes is that each sensor can
locally draw the elements of the projection vectors{φi}L

i=1

in an efficient manner by simply using its network address
as the seed of a pseudo-random number generator (see, e.g.,
[46]). Moreover, given these seed values and the number of
nodes in the network, the FC can also easily reconstruct the
vectors{φi}L

i=1. Therefore, in addition to being a universal
estimation scheme, CWS has an added advantage that no
extended information concerning the projection vectors needs
to be communicated to (or stored inside) the sensor nodes
(cf. Section V-C).

After employingL Rademacher projections, the correspond-
ing projection estimates at the FC are given by

υ̂k
i = φT

i s
k + φT

i w
k + z̃k

i , i = 1, . . . , L, (68)

where wk = (wk
1 , . . . , w

k
n)T , and {wk

j }n
j=1 and {z̃k

i }L
i=1

are i.i.d. zero-mean Gaussian random variables, independent
of each other and{φij}, with variancesσ2

w and σ2
z/ρ, re-

spectively. The reconstruction process can be described as
follows – let Sq denote a countable collection of candidate
reconstruction vectors such that

Sq ⊂ {y ∈ R
n : |yj | ≤ B, j = 1, . . . , n} , (69)

and define a CWS estimatêsk as

ŝ
k = arg min

s∈Sq

{
R̂(s) +

c(s) log(2)

Lǫ

}
. (70)

The first term in the objective function is the empirical risk,
defined as

R̂(s) =
1

L

L∑

i=1

(
υ̂k

i − φT
i s
)2

, (71)

which measures the average (Euclidean) distance between the
observations{υ̂k

i }L
i=1 and the projections of a given candidate

vectors onto the corresponding Rademacher vectors{φi}L
i=1.

The quantity c(s) in the second term is a non-negative
number assigned to each candidate vector inSq such that∑

s∈Sq
2−c(s) ≤ 1, and is designed to penalize candidate

vectors proportional to their complexity (see (76)). Finally,
ǫ > 0 is a constant (independent ofL andn) that controls the
relative contribution of the complexity term to the objective
function. In the context of Theorem 1 in [7],σ2

w = 0 and so
ǫ depends only the sample boundB and the noise variance
σ2

z/ρ .
In order to apply the results of [7] to the observation model

(68), the effect of theprojected noiseterms{φT
i w

k}L
i=1 needs

to be determined. First, suppose that the projection vectors
{φi}L

i=1 were mutually orthogonal. In that case, it is easy to
see that the projected noises are equivalent (in distribution) to
i.i.d. zero-mean Gaussian noises with varianceσ2

w. In addition,
note that{φT

i w
k} and {φij} are independent. To see this,

notice that for any fixed vectorg ∈ R
n, the joint characteristic

function ofφT
i w

k andφT
i g can be factored into the product

of the individual characteristic functions, i.e.,

E

[
ejν1φT

i wk+jν2φT
i g
]

= E

[
ejν1φT

i wk
]
· E
[
ejν2φT

i g
]
,

(72)

and takingg to be a vector that has one at location ‘j’ and zero
at all other locations establishes the independence of{φT

i w
k}

and{φij}. In this case, if we pick

ρ =
P

du
ζ (B2 + σ2

w)
(73)

then the observations in (68) would be equivalent (in distribu-
tion) to observations of the form

υ̂k
i = φT

i s
k + ηk

i , i = 1, . . . , L, (74)

where {ηk
i }L

i=1 are i.i.d. zero-mean Gaussian random vari-
ables – independentof {φij} – with varianceσ2 = σ2

w +
σ2

z du
ζ
(
B2 + σ2

w

)
/P , and the results of Theorem 1 in [7]

can be applied directly.
On the other hand, our model only assumes that the vectors

{φi}L
i=1 are mutually orthogonal in expectation; hence, the

projected noise is colored – ifΦ is the L × n matrix
whose rows are{φT

i }L
i=1 then, givenΦ, the projected noise

vectorΦwk is a zero-mean Gaussian vector with covariance
matrix ΦΦ

Tσ2
w . Without loss of generality, however, we

can assume that the projected noise{φT
i w

k}L
i=1 behaves

approximately like white Gaussian noise and consequently,
use the observation model of (74) for further analysis. This
approximation is motivated by the asymptotic results pre-
sented in Section IV-B of [29] which show that the extreme
eigenvalues ofΦΦ

T are almost surely (a.s.) contained in the
interval

[
(1 −√

c)
2
, (1 +

√
c)

2
]

in the limit asL, n → ∞
with L/n→ c. Since we assumeL grows sublinearly withn
soL/n→ 0 in our case and consequently, all the eigenvalues
of ΦΦ

T tend to 1 a.s. In other words,{φi}L
i=1 become

mutually orthogonal asymptotically, and the degree of coloring
becomes negligible for large values ofn (this approximation
is also shown to work well in practice – see Section VIII).

