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Abstract— Power and bandwidth are scarce resources in dense
wireless sensor networks and it is widely recognized that jat
optimization of the operations of sensing, processing ancbenmu-
nication can result in significant savings in the use of netwix re-
sources. In this paper, a distributed joint source-channetommu-
nication architecture is proposed for energy-efficient esmation
of sensor field data at a distant destination and the correspading
relationships between power, distortion, and latency are malyzed
as a function of number of sensor nodes. The approach is
applicable to a broad class of sensed signal fields and is basen
distributed computation of appropriately chosen projections of
sensor data at the destination — phase-coherent transmissis
from the sensor nodes enable exploitation of the distribute
beamforming gain for energy efficiency. Random projectionsare
used when little or no prior knowledge is available about the
signal field. Distinct features of the proposed scheme inctle: 1)
processing and communication are combined into one distrilted
projection operation; 2) it virtually eliminates the need for in-
network processing and communication; 3) given sufficient por
knowledge about the sensed data, consistent estimation iegsible
with increasing sensor density even with vanishing total nigvork
power; and 4) consistent signal estimation is possible withower
and latency requirements growing at most sub-linearly withthe
number of sensor nodes even when little or no prior knowledge
about the sensed data is assumed at the sensor nodes.

Index Terms— Compressive sampling, distributed beamform-
ing, scaling laws, sensor networks, source-channel commiga-
tion, sparse signals

I. INTRODUCTION

SENSOR networking is an emerging technology tha
promises an unprecedented ability to monitor the physict%

world via a spatially distributed network of small and inerp
sive wireless devices that have the ability to self-orgaimito

a well-connected network. A typical wireless sensor nekwo

(WSN), as shown in Fig. 1, consists of a large number
wireless sensor nodes, spatially distributed over a region

interest, that can sense (and potentially actuate) theiqalys
environment in a variety of modalities, including acoustic
seismic, thermal, and infrared. A wide range of applic:ﬂior?
of sensor networks are being envisioned in a number of ared

including geographical monitoring (e.g., habitat monitgr
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Fig. 1. Sensor network with a fusion center (FC). Black dasale sensor
nodes. FC can communicate to the network over a high-poweadoast
channel whereas the multiple-access channel (MAC) fromniisvork to
the FC is power constrained.

precision agriculture), industrial control (e.g., in a pwplant
or a submarine), business management (e.g., inventokinicac
with radio frequency identification tags), homeland sdguri
(e.g., tracking and classifying moving targets) and hecédtie
(e.g., patient monitoring, personalized drug delivery).

The essential task in many applications of sensor networks
is to extract relevant information about the sensed data and
deliver it with a desired fidelity to a (usually) distant des-
tination, termed as the fusion center (FC). The overall goal
in the design of sensor networks is to execute this task
with least consumption of network resources — energy and
bandwidth being the most limited resources, typically.His t
rtegard, the relevant metrics of interest are: (i) the awetatal
(ftwork power consumptioRy for estimating a snapshot of
e signal field; (ii) the distortiorD in the estimate; and (iii)
the latencyL incurred in obtaining the estimate (defined as
the number of network-to-FC channel uses per snapsho$). It i

5\#50 generally recognized that jointly optimizing the cgiems

n

of sensing, processing and communication can lead to very
energy efficient operation of sensor networks.

nsor field data at the FC. Under mild assumptions on the
spatial smoothnessf the signal field (cf. Section 1), we ana-
lyze the corresponding relationships between power, iisig

and latency as well as their scaling behavior with the number
of sensor nodes. Our approach is inspired by recent results i
wireless communications [1]-[3] and represents a new, non-
traditional attack on the problem of sensing, processimd) an
communication in distributed wireless sensing systemthdta
than digitally encoding and transmitting samples from 4indi
vidual sensors, we consider an alternate encoding paradigm



based on the projections of samples from many sensors owith some known correlation function [8]-[11], or it is full
appropriate spatial basis functions (e.g., local polyradsni described by a certain number of degrees of freedom (often
wavelets). The joint source-channel communication agechit less thann) that are random in nature [3], [12]. All of these
ture at the heart of our approach is an energy efficiesignal models, however, express a notion of smoothness or
method for communicating such projections to the FC — tlmmplexity in the signal field, and the decay charactesstic
projections are communicated in a phase-coherent fashtbe correlation function (e.g., the rate of decay) or the bem
over the network-to-FC multiple-access channel (MAC).sThiof degrees of freedom (DoF) in the field play a role analogous
architecture was first proposed and analyzed in [2] in the that of « and M in this work. Essentially, the choice
context of spatially homogeneous signal fields. This papleetween a deterministic or a stochastic model is mostly a
generalizes the approach to a broader class of signalsfidldss matter of taste and mathematical convenience, the lattagbe
as eithercompressibleor sparse(see Section II). more prevalent when it comes to information-theoreticysial

The power of the proposed approach is that, in principlef the problem (also, see [13] and the discussion therein).
one can choose to acquire samples in the domain of adgwever, the deterministic formulation can be more readily
basis that is particularly well-suited to the spatial stuwe of generalized to include inhomogeneities, such as bourgjarie
the signal field being sensed (e.g., smooth signals tend toibehe signal field [14].
well-approximated in the Fourier basis and wavelet bases$ te  Secondly, it is generally recognized that the basic oper-
to be well-suited for the approximation of piecewise smoot#tions of sensing, processing (computation), and communi-
signals [4]). Thus, if one has reasonable prior knowledgeiaib cation in sensor networks are interdependent and, in gen-
the signal (e.g., spatial statistics or smoothness chexistits eral, they must be jointly optimized to attain optimal trade
of the sensed field), then each sensing operation maximizéks between power, distortion and latency. This joint op-
the potential gain in information per sample. More gengralltimization may be viewed as a form of distributed joint
however, we may have little prior knowledge about the sensedurce-channel communication (or coding), involving both
field. And, in some applications, the physical phenomenon estimation (compression) and communication. Despite the
interest may contain time-varying spatial edges or bouadarneed for optimized joint source-channel communicatiorn, ou
that separate very different physical behaviors in the mefandamental understanding of this complex problem is very
sured signal field (e.g., an oceanic oil spill, limited sphti limited, owing in part to the absence of a well-developed
distributions of hazardous biochemical agents). To hasdds  network information theory [15]. As a result, a majority of
scenarios, we introduce the conceptaafmpressive wireless research efforts have tried to address either the compressi
sensing(CWS) in the later part of the paper that is inspiredr the communication aspects of the problem. Recent results
by recent results in compressive sampling theory [5]-[4 aron joint source-channel communication for distributed-est
fits perfectly into our proposed source-channel commuigioat mation or detection of sources in sensor networks [1]-[3],
architecture. [12], [16]-[18], although relatively few, are rather prasinig

The key idea in CWS is that neither the sensor nodes rd indicate that limited node cooperation can sometimes
the FC need to know/specify the optimal basis elements gneatly facilitate optimized source-channel communaraéind
advance, and rests on the fact that a relatively small nuwifberesult in significant energy savings that more than offset th
random projections of a compressible or sparse signal tontaost of cooperation. Essentially, for a given signal fiette t
most of its salient information. Thus, in essence, CWS issructure of the optimal estimator dictates the structdirthe
universal scheme based on delivering random projectionsasirresponding communication architecture. To the besuof o
the sensor data to the FC in an efficient manner. Under tkeowledge, the most comprehensive treatment of this pnoble
right conditions, the FC can recover a good approximatién date (in the context of WSNs) has been carried out by
of the data from these random projections. Nevertheless, tbastpar and Vetterli in [3] (see also [12]). While some of
universality comes at the cost of a less favorable powepur work is inspired by and similar in spirit to [3], Gastpar
distortion-latency relationship that is a direct consempge and Vetterli have primarily studied the case of finite number
of not exploiting prior knowledge of the signal field in theof independent sources that is analogous to that of\&n
choice of projections that are communicated to the FC. THiparse signal, albeit assuming Gaussian DoF and multiple
trade-off between universality and prior knowledge in CWS FCs. Moreover, the number of DoF in [3] is assumed to be
quantified in Section VI. fixed and does not scale with the number of nodes in the
network. Our work, in contrast, not only extends the results
of [3] to the case when the number of DoF of afi-sparse
signal scales withn, but also applies to a broader class of

First, let us comment on the signal model being used signal fields and gives new insights into the power-diStori
this paper. We assume that the physical phenomenon unidéency relationships for both compressible and sparseakg
observation is characterized by an unknown but deterngnisfcf. Section V). Furthermore, we also present extensions of
sequence of vectors IR", where each vector in the sequenceur methodology to situations in which very limited prior
is a-compressible of\/-sparse in some orthonormal basis oinformation about the signal field is available.
R™ (see Section Il). Alternative assumptions that are com-Thirdly, in the context of compressive sampling theory
monly used in previous work are that the signal field is eith§s]-[7], while the idea of using random projections for the
a realization of a stationary (often bandlimited) randonidfie estimation of sensor network data has recently receivecesom

A. Relationship to Previous Work



attention in the sensor networking community, the focus hassumption of sufficient prior knowledge about the compress
primarily been on the compression or estimation aspectsiof (and sparse) basis. In Section VI, we introduce the qunce
the problem (see, e.g., [7], [19]-[21]), and this paper is ttof CWS for the case when sufficient prior knowledge about
first to carefully investigate the potential of using randorthe compressing/sparse basis is not available and andlgze t
projections from a source-channel communication pergpectassociated power-distortion-latency scaling laws. Uphis t
(cf. Section VI). point, we operate under the assumptions that the network is
Finally, from an architectural and protocol viewpoint, rhosfully synchronized and transmissions from the sensor nddes
existing works in the area of sensor data estimation emet undergo fading. We relax these assumptions in Section VI
phasize the networking aspects by focusing on multi-h@nd study the impact of fading and imperfect phase synchro-
communication schemes and in-network data processing amzation on the scaling laws obtained in Sections IV, V and VI
compression (see, e.g., [8], [10], [11], [14]). This typiga Finally, we present some simulation results in Section Y4l
requires a significant level of networking infrastructueeg(, illustrate the proposed methodologies and concluding riesna
routing algorithms), and existing works generally assuhig t are provided in Section IX.
infrastructure as given. Our approach, in contrast to these
methods, eliminates the need for in-network communication Il. SYSTEM MODEL AND ASSUMPTIONS

and processing, and instead requires phase synchromizatiowe begin by considering a WSN with nodes observing
among nodes that imposes a relatively small burden on ngéme physical phenomenon in space and discreté-tinteere

work resources and can be achieved, in principle, by emplayach node takes a noisy sample at time indeof the form
ing distributed synchronization/beamforming schemesh ss r

those described in [22], [23]. Although we use the common Ty = 55 +w§’ j=1....n, keN, )
term ‘sensor networkio refer to such systems, the systems Wgnd the noiseless samplés®, k € N} at each sensor cor-
envision often act less like networks and more like coherepispond to a deterministiout unknownsequence irR. We
ensembles of sensors and thus, our proposed wireless §engifther assume thdtgﬂ <B\Mj=1,...,n keN) for
system is perhaps more accurately termesemsor ensemble some known constarit > 0 that is determined by the sensing
that is appropriately queried by ainformation retrievet(FC) - range of the sensors, and the measurement efrofs are
to acquire the desired information about the sensed data. ;erg-mean Gaussian random variables with variangehat
are independent and identically distributed (i.i.d.) asrsepace
and time.

. _ . . . Notice that the observed dafar = s% +w}}"_ at time
We establish scaling relationships between different quan ..o be considered as a vectof € R” suchj thatek —
titie‘s.that a}re denotgd by the_ symboats, = and ~ (read + w*, wheres® € R” is the noiseless data vector and
as big-oh, ‘asymptotically equivalehtind ‘of-the-order of W ~ N(Onx1,02I,xn) is the measurement noise vector.

respectively). Specifically, if (n), g(n) andh(n) are positive- Therefore, the physical phenomenon under observationean b

valuedtfunétlonos oh ﬁfﬁ 'Ehen viegvrltefvj gif gerevexui[s characterized by the deterministic but unknown sequence of
a constant’ > 0 such thatf(n) < Cg(n) Vn €N, f < gif i encional vectors

f=2gandg < fandf ~gif f <handg < h. Sometimes,
we also use the more standard notatfor O(g) for bothbig- S £ {s"en=15"5 .} )
oh andasymptotically equivalerdcaling relations. Finally, we
use|A| to denote the cardinality of a finite set and = to
mean equality by-virtue-of definition

B. Notational Convention

Furthermore, we assume no dependence between different
time snapshots of the physical phenomenon. Note that if
we were to modelS as a stochastic signal, this would
be equivalent to saying tha® is a discrete (vector-valued)

C. Organization memoryless source.

The rest of this paper is organized as follows. In Section I,
we describe the system model and associated assumption&)r?ensor Data Model
the signal field and the communication channel. In partigula It is @ well-known fact in the field of transform coding that
in Section 1I-A, we formalize the notions of compressibléeal-world signals can often be efficiently approximated an
and sparse signals. In Section Ill, we review the optim&ncoded in terms of Fourier, wavelet or other related tamsf
distortion scaling benchmarks for compressible and sparégresentations [13], [24]-[27]. For example, smooth aign
signals under the assumption that the sensor measureméats be accurately approximated using a truncated Fourier or
are available to the FC without any added cost or noise duewavelet series, and signals and images of bounded variation
communications. In Section IV, we develop the basic bugdircan be represented very well in terms of a relatively small
block in our source-channel communication architecture feumber of wavelet coefficients [4], [6], [28]. Indeed, fe@si
computing and communicating projections of the sensor fiegtich as smoothness and bounded variation are found in im-
data to the FC. Using this basic building block, we descrit#ges, video, audio, and various other types of data, asravide
and analyze an energy efficient distributed estimationrsehe | _ _ _ _ .
. . . . . . The discrete-time model is an abstraction of the fact thaffigdd is being
in Section V that achieves the distortion scallng benchmatk temporally sampled at some rateBf seconds that depends upon the physics
Section Il for both compressible and sparse signals urtder bf the observed phenomenon.



from the success of familiar compression standards suchla®V, N € N, j = 1,2,...,n} is upper bounded by N'1/P
JPEG, MPEG and MP3 that are based on Fourier and wavdBf], [31]. Hence, the/,, constraint of (7) in turn requires
transforms. that thej-th largest (and re-indexed according to magnitude)
We take the transform coding point of view in modeling theoefficiente;-C is smaller than or equal t& j—'/7, resulting in
signal observed by the sensor nodes. Specifically, we assume n
that the physical phenomenon describedSoig (deterministic Hsk _ Sk,(m)H2 _ Z 6% 2
and) spatially compressible in the sense that each nosseles 2 /
snapshots® is well-approximated by a linear combination
of m vectors taken from an orthonormal basis Rf. We
formalize this notion in the following definition. for some constan€, that depends only op [6], [29], [30].
Definition 1 (Compressible Signals)et & £ {4,};", be Thus, our definition of compressible signals is equivalent t
an orthonormal basis dk™. Denote the coefficients of* in  assuming that the orderd-coefficients of each noiseless data
this basis (inner products betweefi and the basis vectorsvectors* exhibit a power law decay
;) by 6F & sk = 371 sk, where ()T represents
the transpose operation. Re-index these coefficients amd th

corresponding basis vectors so that wherel/p = a +1/2 and R = }/% in our case (cf. (5).
05| > |05 > --- > |0%]. (3) (8)). Indeed, power law decays like this arise quite commonl

in nature and we refer the readers to [6], [13], [29], [31] for

some of those instances. Finally, with regard to the notibn o

Jj=m+1
< C,R*m'™?/P LeN, (8)

|9§€|SRJ*1/P7 ij=1...,n, keN, (9)

The bestm-term approximatiorof s* in terms of& is given

by sparsity, note that thé, constraint of (7) simply reduces to
ko(m) & i measuring the number of non-zedo-coefficients ap — 0
8 - Z 0i i, 4)  and thus, corresponds to our definition of sparse signals wit
=t R=M2
and we say tha$'is a-compressible i (or that® is thea- Remark 2:The above sensor data model can be relaxed
compressing basis &) if the average squared-errobehaves to allow temporal dependence between time snapshots of the
like physical phenomenon by assumispatio-temporatompress-
1y . rem|? a1 LN ko (m)\ 2 i_biIity (or_sparsit_y) of the source signa_ll inan gpproprismace-
n HS - Hz T n (Sj =8 ) time basis. While a detailed analysis of this setup is beyond
j=1 the scope of this paper, some of the techniques presented in
< C,m™2% keN, (5) this paper can be extended to incorporate this scenario.

Remark 3:Note that while this paper is not concerned with
for some constanis, > 0 an(_ja Z 1/2, Wher_e the parameterthe issue of sensor placement (sampling) in the signal fiedd,

« governs the degree to whichiis compressible with respect noice of a good compressing basis is inherently coupleld wit
tow. the sensors’ locations within the WSN. For example, while

: I? agd';'gn’. we wil Ialso conS|d_ebr&}he spe;:lﬁl case Wherﬁourier basis would suffice as a compressing basis for a senso
Instead ot being merely compressibie s spatially Sparse - q gy observing a smooth signal field in which sensors

ghe SPTQSS tbhat e]:':\(\::pnos?fl.e.ss tem\p/)vora;l sa@‘i;ptmnht_)e fully are placed on a uniform grid, random (irregular) placement
escribed by a few-coefficients. We tormalize this Notion o sangors within the same field may warrant the use of an

as follows. . . .
irregular wavelet transform as the appropriate comprgssin
Definition 2 (Sparse Signals)Ve say thatS is M-sparse bas?s [32] pprop bre

in ¥ (or that¥ is the M-sparse basis af) if

sh =) 0Fy,, keN, (6) B. Communication Setup
i€zt Given the observation vectar® at time k, the aim of the

whereZ* c {1,2,...,n}, k € N, andmax |Z¥| < M < n, sensor nodes (and the network as a whole) is to communicate
’ a reliable-enough estima& of the noiseless data vectsf

to a distant FC, where the reliability is measured in terms

of the mean-squared error (MSE). Before proceeding further

however, we shall make the following assumptions concernin

communications between the sensor nodes and the FC:

i.e., each noiseless data vectérhas at mosf/ < n non-zero
coefficients corresponding to some ba&if R™.

Remark 1:An equivalent definition of compressibility or
sparsity may be defined by assuming that, for sOmep < 1
and someR = R(n) > 0, the ¥-coefficients ofs* belong to

an/, ball of radiusR [6], [29], [30], i.e., 1) Each sensor and the FC are equipped with a single
s omni-directional antenna and_gensor; communicate to
n the FC over a narrowband additive white Gaussian noise
Z |9§“|” < R, keN. @) (AWGN) multiple-access channel (MAC), where each
j=1 channel use is characterized by transmission over a

To see that this is ianEd an equ“_/alent definition, first nOtezFor an M-sparse signal, no particular decay structure is assunrethéo
that (7) can hold only if the cardinality of the sgt” : [0%] > a1 non-zero coefficients os* in W.



2)

3)

4)

Source

period of T, seconds. Furthermore, the FC can commu-
nicate to the sensor nodes over an essentially noise-free
broadcast channel.

Transmissions from the sensor nodes to the FC do not| $
suffer any fading [33]-[35], which would indeed be the
case in many remote sensing applications, such as desert
border monitoring, with little or no scatterers in the
surrounding environment and static sensor nodes havifg. 2. 7-channel use snapshot of the sensor network per sourcevatiser
a strong line-of-sight connection to the FC [36]. The superscript corresponding to the time index has beegpdtbin the figure
Each sensor knows its distance from the FC and th(&SmPlify notation.

can calculate the channel path ga}ﬂj given by [33]-
[35]

the end of theL-th channel use, the decodé& produces

NI %/2’ i=1,2,...,n, (10) an estimate3” of the noiseless data vectar” given by
d; CHC G({r“}ﬁzl), where 7% = " \/hjy§ + 2"

wherel < d; < d, < oo is the distance betweenand z* ~ N(0px1,02I«1) is the MAC AWGN vector
the sensor at locatiop and the FC, and > 2 is the corresponding to thd.-channel uses at time instant (see
path-loss exponent [36], [37]. In principle, even whefrig. 2), and the goal of the sensor network is to minimize
the distances and/or path loss exponent are unknowi),the average total network power consumption per source
these channel gains could be estimated at the FC usiigservation
received signal strength and communicated back to the | KoL
sensors during network initialization. P 2 lim — E[ k 2} , 12
The network is fully synchronized with the FC in the “ K—oo K ;;Z i (12

following sense [34], [35]: (iCarrier Synchronization ) )
All sensors have a local oscillator synchronized to thd) the mean-squared error distortion measure

||>

receiver carrier frequency; (iiyime Synchronizatian 1 X 1 5
For each channel use, the relative timing error between D £ lim I E {— Hs’C - Qk“ ] ; (13)
sensors’ transmissions is much smaller than the channel Koot L1 2

symbol fjuratloni_”c;_and (”')_ Phase Synchr(_)nlzanon and (iii) the latencyL (# of channel uses per source observa-
Sensors’ transmissions arrive at the FC in a phaggy) of the systend. Thus, for a fixed number of sensor nodes
coherent fashion, which can be achieved by employing e herformance of any estimation scheme is characterized
Fhe distributed phase synchronization schemes descrltgﬁp;the triplet(Pou(n), D(n), L(n)) and rather than obtaining

in [22], [23]. an_exact expression for this triplet, our goal would be to

5) Sensor transmissions are constran_'\_ed to a sum tranng(tﬂyze how do these three quantities scale witor a given
power _O”_D per channg_l use. Specifically, lgj be the_ scheme. Moreover, minimization of all three quantitieshia t
transmission of sensqrin any channel use. Then, it isy,\e¢ is sometimes a conflicting requirement and therdtino
required that a trade-off involved between minimizine;, D andL, and we

" 9 shall also be analyzing this power-distortion-latencylé-aff
Y E [ijl } < P (11)  as a function ofy.
J=1 Remark 4:Notice that implicit in this formulation is the
6) The network is allowed. network-to-FC channel usesfact that no collaboration among the sensor nodes is allowed

per source observation, which we term as the latenfyr the purposes of signal estimation, i.e., encalledoes not

of the system. If, for example, these channel uses have access to the inputs of any sensor other than sgnsor
were to be employed using time division multiple access Remark 5: Note that while stating the performance metrics
(TDMA) then this would require that the temporalof power and latency, we have ignored the cost of initializ-
sampling timeTs > LT,.; hence, the term latency. Ining the sensor network (primarily corresponding to the cost
a system with no bandwidth constraints, this could alsaf channel gain estimation/phase synchronization algrst

be interpreted as the effective bandwidth of the networkinder the current communication setup and the cost of linitia
to-FC MAC. route/topology discovery algorithms under the more tradl