Explicit bounds on the reconstruction error using the CWS
estimate of (70) can then be obtained by first assuming that
we can find a basisΨ at the FC in which the signalS is
α-compressible and then, using this compressing basis in the
reconstruction process by definingSq andc(s) in terms ofΨ .
Specifically, let

Θq ,

{
θ ∈ R

n : |(Ψθ)j | ≤ B, θj uniformly

quantized tonq levels, j = 1, . . . , n
}

(75)

be a set of quantized candidate solutions in the transform
domainΨ , so thatSq = {s ∈ R

n : s = Ψθ, θ ∈ Θq}.
Furthermore, let the penalty termc(s) = c(θ) be

c(θ) , (1 + q) log(n)‖θ‖0 , (76)

where ‖ · ‖0 counts the number of non-zero elements in a
vector. Then, the optimization problem becomes

θ̂
k

= arg min
θ∈Θq

{∥∥∥υ̂k
L −ΦT

LΨθ
∥∥∥

2

2
+

(1 + q) log(2) log(n)

ǫ
‖θ‖0

}
, (77)

where υ̂k
L , (υ̂k

1 , . . . , υ̂
k
L)T , ΦL is the n × L matrix of

Rademacher projection vectors{φi}L
i=1, andθ̂

k
is the estimate
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of the representation ofsk in the compressing basisΨ , i.e.,

ŝ
k

, Ψθ̂
k
. As shown in [7], for anα-compressibleS, such

an estimate would satisfy13

D �
(

L

log(n)

)−2α/(2α+1)

, (78)

while, for anM -sparse signal, this would result in

D �
(

L

M log(n)

)−1

. (79)

B. Power-Distortion-Latency Scaling Laws

Recall that in order to achieve the distortion scaling of
(78) and (79), the network had to employL network-to-FC
MAC uses per source observation, each one corresponding to a
projection ofsk onto a random Rademacher vector. And while
the projection vectors in this case happened to be random
as opposed to the analysis carried out in Section IV, it is a
simple exercise to show that with the scaling factorρ as given
in (73), each projection of the sensor network data onto a
Rademacher vector still consumes onlyO(1) amount of power.
Therefore, power-distortion-latency scaling relationship of the
CWS scheme for the case whenS is α-compressible can be
given by

D ∼
(

Ptot

log(n)

)−2α/(2α+1)

∼
(

L

log(n)

)−2α/(2α+1)

,

(80)

while for anM -sparse signal withM andL scaling asM ≍
nµ, 0 ≤ µ < 1, andL ≍ nβ, 0 < β < 1, it can be given by

D ∼ log(n)Ptot
−1+ µ

β ∼ log(n)L−1+ µ
β . (81)

Comparison of these power-distortion-latency relationships
with the ones achievable in Section V yields an interesting
insight: regardless of the compressibility (sparsity) ofS, if
there is enough prior knowledge about the underlying physical
phenomenon, the distortion achievable under CWS would al-
ways be greater than the one achievable in the known subspace
case, when using the same amount of power and latencyand
identical reconstruction basis. As an example, whereas onecan
obtain a distortion scaling ofD ≍ n−2α/(2α+1) by employing
(Ptot ≍)L ≍ n1/(2α+1) projections for the estimation of anα-
compressible signal in the known subspace case, the distortion
scaling in the unknown/adaptive subspace case, when using the
same number of projections (and ignoring thelog(n) factor),
can only be given byD � n−2α/(2α+1)2 – a significantly
slower decay (cf. (45), (80)).

On the other hand, by virtue of a toy example, we have
already seen at the start of this section what could happen to
the distortion scaling in the known subspace case if the known
subspace assumption is false and that is where the universality
of CWS comes into play: given sufficient prior knowledge
about the underlying signal field, CWS can be far from optimal
but under circumstances where there islittle or no knowledge

13The stated results hold for allq ≥ 1; the explicit dependencies of the
leading constants on the quantization parameterq are derived in [7].

available about the signal field, CWS should be the estimation
scheme of choice.

VII. I MPACT OF FADING AND IMPERFECTPHASE

SYNCHRONIZATION

The joint source-channel communication architecture pre-
sented in Section IV for computing distributed projections
in WSNs (and extended to estimation of compressible/sparse
signals in Sections V and VI) is analyzed under the assump-
tions that the network is fully synchronized and transmissions
from the sensor nodes do not undergo fading. This assumption
may not hold in practice for sensor network deployments
in scattering environments and due to drifts in phases of
sensor oscillators. Therefore, we relax these assumptionsin
this section and study the impact of fading and imperfect phase
synchronization on the previously obtained scaling laws. In
particular, we establish that (i) the power-distortion-latency
laws of Sections IV and V continue to hold as long as the
random channel gains of received signals at the FC (due
to fading and phase synchronization errors) have a non-zero
mean; and (ii) the CWS scaling laws continue to hold as long
as the mean of these random channel gains is not too small.