Given this communication setup, an estimation scherfeulti-hop communication setups). This is because the geera

corresponds to designingn  source-channel encoderscost of this initialization (over time) tends to zero fas- the
(F1,...,F,) — one for each sensor node, and the decodéhe scale of the network operation — tends to infinity. Of
G for the FC such that at each time instant given the course, in practice, a one-time initialization may not seffi

observations{x;? }izl

N k — [k kT
generate arL-tupley; = F; {x;}nzl) - (yjla e aij) SNotice that with the distortion metric as defined in (13), the
corresponding toL-channel uses per source observatiodSE of any arbitrary Ier129th signal can at worst be a constantes
(that also satisfy the power constraint of (11)). And a,;lgnm%zk:ﬂ[% HS’%] < B2

up to timek at nodej, the encoders and these procedures may have to be repeated from time to



time, but we will assume that the corresponding costs arerease. The upper bound is tight, in the sense that there
negligible compared to the routine sensing and commuuwicatiexist signals for which the upper bound is achieved, and in
operations. such cases the upper bound is minimized (by choicepby
making the approximation error and the stochastic componen
[1l. OPTIMAL DISTORTION SCALING IN A CENTRALIZED  Of the error scale at the same rate, i.e.,
SYSTEM m—2e = m m = nl/(2a+1)7 (19)
In this section, we consider a system in which the sensor ) ) ) ) )
measurementgz* " at each time instant are assumed resulting in the following expression for optimal distorii
JJi=1

to be available at the FC with no added cost or noise due$631ing of ana-compressible signal in a centralized system
communications, and we review the corresponding classical K {1

— |8 — S8
cen
H 2

* .
estimation theory results (see, e.g., [13], [38], [39])tdthat Dcen = lim — » E

kE =k 2 - n72a/(2a+1)
K—oo K
k=1

such a system corresponds to a sensor network with a noise-
free network-to-FC MAC and thus, the optimal distortion
scaling achievable under thientralizedsetting serves as a

benchmark for assessing the distortion related performahc B. Spf';lrse Signals ) ) ) )
any scheme under the original setup. Similar to a compressible signal, an optimal centralized

estimator for an)M-sparse signhal corresponds to projecting
A Compressible Sianals the observation vector onto the basis vectors o corre-
' P 9 sponding to)M non-zero®-coefficients ofs* (see, e.g., [38]),

Given the observation vectar® at the FC, an optimal je_, if %, is then x M matrix of those basis vectors, then
centralized estimator for am-compressible signal can begk can be estimated as

(20)

easily constructed by projecting® onto them basis vectors kA ok v T g
of ¥ corresponding ton largest (in the absolute sens&) Scen = Y (WM z )
coefficients ofs* (see, e.g., [13]), i.e., i” is then x m k k ( kT k)
. ! ' Lo m S = ' 21
matrix of those basis vectors, where the superséripticates s ¥ (W W) (1)

that the re-indexing in (3) may be a function of the time indewhich results in the usual parametric rate

k, thens® can be estimated as 2 1 N RENTE:
) = a0

1 k
E [— HslC —s
~k & k T 1 cen
Scen - !pm (!pm Z ) n

M
= s (@ Wb, (14) = (;) T (22)
which results in resulting in the following expression for optimal distorii
1 2 1 2 scaling of anM-sparse signal in a centralized system
e I e A
" 2 " 2 Doy = (—) o = —. (23)
n n

1 T 2
Lo [t ()] 09 e i mi
n { m \(Fm W, (15) Note that it might very well be that the number of DoF of
C -2 my\ o an M-sparse signal scales with the number of nodem
om Y4 (— ) oL . (16) . . . .
n the network. For example, two-dimensional piecewise @orist

Furthermore, from (15), we also have the trivial lower bounigelds with one-dimensional boundaries separating cohstan

<

of gions can be compressed using the discrete wavelet tramsfor
1 12 1 r 9 and havel = n'/?log(n) non-zero wavelet coefficients [14].
E [5 Hs’C — 5 J > —E [H!I/fn (!I/fn wk) HJ Therefore, we modeM as M = n*, where0 < p < 1 and
m hence, the inclusion al/ in the scaling relation in (23).
= (Z) afu a7 Remark 6: Note that the optimal distortion scaling relations

L of (20) and (23) for compressible and sparse signals have
and combining the upper and lower bounds of (16) and (1Q}sen ohtained under the assumption that the FC has precise
we obtain knowledge of the ordering of coefficients ef in the com-

my o 1 H e~k || —2a my\ o pressing basis (indices of non-zero coefficientssbfin the

— < — — < — . ; o . i .
(n) ow S B [n 57 Seenfl, | = Com™™ + ( n ) Tw sparse basis). This is not necessarily a problem in a cizadal
(18) setting and in cases where this information is not available

From this expression, we see that the choicencéffects the coefficient thresholding methods can be used to automigtical

classic bias-variance trade-off [39]: increasingcauses the SE'€Ct the appropriate basis elements from the noisy dath, a
boundC, m~2* on the approximation errof Hsk Sk_(m)Hz these methods obey error bounds that are within a constant
o iy - ’

(the squared “bias”) to decrease, but causes the stzocl’% logarithmic factor of the ones given above (see, e.g}, [40
: {41]).
i

tic component of the error due to the measurement no

2
1r||lw* (g ka _ (ﬂ) o2 (the “variance”) to 4>¢f in D¢, refers to the fact that this is theptimal centralized distortion
n m m 2 n/-w scaling.




IV. DISTRIBUTED PROJECTIONS INWIRELESSSENSOR  With (, /# ;) to obtair?
J
NETWORKS

In this section, we deye_lop the basic communication archi y;v 2R ({x;}ﬁzl) = /h_ (pjx§7 ji=1,...,n,
tecture that acts as a building block of our proposed esiimat J
scheme. As evident from the previous section, each DoF of (25)

a compressible or sparse signal corresponds to projectior‘\%erep > 0 is a scaling factor used to satisfy sensors’ sum

segso[ trr:etvxorktdafta onto mdlﬁgnsmdr?atl .geftgr mIth dtr nsmit power constrainP, and all the nodes coherently
and at the heart of our approach IS a distriouted method Qo their respectivgf’s in an analog fashion over the

communicating such projections to the FC in a power efhﬁCieHEtwork-to-FC MAC. Under the synchronization assumption

manner by exploiting the spatial averaging inherent in %} section Il and the additive nature of an AWGN MAC, the

AWGN MAC. . ) . o
corresponding received signal at the FC is given b
To begin, assume that the goal of the sensor network Is P ¢ g g 4

to obtain an estimate of the projection of noiseless sensor n n

data, corresponding to each observation of the physical phe k= Z \/h_ﬂ/;c +28 = p Z‘Pﬂ?? +2F
nomenon, onto a vector iR™ at the FC. That s, let us suppose J=1 J=1

that at each time instarit, we are interested in obtaining an = \p oF + (\/p pTw" + Zk), (26)
estimates® of

. n i wherez* ~ N(0,0?) is the MAC AWGN at timek (indepen-
vt = st = Z%‘Sj, (24)  dent ofw"). In essence, the encodérs,, . . ., F,,) correspond
j=1 to delivering to the FC a noisy projection sf onto ¢ that is
where € R”. One possibility for realizing this goal is toScaled byy/p (cf. (26)). Givenr*, the decodet+ corresponds
nominate a clusterhead in the network and then, assumifg? Simple re-scaling of the received signal, i.e.,
all the sensor nodes know their respective’s and have k

: ) ~ r
constructed routes which form a spanning tree through the ok 2 @ ({r"}ﬁzl) = —
network to the clusterhead, each sensor node can locally . VP
compute p;zk = @;(sk + wh) ilnd thesne values can be — ok 4Tk 4 27)
aggregated up the tree to obtaii = Y7, p;a% at the N{Z

clusterhead, which can then encode and transmit this esti . . .
. ; o e are now ready to characterize the power-distortiomiate
to the FC. However, even if we ignore the communication cos -
triplet (Pot, , Dw , L,,) Of the proposed joint source-channel

of delivering©* from the clusterhead to the FC, it is easy t0 oY ; ; S .

check that such a scheme requires at leasansmissions. For °.°mm“”'ca“°£ architecture for computing distributedjgco

a similar reason, gossip algorithms such as the ones dedcriBo_rllE n WST.L i R™ and letot — oTsk Gi th

in [42], [43], while known for their robustness in the face of eorerrt1 -ke Sodel fsan " € ﬁ trT ® 'St - =ven h:

changing network topology, might not be the schemes of firgg"'Sor network modef of section 11, the joint Source-channe

choice for these types of applications. communication sc_heme descrlbed_ by the encoc_iers in (25)
Another, more promising, alternative is to exploit recenqng (;het dt_eco?aer n (|27). can Iachlevehthe f(l)llowmg end-to-

results concerning uncoded (analog) coherent transmiss?cg IStortion by employing only one channel use per source

schemes in WSNs [1]-[3], [16]. The proposed distributeg®ervation
joint source-channel communication architecture reguirdy K

. 1 12
one channel use per source observatidy (= 1) and is D, & KhmOOEZ]E “vk - k| }
based on the notion of so-called “matched source-channel k=1
communication” [2], [3]: the structure of the network com- ) o2 d,S (B%+02)
icati - *match” = 2 el} + [ = 22 lel3, (@8)
munication architecture should “match” the structure o th w 1112 \P 2>

optimal estimator. Under the current setup, this esséntial
involves phase-coherent, low-power, analog transmission where 7% is the estimate of/* at the FC.o2 is the mea-

. . . Y w
appropriately weighted sample values directly from thee®dsyrement noise variance? is the channel noise variance,

. . . . .. g

and the required projection is implicitly computed at the Féistance between the sensor nodes and the¢R€ the path-
communication setup of Section Il, full characterizatiéihos  channel use and = A(n) € (0,1] is a design parameter
spondingscalar-outputsource-channel encode(B, . . ., F,)
at the sensor nodes and tbealar-inputdecoderG at the FC,  spractical schemes of how each sensor encoder might getsatwets
where scalar nature of the encoders and the decoder is owixgectivep; is discussed in Section V-C.

to the fact that (by constructiod)v = 1 in this scenario. 8(Piot,w , Dv , Ly) triplet here corresponds to power, distortion and latency
of the projection coefficient as opposed (&ot, D, L) in Section Il that

To begin Wlth,.each sensor _enCO(ﬁﬂr in this architecture corresponds to power, distortion and latency required timase the entire
corresponds to simply multiplying the sensor measurem?nt signal.



the total network power consumption per source observatisgaling, it is sufficient that the second term in (31) alsdesca
associated with achieving this distortion is given by like ||¢||3 and hence) = O(1) would suffice to ensure that
2 *

AP (U—W) < D, = |l¢ll5 = Dj. (35)
d,* (B2 +02) . :
X n Consequently, the total network power consumption astaxtia

A T 1 k|2 with achieving this optimal distortion scaling would be eiv

Fow £ Jim =35 B[] < AP (29)

p by Potw = O(1) (cf. (34)). We summarize this insight as

follows.
Proof: To establish this theorem, first observe that (27) Corollary 1: Let ¢ € R™ and letv* = ”s*. Given the
implies thatv k € N sensor network model of Section Il and assuming that the
L2 system parameters3, o2, 02, d,, ¢, P) do not vary with the
E ka — @kﬂ - E ’soka + 2 ] number of nodes: in the network, the joint source-channel
VP communication scheme described by the encoders in (25) and

) ) 2 the decoder in (27) can obtain an estimafeof v* at the FC,
o lellz + R (30)  such thatp, = ll¢ll3 < D7, by employing only one channel
use per source observatiah, = 1, and using a fixed amount
of total network powerPyg,, = O (1).