A. Distributed Projections in Wireless Sensor Networks

We begin by analyzing the impact of fading and imperfect
phase synchronization on the power-distortion-latency scaling
law of the proposed communication scheme for computing
distributed projections (cf. Theorem 1). This is accomplished
by assuming that the communication scheme is still described
by the encoders in (25) but, as a result of narrowband fading
and phase synchronization errors, each sensor’s transmitted
signal is received at the FC after multiplication by a random
channel gainγk

j , gk
j cos(∆k

j ), j = 1, 2, . . . , n, where the
random variables{gk

j } and {∆k
j } are i.i.d. (across sensors),

that are also assumed to be independent of each other [36],
[37].14 Note that{gk

j } are non-negative valued random vari-
ables – typically modeled as Rayleigh, Rician or log-normal
distributed – and correspond to random fading envelopes of
received signals at the FC, whereas{∆k

j } model the combined
effect of random phase-shifts due to multi-path scatteringand
imperfect phase synchronization between the sensors and the
FC. We assume that the precise values and distributions of
these random variables are not available to the sensors or the
FC, but their means are known at the FC.

Consequently, as a result of fading and imperfect phase
synchronization, the FC receives

rk =

n∑

j=1

√
hj γ

k
j y

k
j + zk =

√
ρ

n∑

j=1

ϕjγ
k
j x

k
j + zk

=
√
ρ ϕT

(
γk ⊙ sk

)
+
(√

ρ ϕT
(
γk ⊙wk

)
+ zk

)
,

(82)

whereγk , (γk
1 , . . . , γ

k
n)T , ⊙ represents a Hadamard product

(element-wise multiplication), andρ is still given by the

14Recall that we are doing real-signaling; the random channelgains are,

therefore, given byγk
j = gk

j cos(∆k
j ) instead ofγk

j = gk
j e

j∆k
j .
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expression in (33). Clearly, this coincides with the received
signal in (26) if and only ifγk = 1, where1 denotes a vector
of all ones. However, by a slight modification of the decoder
in (27), it can be shown that the scaling law established in
Theorem 1 is still achievable as long as the distribution of
random channel gains is such that the network remains at least
“barely synchronized” in the sense thatE[γk

j ] , γ 6= 0. This
condition would be satisfied, e.g., if∆k

j ∼ unif[−π+ ǫ, π− ǫ]
for any ǫ > 0. The modified decoderG in this scenario is
given by

υ̂k = G
(
rk
)

=
rk

γ
√
ρ

= ϕT
(
γ̃

k ⊙ sk
)

+ϕT
(
γ̃

k ⊙wk
)

+
zk

γ
√
ρ
, (83)

where γ̃k
, (

γk
1

γ , . . . ,
γk

n

γ )T , and the achievable distortion
using this modified decoder can be characterized by the
following result.

Theorem 2:Let ϕ ∈ R
n and letυk = ϕTsk. Suppose that

the random channel gains{γk
j } due to fading and imperfect

phase synchronization are i.i.d across sensors and have a non-
zero mean(E[γk

j ] = γ 6= 0).15 Then, given the sensor network
model of Section II, the joint source-channel communication
scheme described by the encoders in (25) and the modified
decoder in (83) can achieve the following end-to-end distortion
by employing only one channel use per source observation

Dυ ≤
(
σ2

w γ +B2
(
γ − γ2

)

γ2

)
‖ϕ‖2

2 +

(
σ2

z du
ζ
(
B2 + σ2

w

)

λγ2P

)
‖ϕ‖2

2 , (84)

whereυ̂k is the estimate ofυk at the FC andγ , E[|γk
j |2] ≤ 1

by the law of conservation of energy.
Proof: To establish this theorem, note that (83) implies

that ∀ k ∈ N

E

[∣∣υk − υ̂k
∣∣2
]

= E

[∣∣∣
(
ϕT
(
γ̃

k ⊙ sk
)
−ϕTsk

)
+

ϕT
(
γ̃

k ⊙wk
)

+
zk

γ
√
ρ

∣∣∣
2
]

(a)
= E

[∣∣∣ϕT
((
γ̃

k − 1
)
⊙ sk

)∣∣∣
2
]