Observation 1:While the original problem has been setup
Dy = o2 |l + 0_3 (31) under afixed sum transmit power constraii®, one of the
v significant implications of the preceding analysis is thatre

resulting in the following expression for the projectioneéo
ficient MSE

thatV k € N network — say, e.g.P = O(n) — one cannot improve on
N N the distortion scaling law of (||¢||3). In other words, when
2 2 k|2 it comes to estimating a single projection coefficient in the
o e < E { - } . ! X
P ow ; leal™ < ; ’y7’ presence of noise, using more than a fixed amount of total
' “n power per channel use is wasteful as the distortion due to the
= ZE {ﬁ (s? + wf)Q |%.|2} measurement noise (first term in (31)) is the limiting fadgtor
= h; the overall distortion scaling.
n Observation 2:Even though the joint source-channel com-
< pduc (B2+crfu)2|gaj|2, (32) munication architecture described in this section is meant
j=1 to be a building block for the signal estimation scheme,
and thus the architecture is important in its own right too. Often
times, for example, rather than obtaining an estimate of the
. 1 noiseless sensor data at the FC, the designer of a WSN is
p = AP (33) . X o . .
d,* (B2 +02) |lli3 merely interested in obtaining the estimates of a few of its

linear summary statistics. And, given that any linear sumyma

would shufflce to satisfy the sum transmit p?werf constra|rt1)t Qatistic is nothing but the projection of noiseless sernkda
(11), whereA = A(n) € (0, 1] is @ power scaling factor to €onto a vector inR", preceding analysis implies that one can

used by the designer of a WSN to control total network POWGhtain such linear summary statistics at the FC with minimal

consumption. This in turn results in the following expressi distortion (and latency) and consumption of only a small
for total network power consumption per source observatiogmount of total network power
o2 < < 3 Example 1 (Sensor Data Averagelo illustrate the idea
P —dUC Bto2y) = Poty < AP (34) further, consider a specific case where the designer of a
. v ) WSN is interested in obtaining an estimate of the average
Finally, to complete the proof of the theorem, we substitote o _ 1 S sk of noiseless sensor data at each time instant
H T n j=1°%j
(31) tr_1e value of fro_m (,33) to O?t?"” (2,8)' ) ~ ™ This would correspond to the projection vector being given
Notice that the projection coefficient distortidh, achieved by ¢ = (1/n, ... 1/n)T and thus, using the communication
by the proposed joint source-channel communication &chit 5 cpitecture described in this section, an estimate®afan be

ture has been expressed in terms of two separate contriButigy,aineq at the FC such thBt, = 1/n = D (the parametric
(cf. (28), (31)), the first of which is independent of thexey 1 — 1 and Beys = O (1) °

proposed communication scheme. This term is solely due
to the noisy observation process?( # 0) and scales like
llel|3. The second contribution is primarily due to the noisy
communication channel and scales like||3/\. Moreover,
given the observation model of Section I, it is easy to check In this section, we build upon the joint source-channel com-
thatD;, = ||¢||3 is the best that any (centralized or distributednunication architecture of Section IV and using it as a basic
scheme can hope to achieve in terms of an order relatibuilding block, present a completely decentralized schéme
for distortion scaling [38]. Therefore, for optimal distion efficient estimation of sensor network data at the FC. The

V. DISTRIBUTED ESTIMATION FROM NOISY
PROJECTIONS KNOWN SUBSPACE



analysis in this section is carried out under the assumptiand, using these noisy projections, it produces an estiofate
that the designer of the WSN has complete knowledge tbfe noiseless data vectsf given by

the basis in whichS is compressible (or sparse) as well A

as precise knowledge of the ordering of its coefficients in 3¢ — @ ({Tﬁ}i—l) = ot <r_>
the compressing basis (indices of non-zero coefficientheén t B VP
sparse basis) at each time instanWVe refer to this scenario as D e (kT & wh 2k
the ‘known subspacease and, under this assumption, analyze = s + ¥ (!I'L w ) + 7
the corresponding power-distortion-latency scaling lafvthe

proposed scheme as a function of number of sensor nodistice the intuitively pleasing similarity betweed and§fen
in the network. As to the question of whether the know(cf. (14), (38)): the first two terms in the above expres-
subspace assumption is a reasonable one, the answer depsiodscorrespond identically to the centralized estimatea of
entirely on the underlying physical phenomenon. For examptompressible signal (withn replaced byL) and the last

if the signal is smooth or bandlimited, then the Fourier derm is introduced due to the noisy MAC communication.
wavelet coefficients can be ordered (or partially ordere@onsequently, this results in the following expression for
from low frequency/resolution to high frequency/resauti distortion of a compressible signal at the FC

Alternatively, if the physical phenomenon under obseorati

happened to be spatially Holder smooth at each time ingtant <£> JE (é) <0§ d.* (B% + 03;)) <

then it would be quite reasonable to treat the resultingaens \ n / n AP -

(38)

network data under the known subspace category (see, e.g.,
—2a L 2
[2], [44]). D < C,L + (ﬁ) oy t
L o? dy* (32 +Ufu)
A. Estimation of Compressible Signals - P - (39)

To begin with, let¥ = {¢,}"" , be the compressing basis
of S such thatl ||s* — skv(m)H; =O(m )V keNIn
Section IV, we showed that using the communication sche
described by the encoders in (25) and the decoder in (27),
projection per snapshot can be efficiently communicatetédo t o2
FC by employing only one channel usé(= 1). By a simple ALP <ﬁ) < Pot < ALP.  (40)

H H U (B + U’w)
extension of the encoders/decoder structure of Section 1V,
however, the network can equally well communicat¢> 1) The above two expressions essentially govern the interplay
projections per snapshot ih consecutive channel uses (ondetweenPy, D and L of the proposed distributed estimation
channel useer projectionper snapshot). Essentially, at eaclscheme and in the sequel, we shall analyze this interplay in
time instantk, the L-tuples generated by the encodéts are further details.

Finally, simple manipulations along the lines of the ones in
nﬁgction IV result in the following expression for total neik
Sower consumption

given by (cf. Section Il, Fig. 2) 1) Minimum Power and Latency for Optimal Distortion
X T Scaling: Similar to the case of distortion scaling in the
yf = F; ({x}?}ﬁzl) = (yfl,---,yﬁ) centralized setting, (39) shows that the choice of number
5 . T of projections per snapshot in the distributed setting also
= \/h:j(wlj x5, YL Ij) , j=1,...,n, (36) results in a bias-variance trade-off: increasihgcauses the

boundC, L~2* on the approximation errof ||s* — s’““)Hi
wherep = (AP)/(d,*(B2? +¢2)), and at the end of thé-th  to decrease, but causes the stochastic components of die err
: . . 2
i(;hgir\llr;il g;e, the received signal at the input of the deaGdery,e to the measurement noi%e]E H‘I’]Z (!I,;Zka) H2

n

2
(£) o2 and the communication noiseE [HW’Z zk/\/ﬁH
2

(&) (2cEen)

n
= Vhiy 4 2
J=t n AP

. . T est upper bound scaling in (39) is attained by making the
VP Zd)ljxkv---azng’Ik + 2"
(el Xvmis)

to increase. Consequently, the tight-

approximation error, the measurement noise error and the
communication noise error scale (as a function nf at

T
= Vpoi + (\/N’z w* + Zk)a (37) the same rate. That is, assuming that the system parameters
(Cy, B,02,02,d,,(, P) do not depend om,
where @ is the n x L matrix of the basis vectors corre-
sponding toL largest (inTmagnitude)l?-coefficients of s*, L2 < L - £7 (41)
o 2 (k... 08T = Wk sk and2F ~ N(01x1, 02T 15 1) noAn

is the MAC AWGN vector (independent ab*). Thus, at the implying thatL must be chosen, independently xfas
end of the L-th channel use, the decoder has accesd. to

- 1/(2a+1
scaled, noisy projections af* onto L distinct elements o@ L = pt/Geth), (42)
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which in turn requires thatn = (1), resulting in the the designated cluster to coherently communicate the medjui
following expression for optimal distortion scaling L = n'/Get1) projection coefficients to the FC. Note that
sincen?®/(2a+1) 7 p for highly compressible signalgy >

1), the performance of our proposed estimation scheme in this

that has the same scaling behavior as thabgf, (cf. (20)). case approaches that of the= n extreme, without incurring

Moreover, the total network power consumption associat@§y overhead of in-network communication. _

with achieving this optimal distortion scaling is given by 2) Power-Distortion-Latency Scaling Laws for Consistent
Estimation: Preceding analysis shows that in order to achieve

(see (40)) g analy

the optimal centralized distortion scaling 2%/(*+1) | the
Pot = L = nt/Gotl) (44) network must expend poweP,; and incur latencyL that

scale (withn) at a sublinear rate of!/2+t1) This may

Co.mbirrl]ing (?2.)’ (4?. agd (44), we can ?Ij.o compactlyﬁ;?graﬁése a bottleneck in deploying dense WSNs for certain types
terize the relationship between optimal distortion saa f applications that might require extended battery life or

the a;souated power and latency requirements in termseof f . temporal sampling of the physical phenomenon. @urso
following expression analysis of (39) and (40), however, shows that it is possible
D* ~ Do 2 ~ L2 (45) to lower these power and latency requirements at the expense
of sub-optimaldistortion scaling, and for the remainder of
Note that this expression does not mean that a WSN withis subsection, we shall be analyzing these power-distort
fixed number of sensor nodes using more power and/or latenatency scaling regimes.
can provide better accuracy. Rather, power, distortion andNotice that under the assumption of system parameters
latency are functions of the number of nodes and the abo\e,, B, ¢2, 02, d,, ¢, P) not varying withn, L and \ are the
relation indicates how the three performance metrics behaynly two quantities that bear upon the required network powe
with respect to each other as the density of nodes increasesid achievable distortion of the estimation scheme (seg (39
Remark 7:Equation (44) shows that the total network40)). Therefore, we begin by treating (effective number of
power requirement of our proposed scheme for optimal digrojections per snapshot) as an independent variable addimo
tortion scaling (D* = n~=2%/(22+1)) is given by P < its scaling behavior as = n” for § € (0, 1), while we model
nt/(2e+1) A natural question isHow good is this schemethe scaling behavior of as A < n=? for & € [0, 00) (recall,
in terms of power scaling?While a comparison with all 0 < \ < 1).” Note that3 = 3* £ 1/(2a+1) has already been
conceivable schemes does not seem possible, in orderstved previously (resulting id = §* £ 0) and corresponds
give an idea of the performance of our proposed scheme wethe optimal distortion scaling of (43).
compare it to a setup where all the nodes in the networkBias-Limited Regime. Recall thatL = n!/(2>+1) is the
noiselessly communicate their measurements to a desiynaggitical scaling of the number of projections at which point
cluster of1 < 7 < n nodes. Each node in the clustethe distortion component due to the approximation errolesca
computes the requirefl projections of the measurement datat the same rate as the distortion component due to the
for each snapshot and then all thenodes coherently transmitmeasurement noise (cf. (41), (42)). If, however, we Iet
these (identical) projections to the FC over the MAC; ifi< »n”) scale at a rate such that< 3*, then the first term in
this case, ther x 1 MAC is effectively transformed into a the upper bound in (39) that is due to the approximation error
point-to-point AWGN channel with am-fold power-pooling (bias term) starts to dominate the second term that is due to
(beamforming) gain. One extremg, = 1, corresponds to a the measurement noise and, ignoring constants, the regulti
single clusterhead (no beamforming gain), whereas ther otlggstortion at the FC scales as
extreme,n = n, corresponds to maximum beamforming gain. g Y Cises
Note that in our proposed scheme, nodes transmit coherently T <D< gl T (46)
and hence benefit from power-pooling) but there is no data . : . o
(exchange between them.?ﬂ\n eer)ct cor%l)parison of our sche%1ned the corresponding choice optimald is given by
with the above setup involving in-network data exchange is § = 1—(20+1)8, (47)
beyond the scope of this paper since quantifying the cost
of required in-network communication is challenging anwhere optimal here refers to the fact that{ix 1—(2a+1)3
requires making additional assumptions. Thus, we ignoee ti$ wasteful of power since distortion component due to the
cost of in-network communication and provide a comparis@pproximation error (first term in the upper bound in (46))
just based on the cost of communicating the projections ito that case decays slower than the distortion component to
the FC — though, in general, we expect the in-network costid®¢ communication noise (second term in the upper bound in
increase with the sizé of the cluster. Under this assumption{46)); and (ii)0 > 1—(2a+1)43 is wasteful of projections (i.e.,
the analysis in Appendix | shows that our scheme requirkgency) since distortion component due to the approxinati
less communication power compared to the= 1 case, error in that case decays faster than the distortion comgone
whereas it requires more power compared toiihe n case.