+
σ2

w γ

γ2 ‖ϕ‖2
2 +

σ2
z

γ2ρ

=

n∑

j=1

(
ϕjs

k
j

)2
E

[(γk
j

γ
− 1
)2
]

+
σ2

w γ

γ2 ‖ϕ‖2
2 +

σ2
z

γ2ρ

(b)

≤ B2
(
γ − γ2

)

γ2 ‖ϕ‖2
2 +

σ2
w γ

γ2 ‖ϕ‖2
2 +

σ2
z

γ2ρ
, (85)

where (a) essentially follows from the fact that the random
channel gain vectorγk is independent of the zero-mean

15At the expense of some extra notation, the scaling laws stated in this
section can be obtained even when{γk

j } are not identically distributed (as
long as they are independent across sensors and have non-zero means). For
the sake of this exposition, however, and because it sufficesto illustrate the
principles, we focus only on the i.i.d. case.

measurement noise vectorwk and zero-mean communication
noisezk, and(b) primarily follows from the fact that|sk

j | ≤ B.
Finally, to complete the proof of the theorem, we substitutein
(85) the value ofρ from (33) and take the limit ink to obtain
(84).

Remark 10:A corresponding lower bound on the projection
coefficient distortionDυ under the modified decoder of (83)
is given by (28). This follows trivially from(a) in (85) and
the fact thatγ2 ≤ γ ≤ 1.

Remark 11:Since the structure of source-channel encoders
(F1, . . . , Fn) remains unchanged under fading and imperfect
phase synchronization, the total network power consumption
associated with achieving the distortion in (84) is still given
by (34).

Notice that even under the effects of fading and imper-
fect synchronization, the projection coefficient distortion Dυ

achieved by the proposed joint source-channel communication
architecture (using the modified decoder of (83)) is given by
a sum of two separate terms, the first of which scales like
‖ϕ‖2

2, while the second term that is primarily due to the
noisy communication channel scales like‖ϕ‖2

2/λ (cf. (84),
Remark 10). Comparing this observation with the scaling law
established in Section IV shows that Theorem 2 describes
the same distortion scaling behavior as Theorem 1, with
the only difference being that the scaling constants are now
different (they depend upon the second-order statistics of
channel gains). In particular,Lυ = 1 and Ptot,υ = O (1)
is still sufficient to ensure thatDυ ≍ ‖ϕ‖2

2 ≍ D∗
υ, as long as

γ 6= 0 (cf. Corollary 1).

B. Distributed Estimation from Noisy Projections: Known
Subspace

Similar to the case of estimation of a single projection
coefficient under the effects of fading and imperfect phase
synchronization, it is a simple exercise to show that by using
the joint source-channel communication scheme described by
the encoders in (36) and under a slightly modified decoderG

given by

ŝ
k = G

(
rk
)

= Ψk
L

(
rk

γ
√
ρ

)
, (86)

the end-to-end distortion of anα-compressible signal at the
FC in the presence of fading and phase synchronization errors
can be upper bounded by

D ≤ Co L
−2α +

(
L

n

)(
σ2

w γ +B2
(
γ − γ2

)

γ2

)
+

(
L

n

)(
σ2

z du
ζ
(
B2 + σ2

w

)

λγ2P

)
(87)

and lower bounded by the expression in the lower bound of
(39), as long as{γk

j } are i.i.d. across sensors andγ 6= 0.
Ignoring constants, this implies that the resulting distortion of
anα-compressible signal in this scenario still scales as
(
L

n

)
+

(
L

λn

)
� D � L−2α +

(
L

n

)
+

(
L

λn

)
,

(88)
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i.e., has the same scaling behavior as that ofD in (39).
Similarly, it can be shown that using the modified decoder
of (86) (with L replaced byM ), the end-to-end distortion of
anM -sparse signal in this scenario would scale as (cf. (59))

D ≍
(
M

n

)
+

(
M

λn

)
. (89)

Moreover, given that the structure of source-channel encoders
(F 1, . . . ,F n) remains unchanged under fading and imperfect
phase synchronization, the total network power consumption
per source observation associated with achieving these dis-
tortion scalings for compressible and sparse signals would
still be given by (40) and (60), respectively. Comparing these
results with the ones obtained in Section V show that the
previously established power-distortion-latency scaling laws
for estimation of compressible and sparse signals in the known
subspace case continue to hold under the effects of fading and
imperfect phase synchronization, provided{γk

j } have a non-
zero mean and the FC uses the modified decoder of (86).

Remark 12:Note that these results are similar in spirit to
some of the earlier results obtained in the context of joint
source-channel communication for distributed estimationof
sources – see, e.g., [3], [18], [47], [48]. In particular, those
results also indicate that fading (and/or imperfect synchroniza-
tion) tends to have no effect on the distortion scaling as long
as the random channel gains have non-zero means.

C. Compressive Wireless Sensing

In the presence of phase synchronization errors only (no
fading, i.e.,γk

j = cos(∆k
j ) only), CWS observations are given

by (∀ i = 1, . . . , L)

υ̂k
i = φT

i

(
γ̃

k ⊙ sk
)

+ φT
i

(
γ̃

k ⊙wk
)

+
zk

i

γ
√
ρ
, (90)

whereγ̃k = (
γk
1

γ , . . . ,
γk

n

γ )T (see (68)). Defining the vector̃γk

as γ̃k
, 1 + δk and substituting into the above gives

υ̂k
i = φT

i s
k + φT

i w
k + φT

i

(
δk ⊙ (sk +wk)

)
+

zk
i

γ
√
ρ
,

(91)

where δk is a zero-mean random vector with i.i.d. entries
given by δk

j = γ̃k
j − 1, j = 1, . . . , n. Comparing this with

(68), we see that the net effect of phase synchronization
errors is the introduction of a new noise-like term of the form
φT

i

(
δk⊙(sk+wk)

)
. Foregoing a rigorous theoretical analysis

of the effects of this contribution, we instead assume (by
the Central Limit Theorem) that it is approximately Gaussian
distributed, in which case it can be treated like the projected
noise {φT

i w
k}, as in Section VI-A. Further, assuming that

∆k
j

i.i.d.∼ unif[−b, b] and thatb is small, we can use a one-
term Taylor series approximation of the variance of the new
zero-mean noise contribution. The result is that each CWS
observation is again given by (74) but the equivalent noise
variance is given byσ2 = σ2

w + σ2
z du

ζ
(
B2 + σ2

w

)
/(γ2P ) +

(B2 + σ2
w)b4/45, the last term in the expression being the

contribution of the new phase synchronization error term.
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Fig. 6. Distortion scaling of a fixed lengthα-compressible signal as a
function of number of projectionsL under both known and unknown subspace
assumptions (log-log scale): number of sensor nodesn = 8192; α = 1 (in
Haar basis); baseline MSE(σ2

w) = 1; measurement SNR = 20 dB; received
communication SNR per projection =0 dB.

More generally, if we also define the fading envelope of
each sensor’s transmission asgk

j , 1 + ǫkj , then the overall
random channel gain of each received signal becomesγk

j =
gk

j cos(∆k
j ) = (1 + ǫkj )(1 + δk

j ) = 1 + ǫkj + δk
j + ǫkj δ

k
j . The

net result is a new noise-like term of the formφT
i

(
(ǫk +

δk + ǫkδk) ⊙ (sk + wk)
)
. With appropriate modeling of

the ǫkj terms, the additional variance due to this contribution
can also be computed and the optimization problem in (77)
can be updated accordingly. This approach was used in the
simulations and appears to work well in practice for a range
of phase synchronization errors, with or without mild fading,
as shown in Fig. 10.

VIII. S IMULATION RESULTS

In this section, we present a few simulation results to
numerically demonstrate some of the power-distortion-latency
relationships of our scheme under both known and un-
known/adaptive subspace assumptions. All signals discussed
in this section are contaminated with zero-mean additive
white Gaussian measurement noise of varianceσ2

w = 1, i.e.,
the baseline MSE of all signals is taken to be1. More-
over, the measurement SNR of all signals, defined to be(
‖sk‖2

2/n
)
/σ2

w, is given by SNRmeas = 20 dB, and the
received communication SNR for each projection, defined to
be ρ/σ2

z , is given by SNRcomm = 0 dB (unless otherwise
stated).

The first simulation result, corresponding to Fig. 6, illus-
trates the distortion scalingD of a spatially piecewise smooth
signal field with the number of projectionsL using both CWS
and known subspace case reconstructions, where the signal
field is sampled byn = 8192 sensor nodes in a noisy manner.
Such signals tend to be compressible in the Haar domain
with α = 1 and this value ofα was also verified numeri-
cally. For the purposes of known subspace reconstruction, the
observation vector is projected ontoL Haar basis elements
corresponding toL largest coefficients of the noiseless vector
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Fig. 7. Distortion scaling of a fixed lengthα-compressible signal as a function
of number of projectionsL for various values of received communication SNR
per projection under both known and unknown subspace assumptions (log-log
scale): number of sensor nodesn = 8192; α = 1 (in Haar basis); baseline
MSE (σ2

w) = 1; measurement SNR = 20 dB.

using the scheme described in Section V, while for the case of
CWS reconstruction, the observation vector is projected onto
L random Rademacher vectors. The resultant reconstruction
MSEs are shown in the figure using solid curves (on a log-
log scale), while the dotted curve and dashed curve in the
figure correspond to linear fit of CWS distortion curve and
reconstruction MSE in a centralized setting (i.e.,σ2

z = 0),
respectively. Finally, the total network power consumption for
both CWS and known subspace case reconstructions is given
by Ptot ≍ L , owing to the fact that we have chosenλ = O(1)
in this simulation.