In particular the power scaling achieved by our proposed7There is nothing particular about choosifigas the independent variable
’ except that it makes the analysis slightly easier. Nevisse we might as

.SCheme (fOI’ optlmal distortion scallng) is identical to _tthawell start off by treating\ as the independent variable and reach the same
in the case when there afe = % < n?*/(22+1) nodes in conclusions.

D* = L—2a = n—20¢/(20¢+1) (43)
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T T T
=x%= Pow. Scaling Exp. ~a = 1

due to the communication noise. With this balancind.aind ;
)\, distortion goes to zero at the rate 0sf il sopoetivtneull

Power Scaling Exponents Corresponding - - Dist. Scaling Exp. —a = 1
to Optimal Distortion Scaling .. Dist. Scaling Exp. ~a = 2

D = TL_QQB 5 (48) o8 = Dist. Scaling Exp. —a = 4 il

0.4r

as long as the choseft € (0,1/(2a + 1)), and the corre-
sponding total network power consumption is given by (cf.

(40))

02r-

*® Optimal Distortion Scaling Exponents
N F3 (Correspond to B = 1/(2a + 1))

Pt < n2at2B-1 (49)

Power & Distortion Scaling Exponents
)
<

resulting in the following expression for power-distortio
latency scaling relationship in the bias-limited regime
D ~ Py@miT ~ L2 (50)

I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Variance-Limited Regime. On the other hand, if we let Latency Scaling Exponent (¢
E3
L scale at a rate such tha > f7, then the second term 3. Power-distortion-latency scaling relationshipcofpressible signals

. . . Fig.
n _the upper bound in (39) that IS due to th_e measurem@l‘f&he known subspace case. The scaling exponenf.pfind D are plotted
noise (variance term) starts to dominate the bias term aad #yainsts € (0, 1) for different values ofx. The filled black square on each

resulting distortion at the FC scales as curve corresponds to the operating point for optimal digiorscaling 3 =
3*), with bias-limited and variance-limited regimes cormsging to the curve
D = pn- 118 + n71+5+5’ (51) on its left and right side, respectively.

and the corresponding choice of optindals given by = 0

(= 6*). This implies that as long as the chosé® (1/(2a+ the corresponding total network power consumption would be

1),1), distortion in the variance-limited regime goes to zergiven by (49)}

at the rate Observation 4:Another implication of the analysis carried

148 out in this section is that the more compressible a signal is i
D =mn ’ (52) 4 particular basis (i.e., the higher the valueddf the easier

and the corresponding total network power consumption ifsis to estimate that signal in the bias-limited regimefee t

given by optimal distortion scaling point (easier in terms of an ioyed

power-distortion-latency relationship).

Pot =< n”, (53) Observation 5:0ne of the most significant implication of
the preceding analysis is that, while operating in the bias-
limited regime, if3 is chosen to be such that< 1/(2a+ 2)

. ) then the scaling exponent @%, would be negative (cf. (49),
D ~ Pg ¢t ~ LTt (54) Fig. 3). This is remarkable since it shows that, in principle

Notice that as@ — A3*, both (50) and (54) collapseconS'.sftter?t t5|gtgr:al etstlmkanon 'S possml@t(\ 0 asn: OO)'

to the power-distortion-latency scaling relationship db); even if the total network power consumptidhy goes to zero!

o . . : o 3) Power-Density Trade-off:\Viewed in a different way,
indicating that the optimal distortion scalin@* corresponds : .

o ) oL .~ Observation 5 also reveals a remarkable power-densitg-trad
to the transition point between the bias-limited and varégan

limited regimes. Thus, (50) and (54) completely charazteriorf.mherem. in-our approachncrgasmg the sensor density,
while keeping the latency requirements the same, reduces

the pow.er-glstortmn-!ateqcy scaling relationship of m the total network power consumption required to achieve
posed distributed estimation scheme for a compressibieakig . : . :
target distortion level This essentially follows from the

in the known subspace case. This scaling relationship & a@ . ) ; . L
illustrated in Fig. 3, where the scaling exponentsig and act that the power-distortion scaling law in the bias-til

. : egime (including the optimal distortion scaling point)iéevs
D are plotted against € (0, 1) (the chosen scaling exponentr : ; .
of L) for different values of. a conservation relation given by (cf. (48), (49))

Observation 3:Analysis of (50), (54) and Fig. 3 shows that PotD = n?71 (55)
(i) any distortion scaling that is achievable in the varinc
limited regime is also achievable in the bias-limited regim
and (ii) scaling of P in the variance-limited regime is

resulting in the following expression for power-distortio
latency scaling relationship in the variance-limited regi

Specifically, letg, < (3, denote two latency scalings in the
bias-limited regime and let; > n,; denote the corresponding

uniformly worse than in the bias-limited regime. This ingsi number of nodes needed to achieve a target distortion level

that any WSN observing am-compressible signal in the D(n1,61) = D(n2, B2) = D,. Then, we have from (48) that
known subspace case should be operated only either in thep(nhgl) = D(ny, ) = n;‘mﬁl = n;Mﬁa (56)
bias-limited regime or at the optimal distortion scalingrip

i.e.,,3€(0,1/(2a+1)]. Thus, givenr and a target distortion 8The designer of a WSN could also reverse the rolesDofind L by

scaling ofD < n7. 0 < < 204/(204 + 1) the number specifying a target latency scaling and obtaining the epoading distortion
7 - ! 7= ! and power) scaling expression.
of projections computed by the WSN per snapshot needs t0yqe that the power-distortion-latency scaling in the aace-limited

be scaled as =< n”, where 3 = v/2a (cf. (50)), and regime is independent af (cf. (54)).
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B Decreasing

tot

Distortion D(n)

Total Network Power P_(n)

B Decreasing
07 (from B' to 0)

H— Optimal Power Scaling “
++ Feasible Power Scaling Seo
= = Cut-off Power Scaling ~e

10° 10° 10" 10° 10 10° 10 10"

Number of Nodes n Number of Nodes n

(a) Different scaling curves fob (b) Different scaling curves foPit

Fig. 4. Power-Density trade-off for compressible signalgdhe known subspace case. Various power and distortioingoalirves, each one corresponding
to a different value of3, are plotted on a log-log scale against the number of nodes fe- 1. The dashed curves are the cut-off scalings for consistent
signal estimation (corresponding ™\, 0).

and therefore, the corresponding latency requirements aredicted, increasing the sensor density roughly by a faxfto
rather trivially related to each other as 9 reduces the total network power consumption by a factor of
5 9, while the latency requirements stay the samig = n?).

La(ng,B2)  ny> ]

0 = —5 = L (57)

Li(n1, B1) nit — ,

B. Estimation of Sparse Signals

Moreover, it follows from (55) that the total network power | analysis for the estimation of ah/-sparse signal

consumptions in the two cases are related by in the known subspace case using the joint source-channel
P 262-1 communication architecture of Section IV can be carried out
tot(n2a 52) U

ni
Pot(n1, 61)

T Bl (58) along almost the same lines as for compressible signals in
™ 2 Section V-A, with the only obvious difference being thsit

where we have used the fact that (56) implies th%ffl _ now lies exactly in an)/-dimensional subspace @&" and
Qprefore,L has to be taken exactly equal fd, i.e., is no

ngﬁz. Relations (57) and (58) show that increasing the sensl[ . . .
density by a factor ofN, while keeping the number of onger a variable parameter in the hands of the designer of a

projections (per snapshot) communicated by the network \%SN..Thls.resuIts in the following expressions for the eod-t
the FC the same, reduces the total network power requiredet%d distortion at_the FC and the corresponding total network
attain a given target distortion by a factor of. power consumption and system latency

This power-density trade-off is also illustrated in Fig. 4, M M o2d ¢ (B2 +02)
(3) = G () e

where various power and distortion scaling curves (corre-D =

sponding to different values off) are plotted on a log- " AP

log scale against the number of nodes for= 1. For the ( Ta ) < P < AMP (60)
sake of illustration, these plots assume that the constnts d,S (B2 +02)) ~ o= ’
proportionality in the scaling relations are unity. In orde L = M. (61)

illustrate the power-density trade-off, suppose that wentwa

to attain a target distortion oD, = 0.02. With optimal Unlike the compressible signal case, however, the only con-
distortion scaling (solid curve in Fig. 4(a) correspondiog trollable parameter in this case is the power scaling fastor
B = B* = 1/3), the desired distortion can be attainednodeled as\ < n=° for § € [0,00),'° and in the sequel, we
with n; =~ 353 nodes, consuming a total network powefnalyze the effect of various scaling behaviors)obn the
Pot(n1,31) ~ 7.07, as calculated from the solid curve inpower-distortion-latency scaling relationship of the pweed
Fig. 4(b). On the other hand, however, if we operate onestimation scheme.

sub-optimal distortion scaling curve (say, e.g., the thiotted 1) Power-Distortion-Latency Scaling Laws for Consistent
feasible curve from the bottom in Fig. 4(a) correspondingstimation: We start out by first analyzing the optimal distor-
to 5o = 8/33), we would attain the desired distortion oftion scaling that is achievable for a-sparse signal. Notice
D, = 0.02 with no ~ 3192 nodes — roughly a factor of 9

increase in sensor density — but would only consume a tota}ORecall that while we do model the scaling behavioridfas M < n*,
0 < p < 1, the choice ofy is not in our hands in this case and depends

ngtwork power O.fptot(n% ,B2) = 0.78, as Qalcylated from the upon the underlying physical phenomenon. Essentiallfiere plays the role
third dotted feasible curve from the top in Fig. 4(b). Thus, analogous to that of in the compressible case.
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T T
—w— Optimal Pow. Scaling
= Optimal Dist. Scaling
0.8 ' %' PLR: Feasible Pow.
+ PLR: Feasible Dist.
=x%= PLR: Cut-off Pow.
0.6 H = = PLR: Cut-off Dist.

noise (second term in (59)) starts to dominate the distortio
8 component due to the measurement noise (first term in (59))
i and, ignoring the constant parameters, the resulting rtiisto

at the FC scales as

] D = poitate (65)