As predicted by the theory, distortion curve for known
subspace reconstruction in Fig. 6 hits its minimum at a point
where the distortion due to the approximation error is balanced
by the distortion due to the observation and communication
noise, and starts to rise afterL ≈ 70 projections since
each subsequent projection contributes only a small amount
of signal but a larger amount of noise. Note that minimum
distortion in the centralized setting is attained forL ≈ 90
projections. This is because distortion scaling constantsin the
known subspace case depend uponσ2

w and σ2
z/ρ (see (39)),

while σ2
z = 0 in the centralized case. For the case of CWS,

distortion scaling follows a slope of−1.48 that turns out to
be better than the expected value of−2α/(2α + 1) = −2/3
(see (78)). This, however, does not contradict the results
reported in Section VI since we only have upper bounds for
distortion scaling in the CWS case. Finally, Fig. 7 illustrates
the fact that varying the received communication SNR per
projection has no effect on the scaling behavior of known
subspace and CWS reconstruction MSEs (except a change in
the scaling constants).

The second simulation result, corresponding to Fig. 8,
illustrates the distortion scalingD of anM -sparse signal field
with the number of sensor nodes using both CWS and known
subspace case reconstructions, where we also scale the number
of DoF in the signal asM ≍ nµ = n1/3 in the Haar basis. For
the purposes of known subspace case reconstruction, the ob-
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Fig. 8. Distortion scaling of anM -sparse signal as a function of number
of sensor nodesn under both known and unknown subspace assumptions
(log-log scale): number of non-zero coefficientsM ≍ n1/3 (in Haar
basis); baseline MSE(σ2

w) = 1; measurement SNR = 20 dB; received
communication SNR per projection =0 dB; number of projections – Known
subspace case reconstruction:L = M ≍ n1/3, CWS reconstruction:
L ≍ log(n) n1/2M ≍ log(n) n5/6.

servation vector is projected ontoL = M Haar basis elements
corresponding to theM non-zero coefficients of the noiseless
vector using the scheme described in Section V, while for
the case of CWS reconstruction, the observation vector is
projected ontoL ≍ log(n)n1/2M ≍ log(n)n5/6 random
Rademacher vectors. The resultant reconstruction MSEs are
shown in the figure using solid curves (on a log-log scale),
while the dotted and dashed curves in the figure correspond
to linear fit of known subspace/CWS distortion curves and re-
construction MSE in a centralized setting, respectively. Finally,
the total network power consumption for CWS and known
subspace case reconstructions is given byPtot ≍ log(n)n5/6

andPtot ≍ n1/3, respectively, owing to the fact that we have
chosenλ = O(1) in this simulation.

As predicted by the theory, the distortion scaling curve for
known subspace reconstruction in this case tends to follow a
slope of−1 + µ ≈ −0.64 (see (62)). Similarly, the distortion
scaling curve for CWS reconstruction in this case can be
expressed asD ≍ M log(n)/L ≈ n−0.52 – again in accor-
dance with the theory (see (79)). Finally, Fig. 9 and Fig. 10
illustrate the robustness of our proposed scheme to a range
of phase synchronization errors, with or without fading, under
both known and unknown/adaptive subspace assumptions.

IX. CONCLUSION

In this paper, we have presented a distributed joint source-
channel communication architecture for estimation of sensor
network data at the FC and analyzed the corresponding power-
distortion-latency relationships as a function of the number of
sensor nodes. Our approach is built on distributed computation
of appropriately chosen projections of the sensor data at the
fusion center. Phase-coherent transmissions from the sensors
enable exploitation of the distributed beamforming gain for
dramatic reductions in power consumption. A few distinct
features of our approach are: 1) processing and communication
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Fig. 9. Distortion scaling of anM -sparse signal as a function of number of
sensor nodesn under the effects of fading and phase synchronization errors
(Known subspace case reconstruction only): number of non-zero coefficients
M ≍ n1/3 (in Haar basis); baseline MSE(σ2

w) = 1; measurement SNR =
20 dB; received communication SNR per projection =0 dB; fading envelope:
Rayleigh distributed; number of projectionsL = M ≍ n1/3.

are combined into one distributed projection operation; 2)it
requires almost no in-network processing and communication;
and 3) given sufficient prior knowledge about the sensed data,
asymptotically consistent signal estimation is possible even if
the total network power consumption goes to zero.