0.4

0.2

- R ety 5 in the power-limited regime. This implies that as longdas
s, ‘ . (0,1 — p), distortion can still be driven to zero, albeit at a
F ; slower, sub-optimalrate of n=1*t#*9 (= D*). In particular,
this means thaD can be asymptotically driven to zero even
S if the total network powetP; (< n*~°) scales just a little
o8 .t 1 faster tham?*~! (cf. (60)). This observation is similar in spirit
-1eZ w ‘ ‘ ‘ ‘ to the one made for compressible signals since it showsithat,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . . . . . . . . . .
Scaling Exponent of M (1) principle, consistent signal estimation is possible in lihet
of a large number of nodes fogr € [0,1/2] (i.e., the number
Fig. 5.  Power-distortion-latency scaling relationship sgfarse signals in of DoF M scaling at most as fast agﬁ) even if the total
the known subspace case. The scaling exponent8&gfand D are plotted K Finallv. thi di .
against the scaling exponent df (< n#) for 0 < p < 1, while the scaling networ powerPtOt g(_)es to_ze_zro. inally, t _'S Power' _'Stomon'
exponent ofL is the same as that af/. The solid curves correspond to latency scaling relationship in the power-limited reginaa e
the optimal distortion scaling exponents and the corredipgntotal network expressed as
power scaling exponents, while the dotted curves corraspmuaarious power-
limited regime (PLR) scalings that result in consistennalgestimation. The D P —Llbpds L= +3 41 66
dashed curves are the cut-off scalings for consistent ksigtanation. ~ Lot * ~ * : ( )

Power & Distortion Scaling Exponents

2) Discussion:While quite similar in spirit, there are still

that for fastest distortion reduction, the first term (dugte o 'c key differences between the power-distortion-latenc
scaling laws of the proposed estimation scheme for com-

measurement noise) in (59) should scale at the same rate_as

the second term (due to the communication noise). This ﬁ)ﬁeSS'ble and sparse signals. To begin with, unlike for com-

turn requires that — O(1) (or § — 6* 2 0), resulting in the pressible signals, the latency scaling requirements farssp

following expression for optimal distortion scaling signals are dictated by the underlying physical phenomenon
(L = M = n*) and cannot be traded-off for power and/or
D* = M N (62) distortion without making further assumptions on the decay
n ’ characteristics of th@/ non-zero coefficients af. Secondly,
which has the same scaling behavior as thabgf, (cf. (23)). the scenario of consistent signal estimation of sparseaign
Moreover, the total network power consumption associat&dth decaying total network power consumption exists if and
with achieving this optimal distortion scaling is given by  only if the number of DoFM scales at a rate less than or
equal to\/n, i.e., u < 1/2 (see Fig. 5} And finally, as a
Po = L = M = n*. (63) flip side to this observation, the power-density trade-off f
Equations (61), (62) and (63) can also be combined togetif@arse signals exists only when< . < 1/2, happens to be

for u € (0,1) to express the relationship between optimd function of x and is not as pronounced for< p < 1/2.
distortion scaling and the corresponding power and laten ecifically, for an increase in the sensor density by a facto

requirements in terms of the following expression of NV, the total network power consumption requir_ements can
- - only be reduced by a factor @¥!1=2#, 0 < u < 1/2, in order
D* ~ Po ¥ o~ LTuth (64) to attain the same target distortion for a sparse signa{&b}).

Notice that the above relationship has the same form as
that of (54) (the power-distortion-latency relationship @ C. Communicating the Projection Vectors to the Network

compressible signal in the varianc_e-limited rggime).wh'ﬂch Recall that an implicit requirement for employing the pro-
precisely what one would expect since there is no bias wlagysed distributed estimation scheme in the known subspace
distortion component for a sparse signal (cf. (59)). case is that the sensor encoders have access to the respectiv
Remark 8:Equations (61), (62), and (63) show that for thggjection vectors’ elements at each time instar(tf. (36)).
case ofy = 0, i.e, M = O(1), optimal distortion scaling | this subsection, we address the issue of how one might
D* =< n~! can be obtained by consuming only a fixed amougbmmunicate this information to the sensor nodes. One &iabl
of total network power and incurring a fixed latency, i.egption in this regard could be the pre-storage of relevant
Por = L = O(1). This result is similar in spirit to the one jhformation in each sensor node. However, pre-storagee)f th
obtained in [3] that primarily studies the case analogoubBdb gptire compressing (sparse) ba&ior a subset of it{+,}, ;,
of a sparse signal with non-scaling D§F/ = O(1)), albeit \here1 < I < n, in each sensor node is not feasible in
assuming Gaussian sources and multiple FCs (see Theor%ﬂfe-scale WSNSs since this would require at leastorage

1 and 3 therein). _ elements per sensor node, and a better alternative is te stor
Power-limited Regime.On the other hand, if we tak&>

0 then the distortion component due to the communicationt!Recall that for compressible signals, this observation$aiue for all.
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only the correspondingon-zeroelements of thd, projection index of the true basis vector, it would need to be determined
vectors, {t;; : ¥i; # O}Z.L:l, in the j-th sensor node. In the by trial and error (e.g., deterministically or randomlyeseing
context of [2], for example, this would mean having onlyasis vectors in some fashion). As an illustration, conside
O(1) storage elements per sensor node, since the structareandomized selection process: the network computes the
of the proposed projection vectors in [2] is such that therojection of the sensor data ontp, and i is selectedL
cardinality of the se{v;; : 1;; # O}Z.L:1 is identically equal to times uniformly at random (without replacement) from the se
oneVv j = 1,...,n. Otherinstances when pre-storage might bgl, 2, ..., n}. Ignoring the distortion due to the measurement
a feasible option could be, for example, when the projecti@nd communication noise, the squared distortion error @voul
vectors’ elements come from an analytical expression. Piee 0 at the FC if the spike in thE domain corresponds to one
storage, however, suffers from the drawback that sensceshodf the uniformly pickedy,;’s and B2 otherwise, and the proba-
pre-stored with one compressing (sparse) basis vectorstmigility of not finding the spike inL trials is Hf:—ol 1 1L

not be readily deplgyablein signal fields compressibler@®a | ,, is large enough and, < n, we can approxim%_t:e the
in some other basis. resulting distortion byD ~ (1 — 1)" B2 ~ ¢~L/n B2 — B2

Another more feasible, but not always practical, approagly,, _, , j.e., equivalent to the MSE that is achievable even
to the communication of projection vectors to the networlii, oyt any information.

could be that the FC transmits this information over the 8C-t  pnother more general, and perhaps relevant, example is
network broadcast channel at either the start of the estmaty gt ation in which the signal field is spatially piecewise
process or at the start of each network-to-FC channel ugg,qoth. Signals of this type do lie in a low-dimensional
For the case of basi# whose vectors have some sort ofpspace of the wavelet domain, but precisely which sulespac
spatial regularity in their structure such that they do ”%pends on the locations of the change points in the signal,
require addressing each sensor node individually (e.Gto¥® \yhich of course are unlikely to be known a priori. Broadly
describable by a few parameters such as in [2]), this coWdeaking, any signal that is generally spatially smoothrtapa
be readily accomplished by broadcasting a few commagdm some localized sharp changes or edges will essentilly
signals from the FC to the network. One could also increage, |ow-dimensional subspace of a multiresolution basihisu
the addressing resolution of the FC by equipping it withs ayelets or curvelets, but the subspace will be a funofion
multiple transmit antennas and using some of the techniqygs time indesx: and thus, will preclude the use of methods like
described in [45]. However, depending upon the structure @f one in Section V that require prior specification of thsida
the compressing (sparse) basis, this approach may redire feciors to be used in the projection process. This is where th
FC to be able to address each sensor node individually whighiersalityof compressive wireless sensing (CWS) scheme,
may or may not be practical in large-scale dense WSN§esented in this section, comes into play. As we shall see,
We will show in Section VI, however, that one benefit oy g provides us with a consistent estimation schema (0
cqmpressive wireless sensiisga straightforward treatment of 55 ode density increases), even if little or no prior knolgte
this issue. about the sensed data is assumed, whilg and L grow at
most sub-linearly with the number of nodes in the network.

VI. DISTRIBUTED ESTIMATION FROM NOISY
PROJECTIONS UNKNOWN SUBSPACE A. Compressive Wireless Sensing

In Section V, we proposed an efficient distributed estimmatio Recall that ifv* = ”s* = 377, o;s% is the projection
scheme that achieves the optimal centralized distortiafirgg  Of s* onto a vectorp € R™ then, using the communication
Dz, for both compressible and sparse signals under tREchitecture described in Section IV and consuming @h(y)
assumption that the WSN has complete knowledge of the bagfgount of power, the FC can obtain an estimate'bfn one
in which S is compressible or sparse. Generally speakinghannel use that is given by
however, even if th.e bgsis in whic$ is com_pressible_(sparsg) oF = oF 4 pTwk 4 3F, (67)
is known, it is quite likely that the precise ordering of its
coefficients (indices of its non-zero coefficients) in thasis Wherez* ~ N (0,02 /p) is the scaled MAC AWGN (cf. (27)).
at each time instant might not be known ahead of timeThe basic idea behind CWS is that instead of projecting the
— a scenario that we refer to as thenknown subspate sensor network data onto a subset of a deterministic basis of
or ‘adaptive subspacecase. As an example, consider th&k", the FC tries to reconstrusf from random projection®f
following simple case. Suppos#is very sparse in some basisthe sensor network data. Specifically, {gt;, € R"};; be an
¥ = {4,}., such that each temporal sampié has only i.i.d. sequence of (normalized) Rademacher random vectors
one non-zero coefficient of amplitudgn B corresponding to i.€., {¢:;}j—; = £1//n, each with probabilityl /2, and the
someelementsp; of ¥ andi is drawn at random from the setFC tries to reconstruct® by projectingz* onto L of these
{1,2,...,n}. This is an example of the case where we knovwandom vectors? Because the entries of each projection vector
the basis in whichS is sparse but do not know the indices ofp; are generated at random, observations of this form are
its non-zero coefficients in that basis. called random projections of the signal.

One naive approach to this problem would be to use the dis;, _

. . h . . . The L Rademacher vectors are to be generated independently fat eac
tributed estimation scheme described in Section V. HOWeVﬁrrne instantk. However, we omit the superscript corresponding to the time
since the network does not have a precise knowledge of théex to simplify the notation.
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Remark 9: An important consequence of using Rademachand takingg to be a vector that has one at locatighand zero
random vectors for projection purposes is that each sermsor at all other locations establishes the independent{@ﬁfwk}
locally draw the elements of the projection vectdis;}- , and{¢;,}. In this case, if we pick
in an efficient manner by simply using its network address P
as the seed of a pseudo-random number generator (see, e.g., P = T ha o (73)
[46]). Moreover, given these seed values and the number of d® (B* +03)
nodes in the network, the FC can also easily reconstruct tiien the observations in (68) would be equivalent (in distri
vectors{¢,}L ;. Therefore, in addition to being a universation) to observations of the form
estimation schemfa, CWs ha; an addgd a_ldvantage that no o5 = oTst b i=1,.. . L (74)
extended information concerning the projection vectoredse ¢ ¢ ¢
to be communicated to (or stored inside) the sensor nodgere {n*}~ , are i.i.d. zero-mean Gaussian random vari-

(cf. Section V-C). ables —independenof {¢;;} — with variances? = o2 +
After employingZ Rademacher projections, the correspong? 4,,¢ (B*+02) /P, and the results of Theorem 1 in [7]
ing projection estimates at the FC are given by can be applied directly.
oF = ¢Tsh 4 @Twh +35 i=1,....L, (68) On the other hand, our model only assumes that the vectors
! ! ! ! {¢;}£, are mutually orthogonal in expectation; hence, the
where w* = (wf,...,wf)”, and {w}f}"_, and {ZF}~, projected noise is colored — i is the L x n matrix

are i.i.d. zero-mean Gauss_ian random variables, indepéndghose rows arg¢; }~ , then, given®, the projected noise
of each other and¢;;}, with variancess;, and o2/p, re- vector ®w” is a zero-mean Gaussian vector with covariance
spectively. The reconstruction process can be describednggirix ®®” 2. Without loss of generality, however, we
follows — let S, denote a countable collection of candidatean assume that the projected noig¢! w*}% , behaves
reconstruction vectors such that approximately like white Gaussian noise and consequently,
S, C {yeR":|y;|<B, j=1,...,n}, (69) use thg ob_servgtlon model of (74) for further_anaIyS|s. This
approximation is motivated by the asymptotic results pre-

and define a CWS estima# as sented in Section IV-B of [29] which show that the extreme
& (= c(s)log(2) eigenvalues ofp®~ are almost surely (a.s.) contained in the
s = agag {R(s) T T e (70) interval [(1 — Vo, 1+ \/E)Q} in the limit asL,n — oo