In addition, we have also introduced and analyzed a univer-
sal estimation scheme – compressive wireless sensing (CWS)
– that provides asymptotically consistent signal estimates,
even if little or no prior knowledge about the sensed data
is assumed. Furthermore, power and latency requirements in
CWS grow at most sub-linearly with the number of nodes
in the network. This universality, however, comes at the cost
of less favorable power-distortion-latency relationship: the
absence of sufficient prior knowledge about the signal field
leads to probing the entiren-dimensional space using random
projections instead of focusing on the subspace of interest.
However, for precisely the same reason, CWS has the ability
to capture part of signal under all circumstances and does not
require reprogramming of the network for different sensing
scenarios – different hypotheses on the signal field structure
can be tested at the fusion center via the reconstruction
algorithms. Furthermore, projecting the sensor network data
onto a fixed subspace may result in a distortion much greater
than the one achievable by CWS if prior information about
the signal field is inaccurate. Therefore, we contend that CWS
should be the estimation scheme of choice in cases when either
little prior knowledge about the sensed field is available or
confidence level about the accuracy of the available knowledge
is low.

APPENDIX I
IN-NETWORK COLLABORATION : POWER-DISTORTION

TRADE-OFF REVISITED

Analysis in Sections V-A and V-B shows thatλ = O(1)
is necessary for optimal distortion scaling in estimation of
compressible and sparse signals, resulting inPtot ≍ n1/(2α+1)
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Fig. 10. Distortion scaling of a fixed lengthα-compressible signal as a
function of number of projectionsL under the effects of fading and phase
synchronization errors (CWS reconstruction only): numberof sensor nodesn
= 8192,α = 1 (in Haar basis), baseline MSE(σ2

w) = 1, measurement SNR =
20 dB, received communication SNR per projection =0 dB; fading envelope:
Rician distributed (K-factor of 7.5).

and Ptot ≍ M , respectively. In this appendix we partially
address the question:How good is the power-distortion scal-
ing of our proposed scheme?While a comparison with all
conceivable distributed estimation schemes does not seem
possible, we compare the performance of the proposed scheme
(which does not require data exchange between nodes) to a
more favorable and idealized setup where the nodes in the
network can communicate their observations in an error-free
manner to a designated cluster of1 ≤ ñ ≤ n nodes. We
do not make any assumptions on the nature of in-network
communication and also ignore the incurred cost on energy
consumption (since quantifying this cost requires making ad-
ditional system-specific assumptions). Thus, our performance
comparison is solely based on the power required for network-
to-FC communication to achieve optimal distortion scaling.
Note that ñ = 1 corresponds to all nodes routing their
measurements to a single clusterhead in the network (using
perhaps multi-hop communications), whileñ = n corresponds
to all the nodes in the network noiselessly sharing their data
with each other (using perhaps gossip algorithms). Onceñ
nodes in the network have access to the entire observation
vectorxk following each snapshot, they compute the required
L projection coefficients (with respect to a given basis) and
then coherently transmit the resulting projection coefficients to
the FC using a sum transmit power ofP per channel use. This
effectively transforms the cluster-to-FC MAC into a point-to-
point AWGN channel with̃n-fold power-pooling gain due to
coherent beamforming of identical data.

We focus on estimation ofα-compressible signals. Specifi-
cally, we assume that̃n nodes in the designated cluster have
access to identical estimates of the requiredL Ψ-coefficients
at the end of the data-exchange stage, i.e.,

θ̂k
ℓ = ψT

ℓ x
k = θk

ℓ +ψT
ℓ w

k, ℓ = 1, . . . , L. (92)

By a simple extension of the encoder structure of Section V,
the transmitting cluster of̃n nodes coherently beamforms these
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L projection coefficients per snapshot inL consecutive channel
uses as follows

yk
j = F j

(
{θ̂k

ℓ }L
ℓ=1

)
=
(
yk

j1, . . . , y
k
jL

)T

=
1√
hj

(√
ρ1 θ̂

k
1 , . . . ,

√
ρL θ̂

k
L

)T

, j = 1, . . . , ñ,

(93)

where {ρℓ}L
ℓ=1 are scaling factors used to satisfy the sum

power constraintP in each of theL channel uses. At the
end of theL-th channel use, the received signal at the input
of the decoderG is given by

rk =

ñ∑

j=1

√
hj y

k
j + zk

= ñ
(√

ρ1 θ̂
k
1 , . . . ,

√
ρL θ̂

k
L

)T

+ zk

= ñΓθk
L + ñΓ

(
Ψk

L

T
wk
)

+ zk, (94)

whereΓ , diag(
√
ρ1, . . . ,

√
ρL ), θk

L = (θk
1 , . . . , θ

k
L)T , zk ∼

N (0L×1, σ
2
zIL×L) is an AWGN vector, and̃n is the power-

pooling gain of identical coherent transmissions fromñ nodes.
An estimate of the noiseless data vector can be formed at the
FC as

ŝ
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As for fixing the values of{ρℓ}, note that (93) implies that
∀ ℓ = 1, . . . , L,
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≤ ñ ρℓ du
ζ

(
nCo

Cp
ℓ−2α−1 + σ2

w

)
, (96)

where the upper bound essentially follows from the fact that
the squared magnitudes of the ordered coefficients{θk

ℓ } in
the case of compressible signals are bounded as|θk

ℓ |2 ≤
n Co

Cp
ℓ−2α−1 (see (9)). This implies that

ρℓ =
λP

ñ du
ζ
(
n C̃o ℓ−2α−1 + σ2

w

) , ℓ = 1, . . . , L, (97)

would suffice to satisfy the sum power constraint ofP for each
of the L channel uses, wherẽCo , Co/Cp andλ ∈ (0, 1] is
again the power scaling factor for controlling total network
power consumption. We are now ready to state the distortion
achievable for anα-compressible signal under the assumption
of in-network collaboration.

Theorem 3:Given the sensor network model of Section II
for anα-compressible signal and under the assumption of in-
network collaboration enabling̃n nodes in the network to have
access to the entire observation vectorxk at each time instant

k, the beamforming strategy described by the encoders in (93)
and the decoder in (95) can achieve the following end-to-end
distortion by employingL channel uses per source observation
(
L

n

)
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Proof: To establish this theorem, first observe that (95)
implies that∀ k ∈ N
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where the last inequality follows from the fact that

L∑

ℓ=1

ℓ−2α−1 ≤ 1 +

∫ L

1

x−2α−1dx ≤ 2 (100)

and L
n ñ ≤ L

n . Furthermore, from (95), we also have a lower
bound of
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Finally, combining the upper and lower bounds of (99) and
(101), and taking the limit ink yields (98), thus completing
the proof.

Remark 13:Under the assumption of̃n nodes coherently
transmitting the identical data, the cluster-to-FC MAC is effec-
tively transformed into a point-to-point multiple-input single-
output AWGN channel. Consequently, while the distortion
expression in (98) has been obtained corresponding to an
analog beamforming strategy of (93), a similar expression
for distortion can be obtained by appropriately transforming
the compressible source model into a stochastic one, and
employing standard rate-distortion and capacity-cost analysis
(i.e., by employing “digital” beamforming).

Remark 14:Note that the last term in the upper and lower
bounds in (98) corresponds to the distortion component due
to the noisy communication channel. The factor ofñ in that
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term corresponds to the power-pooling gain due to coherent
transmission of identical data: the greater the number of
nodes coherently beamforming the identical data, the greater
the power-pooling gain. Comparing this communication noise
term to the last term in the upper and lower bounds in
(39) shows that, in terms of scaling, the performance of the
proposed estimation scheme of Section V is equivalent to
that of an in-network collaboration based system that has a
beamforming cluster of̃n = n

L nodes.
Analysis of (98) reveals that for optimal distortion scaling

under the in-network collaboration assumption,L ≍ n1/(2α+1)

and the distortion component due to the communication noise
should also scale at least asL

n ≍ n−2α/(2α+1). Consequently,
this implies that as long as the extent of in-network collab-
oration is such that̃n < n2α/(2α+1), one cannot achieve
the optimal distortion scaling under a fixed transmit power
constraint ofP : the power constraint itself needs to be scaled
up asP ≍ n2α/(2α+1)/ñ to achieve optimal distortion scaling.
On the other hand, if the extent of in-network collaborationis
such thatñ > n2α/(2α+1) then, in fact,λ need not be given
by λ = O(1). Rather, in that situation, it can be scaled down
as λ ≍ n2α/(2α+1)/ñ. Going back to the two extremes of
ñ = 1 and ñ = n, this means that for the case of a single
clusterhead in the network, we havePtot = O(λLP ) = O(n)
and for the case where all the nodes in the network act
as a big clusterhead, we havePtot = O(λLP ) = O(1).
Essentially, as the cardinality of the beamforming clusterñ
scales up as1 ր n, the total network power scales down
from O(n) to O(1). Remarkably, the proposed estimation
scheme of Section V achieves the performance equivalent to
that of a cluster with̃n = n2α/(2α+1) nodes, without requiring
any in-network collaboration. Furthermore, while we have
ignored the cost of in-network communication, we expect that
it will increase monotonically with increase in the size of the
beamforming cluster̃n.
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