The first term in the objective function is the empirical fiskWith L/n — c. Since we assumé grows sublinearly withn

defined as so L/n — 0 in our case and consequently, all the eigenvalues
I of ®®” tend to1 a.s. In other words{¢,}~ , become
ﬁ(s) _ 1 Z (@k _ (ﬁs) 2 7 (71) mutually orthogqnal asymptotically, and th_e degree _of nqg)
L Py becomes negligible for large values wof(this approximation

which measures the average (Euclidean) distance between'?rfi:IISO shown to work well in practice — see Section V1.

observatons £ 1, and he prjections of  guen candicat 911 BOUIOE 1 e feconsucton oror g he CS
vectors onto the corresponding Rademacher vecfess -, . y 9

The quantity ¢(s) in the second term is a non-negativé’ve can find a basi# at the FC in which the signa$ is

number assigned to each candidate vectoSinsuch that a-compres§ible and then, using_ this comprgssing basis in the
s 9-<(s) < 1, and is designed to penalize Candidatreconstructlon process by definigg andc(s) in terms of@.
sE€Sy — !

vectors proportional to their complexity (see (76)). Fipal gpecmcally, let
e > 0 is a constant (independent 6fandn) that controls the e, & {9 € R": |(¥6);| < B, 6; uniformly
relative contribution of the complexity term to the objeeti B '

function. In the context of Theorem 1 in [742 = 0 and so quantized ton? levels j =1,... ,n} (75)
e depends only the sample bour and the noise variance ) ) ] )
o2/p. be a set of quantized candidate solutions in the transform

In order to apply the results of [7] to the observation moddemain®, so thatS, = {s € R" : s = ¥6, 0 c O,}.
(68), the effect of therojected nois¢erms{ ¢’ w* 1%, needs Furthermore, let the penalty terafs) = ¢(6) be
to beL determined. First, suppose that the projection vector () 2 (1+q)log(n)]6]o, (76)
{¢,};=, were mutually orthogonal. In that case, it is easy to _
see that the projected noises are equivalent (in distabyto Where || - [[o counts the number of non-zero elements in a
i.i.d. zero-mean Gaussian noises with variangeIn addition, Vvector. Then, the optimization problem becomes
note that{¢! w*} and {¢;;} are independent. To see this, & 2

- ' - ; o i 0 = arg min{ ||[0) —dTwe| +
notice that for any fixed vectay € R, the joint characteristic 8 g L L 9

. T k T . q

functlo_n o_f ¢i w"® and ¢; g can be ff_;lctore_d into the product (1 + ) log(2) log(n)
of the individual characteristic functions, i.e., . 101, }, (77)

E ejuu,ﬁiTw"-ﬁ-szdnTg] -k {ejwdnka} E [ejwdnTg} ’

where o) £ (o%,...,0%)T, &, is the n x L matrix of
o ~k . .
(72)  Rademacher projection vectd$, } =, andd s the estimate
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of the regresentation of® in the compressing basig, i.e., available about the signal field, CWS should be the estimatio

s" 2 we . As shown in [7], for ana-compressibleS, such scheme of choice.

an estimate would satisfy
VII. | MPACT OF FADING AND IMPERFECTPHASE

I —2a/(2a4+1)
( ) ’ (78) SYNCHRONIZATION
log(n) The joint source-channel communication architecture pre-
while, for an M-sparse signal, this would result in sented in Section IV for computing distributed projections
in WSNs (and extended to estimation of compressible/sparse
D ( L )_1 (79) signals in Sections V and VI) is analyzed under the assump-
M log(n) ‘ tions that the network is fully synchronized and transnoigsi

from the sensor nodes do not undergo fading. This assumption

B. Power-Distortion-Latency Scaling Laws may not hold in practice for sensor network deployments

Recall that in order to achieve the distortion scaling Jp scattering environments and due to drifts in phases of

(78) and (79), the network had to empldy network-to-FC sensor oscillators. Therefore, we relax these assumptions
MAC uses per source observation, each one corresponding H)“g section a_nd study the Impact of fadm.g and |mperfect§pha
projection ofs* onto a random Rademacher vector. And whil ynthonlzatlon on the preV|o_ust obtained scallr_lg laws. |
the projection vectors in this case happened to be rand I%mcular, we establish that () the power-distortiotelacy

as opposed to the analysis carried out in Section IV, it is Qs of Sections IV and V continue to hold as long as the

simple exercise to show that with the scaling fagi@s given :ar}ggm nggnerl,aii'r;s n?:fhrrc?r?'e I;/te'gnsci,?rnoa:lss) ﬁ; tgea I;]Snfdgreo
in (73), each projection of the sensor network data onto Q fading P Y Izat v z

Rademacher vector still consumes o6lyl) amount of power. me;}n; and (i) tfhti cws S(;ahng Ihaws clontllnuel 0 hct)ltd as Ionﬁ
Therefore, power-distortion-latency scaling relatiapstf the as the mean ot these random channet gains Is not too smail.
CWS scheme for the case whéhis a-compressible can be

given by A. Distributed Projections in Wireless Sensor Networks
—2a/(20+1) —2a/(20+1) We begin by analyzing the impact of fading and imperfect
Pyt L o . : :
~ ~ | — , phase synchronization on the power-distortion-lateneyirsg
log(n) log(n)

law of the proposed communication scheme for computing
distributed projections (cf. Theorem 1). This is acconipi
while for an M-sparse signal witd/ and L scaling asM = Dy assuming that the communication scheme is still destribe
nt, 0<pu<1 andL =n 0< B <1,itcan be given by Dy the encoders in (25) but, as a result of narrowband fading
and phase synchronization errors, each sensor’s traesmitt
D ~ log(n) Po 16~ 1og(n)L*1+%. (81) signal is received at the FC after multiplication by a random

. . . , channel gaim® £ gk cos(A%), j = 1,2,...,n, where the
Comparison of these power-distortion-latency relatigpsh random variables{g;?} and {Af} are i.id. (across sensors),

With the ones achievable in Section_ V yields an inter_estirmat are also assumed to be independent of each other [36],
|n5|gh_t: regardlesg of the compressibility (sparsny) Sf if .JS?].14 Note that{g*} are non-negative valued random vari-
there is enough prior knowledge about the underlying playsi les — typically mjodeled as Rayleigh, Rician or log-normal

phenomenon, the distortion achu_avable u_nder CWS would Aistributed — and correspond to random fading envelopes of
ways be greater than the one achievable in the known SUbSplaeCceeived signals at the FC, wherdas’} model the combined

. , J
%aset{ Wlh en US'Tg ﬂt]_e szme_ axount of povxller arr]‘ d latandy effect of random phase-shifts due to multi-path scattesing
! betn_lca (rjgcton? ruc 'OT. azlg.vs zir;ae/?irzlla)et;w erelas.a)ne imperfect phase synchronization between the sensors &nd th
obtain a distortion scaling ab = n Y employiNg  cc we assume that the precise values and distributions of

\T < 1/(2a+1) iacti i i . .
(Fot <)L ~n . projections for the estimation of a%  these random variables are not available to the sensorgor th
compressible signal in the known subspace case, the dm;tortFC but their means are known at the FC

scaling in the unknown/adaptive subspace case, when usng t
same number of projections (and ignoring thg(n) factor),
can only be given byD =< n—2%/(2a+1)* _ g significantly

slower decay (cf. (45), (80)). ko z": N SR zn: ook 4 b
- J 1397 - N R}
j=1 i=1

Consequently, as a result of fading and imperfect phase
synchronization, the FC receives

On the other hand, by virtue of a toy example, we have "
already seen at the start of this section what could happen to
the distortion scaling in the known subspace case if the know

Vp et (o8t + (Vi T (vF o wh) + 2F),

subspace assumption is false and that is where the unigrsal (82)
of CWS comes into play: given sufficient prior knowledge e o
about the underlying signal field, CWS can be far from optim¥herey"™ = (77, ...,7,)", © represents a Hadamard product

but under circumstances where therditie or no knowledge (element-wise multiplication), ang is still given by the

13The stated results hold for all > 1; the explicit dependencies of the Recall that we are doing real-signaling; the random chagaéis are,
leading constants on the quantization parametare derived in [7]. therefore, given byyj’? = g;? cos(A‘]?) instead Of’y]’? = g;? I85
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expression in (33). Clearly, this coincides with the reediv measurement noise vectar* and zero-mean communication
signal in (26) if and only ify* = 1, wherel denotes a vector noisez*, and(b) primarily follows from the fact thajrsﬂ < B.

of all ones. However, by a slight modification of the decoddtinally, to complete the proof of the theorem, we substitate
in (27), it can be shown that the scaling law established (85) the value of from (33) and take the limit irk to obtain
Theorem 1 is still achievable as long as the distribution ¢84). [ ]
random channel gains is such that the network remains dt leasRemark 10:A corresponding lower bound on the projection
“barely synchronized” in the sense thﬁhj’?] £ 5 +£0. This coefficient distortionD,, under the modified decoder of (83)
condition would be satisfied, e.g., 4% ~ unif[—w+¢, m—¢ is given by (28). This follows trivially from(a) in (85) and
for any e > 0. The modified decode€ in this scenario is the fact thaty? <7 < 1.

given by Remark 11:Since the structure of source-channel encoders
K (Fy,..., F,) remains unchanged under fading and imperfect
oF = @ (rk) = _T phase synchronization, the total network power consumptio
VP associated with achieving the distortion in (84) is stilegi
P by (34).

_ T(xk ok T (xk k
- % (7 ©s )+30 (7 ©w )+ P (83) Notice that even under the effects of fading and imper-

fect synchronization, the projection coefficient distontiD,,

where %’“ = (%f,...,ﬁ)T, and the achievable distortionachieved by the proposed joint source-channel commuaitati
using this modified decoder can be characterized by thechitecture (using the modified decoder of (83)) is given by
following result. a sum of two separate terms, the first of which scales like

Theorem 2:Let ¢ € R and letv* = 7' s*. Suppose that ||¢||3, while the second term that is primarily due to the
the random channel gair{SyJ’?} due to fading and imperfect noisy communication channel scales like||3/\ (cf. (84),
phase synchronization are I.i.d across sensors and have-a femark 10). Comparing this observation with the scaling law
zero mear(IE[yj’?] =7 # 0).15 Then, given the sensor networkestablished in Section IV shows that Theorem 2 describes
model of Section I, the joint source-channel communicatiche same distortion scaling behavior as Theorem 1, with
scheme described by the encoders in (25) and the modiftté only difference being that the scaling constants are now
decoder in (83) can achieve the following end-to-end ditor different (they depend upon the second-order statistics of

by employing only one channel use per source observatiorchannel gains). In particulad,, = 1 and Pg, = O(1)
o= o= o is still sufficient to ensure thab,, < |43 < D7, as long as
D, < <0w7+3_2(7_7 )) ol + 5 # 0 (cf. Corollary 1).
v
02d,S (32 + 02) B. Distributed Estimation from Noisy Projections: Known
— = “~ | llel3,  (84) Subspace
Ay P - o : .
Similar to the case of estimation of a single projection
wheret* is the estimate ob* at the FC and £ E[|7f|2] <1 coefficient under the effects of fading and imperfect phase
by the law of conservation of energy. synchronization, it is a simple exercise to show that by gisin
Proof: To establish this theorem, note that (83) impliethe joint source-channel communication scheme descriged b
thatv k € N the encoders in (36) and under a slightly modified dec@der
given by
E[Uk_akQ}:E‘(T~k®sk_ Tsk)+ &
| | s e s = G(rh) = o) (‘T ) (86)
k 2 ’Y\/ﬁ
e ('Nyk ® wk) + _Z ] the end-to-end distortion of an-compressible signal at the
VP FC in the presence of fading and phase synchronizationserror
(a) 2 oy o2 can be upper bounded by
0 EUSDT((,YIC_l)@sk)” + 220 ell3 + = _
v 7P Con L\ [ o275+ B*(¥ —7%)
n ) Ak 2 o2 2 D < C,L + 15 — +
=S @) E[(Z-1) | + el + 7
= ! i L\ (o2d (B®+0y) (87)
®) B2(§ —72 025 o2 n 2P
¢ P iz + 2T ol + 55, 9 " N

and lower bounded by the expression in the lower bound of
where (a) essentially follows from the fact that the randonf39), as long as{/} are i.i.d. across sensors afd# 0.
channel gain vector” is independent of the zero-meangnoring constants, this implies that the resulting disor of

an a-compressible signal in this scenario still scales as
15At the expense of some extra notation, the scaling laws dstatethis
section can be obtained even whem]‘?} are not identically distributed (as L L <D < [2 L L
long as they are independent across sensors and have momeans). For n + ) - - + n + )
the sake of this exposition, however, and because it suffcdtustrate the 88
principles, we focus only on the i.i.d. case. ( )
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i.e., has the same scaling behavior as thatinfin (39). v

Similarly, it can be shown that using the modified decoder TEwawnz'gstgcwf’LKé‘(i;;?S
of (86) (with L replaced byM), the end-to-end distortion of . - - Centralized Reconstruction MSE
an M-sparse signal in this scenario would scale as (cf. (59))

®  Minimum Centralized Dist. (L= 90)
M M
D = (_> + <_> (89)
n An

Moreover, given that the structure of source-channel emsod
(F1,...,F,) remains unchanged under fading and imperfect
phase synchronization, the total network power consumptio
per source observation associated with achieving these dis
tortion scalings for compressible and sparse signals would
still be given by (40) and (60), respectively. Comparingsthe ) et i ‘
results with the ones obtained in Section V show that the 10 mber of rojectons 10’
previously established power-distortion-latency seallaws

for estimation of compressible and sparse signals in thevknoFig. 6.  Distortion scaling of a fixed length--compressible signal as a

subspace case continue to hold under the effects of fadidlg éﬁwtion of number of projectiong under both known and unknown subspace
assumptions (log-log scale): number of sensor nades 8192; o = 1 (in

imperfect phase synchronization, PFO\_/i_d{'Z‘Vg-“} have a Non- {aqr basis); baseline MSE2,) = 1; measurement SNR = 20 dB; received
zero mean and the FC uses the modified decoder of (86). communication SNR per projection G=dB.

Remark 12:Note that these results are similar in spirit to
some of the earlier results obtained in the context of joint
source-channel communication for distributed estimatibn ~ More generally, if we also define the fading envelope of
sources — see, e.g., [3], [18], [47], [48]. In particularpgh e€ach sensor’s transmission géé 21+ ef, then the overall
results also indicate that fading (and/or imperfect syootma- random channel gain of each received signal becopies
tion) tends to have no effect on the distortion scaling ag low} cos(A¥) = (1 + €¥)(1 + 6F) = 1 + b 4 0% 4 €¥6¥. The

1

[ Bias-limited Regime (BLR)

Distortion (D)
e
S

Variance-limited Regime (VLR)
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as the random channel gains have non-zero means. net result is a new noise-like term of the fOﬂZ){((ek +
8" + €6") © (s* + w")). With appropriate modeling of
C. Compressive Wireless Sensing the e’; terms, the additional variance due to this contribution

L can also be computed and the optimization problem in (77)
In the presence of kphase synchronization errors only (89, he updated accordingly. This approach was used in the
fading, i.e.,yj = cos(Aj) only), CWS observations are givengjmjations and appears to work well in practice for a range

by (Vi=1,....L) of phase synchronization errors, with or without mild faglin

2 as snown in F|g 10.
/U\f ;.T ~k k Z“ ~k k _ n ’ (E C)

,...,%S)T (see (68)). Defining the vectéy”

VIII. SIMULATION RESULTS

=

wherey" = (2

ks 5% d substituting into the ab . In this section, we present a few simulation results to
asy’ = 1+ 0" and substituting Into the above gives numerically demonstrate some of the power-distortioaray
k relationships of our scheme under both known and un-
~k _ Tk T k T (sk k k Zi . ) X .
Ui = 8"+ wt + ¢ (67O (8" +wh)) + N known/adaptive subspace assumptions. All signals disduss

(91) in this section are contaminated with zero-mean additive
white Gaussian measurement noise of variamge= 1, i.e.,

where 8" is a zero-mean random vector with i.i.d. entrieghe baseline MSE of all signals is taken to ke More-
given by é% = 3% — 1, j = 1,...,n. Comparing this with over, the measurement SNR of all signals, defined to be
(68), we see that the net effect of phase synchronizatigfs®|3/n) /o2, is given by SNReas = 20 dB, and the
errors is the introduction of a new noise-like term of thetor received communication SNR for each projection, defined to
#; (8" ®(s*+w")). Foregoing a rigorous theoretical analyside p/o2, is given by SNRynm = 0 dB (unless otherwise
of the effects of this contribution, we instead assume (Byated).
the Central Limit Theorem) that it is approximately Gaussia The first simulation result, corresponding to Fig. 6, illus-
distributed, in which case it can be treated like the pre€cttrates the distortion scaling of a spatially piecewise smooth
noise {¢; w*}, as in Section VI-A. Further, assuming thasignal field with the number of projectiodsusing both CWS
A’; Hg- unif[—b, b] and thatd is small, we can use a one-and known subspace case reconstructions, where the signal
term Taylor series approximation of the variance of the nefield is sampled by: = 8192 sensor nodes in a noisy manner.
zero-mean noise contribution. The result is that each CW&ich signals tend to be compressible in the Haar domain
observation is again given by (74) but the equivalent noisdth « = 1 and this value ofa was also verified numeri-
variance is given by? = 02 +02d,° (B? + 02) /(7°P) + cally. For the purposes of known subspace reconstructien, t
(B? + ¢2)b*/45, the last term in the expression being thebservation vector is projected onfo Haar basis elements
contribution of the new phase synchronization error term. corresponding td. largest coefficients of the noiseless vector
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% CWS Recon.: Comm. SNR = -5 dB % CWS Dist. Scaling w/ n: Slope = -0.52

=#— CWS Recon.: Comm. SNR =0 dB —— Known Subspace Case Reconstruction

'+ KS Recon.: Comm. SNR = -10 dB o ~ 1+ KS Distortion Scaling w/ n: Slope = -0.64

Xy = KS Recon.: Comm. SNR = -5 dB TN = = Optimal Centralized Reconstruction MSE
¥ —— KS Recon.: Comm. SNR =0 dB

= = Centralized Reconstruction MSE

Distortion (D)
Distortion (D)

10°

Number of projections (L) Number of sensor nodes (n)

Fig. 7. Distortion scaling of a fixed lengti-compressible signal as a function Fig. 8. Distortion scaling of an\/-sparse signal as a function of number
of number of projectiond. for various values of received communication SNRof sensor nodes: under both known and unknown subspace assumptions
per projection under both known and unknown subspace asmmsfflog-log  (log-log scale): number of non-zero coefficientd =< n!/3 (in Haar
scale): number of sensor nodes= 8192;« = 1 (in Haar basis); baseline basis); baseline MSHo2) = 1; measurement SNR = 20 dB; received
MSE (02)) = 1; measurement SNR = 20 dB. communication SNR per projection G=dB; number of projections — Known
subspace case reconstructioh: = M =< nl/3, CWS reconstruction:
L = log(n) n'/2 M < log(n) n5/8.

using the scheme described in Section V, while for the case of

CWS reconstruction, the observation vector is projectett ON.. vation vector is projected onfo= M Haar basis elements

L random Rademgcher v_ectors. '_I'he re_sultant reconStruCt(':(%nr?'responding to théZ non-zero coefficients of the noiseless
MSEs are shown in the figure using solid curves (on a log-

) . ector using the scheme described in Section V, while for
log scale), while the dotted curve and dashed curve in t 9

f d to i fit of CWS distorti fe case of CWS reconstruction, the observation vector is
'gure correspond 7o finear it ot Istor |_on20urve aNBrojected ontoL = log(n)n'/2M = log(n)n®/® random
reconstruction MSE in a centralized setting (i.e;, = 0),

. : Rademacher vectors. The resultant reconstruction MSEs are
respectively. Finally, the total network power consu_mlpﬂiqr .shown in the figure using solid curves (on a log-log scale),
EOtlg C\ﬁ/i ag\(,jviEni\évqhseugiea:ﬁgtﬁzeh;?/ZO;?;ZJ;::Onos(5 g“\ﬁﬂle the.dotted and dashed curves i_n the_ figure correspond
Oy Tot = L, OWING to linear fit of known subspace/CWS distortion curves and re-
in this S|mglat|on. . , construction MSE in a centralized setting, respectivelyaly,

As predicted by the theory, distortion curve for know_rihe total network power consumption for CWS and known

subspace rgcons_truction in Fig. 6 hits_ its _minimum_ ata po'gﬁbspace case reconstructions is givenrRy < log(n)n°/¢
where the distortion due to the approximation error is badan and P, = n'/3, respectively, owing to the fact that we have

) . X .and
by the distortion due to the observation and communication o oy — O(1) in this simulation

hoise, and starts to rise afteb ~ 70 projections since As predicted by the theory, the distortion scaling curve for

each subsequent projection contributes only a small amoyftyyn subspace reconstruction in this case tends to follow a

of signal but a larger amount of noise. Note that minimwgIope of—1 + y1 ~ —0.64 (see (62)). Similarly, the distortion

d'St.Ortlfn 'n_lfﬂ.e _cegtrahzed ds_eitlntg IS attﬁ\|ned fbr.’% 90 scaling curve for CWS reconstruction in this case can be
projections. This is because distortion scaling constiantise expressed a® = Mlog(n)/L ~ n—"32 — again in accor-

2
known subspace case depend upgnand o2/ (see (39)). ance with the theory (see (79)). Finally, Fig. 9 and Fig. 10

PR :
\év.h;le t?‘z =0 Im thfe”centrallztlad Ca(ffl' Zé)rt;h?tcase oftCiW fllustrate the robustness of our proposed scheme to a range
IStortion scaling Toflows a slope ‘ aturns out to - ¢ phase synchronization errors, with or without fadingglen

be better than the expected value-eta /(2 + 1) = —2/3 - :
. . th k d unk /adapt b tions.
(see (78)). This, however, does not contradict the resuPtg nown and unknown/adapltive stibspace assumptions

reported in Section VI since we only have upper bounds for
distortion scaling in the CWS case. Finally, Fig. 7 illustés IX. CONCLUSION
the fact that varying the received communication SNR perIn this paper, we have presented a distributed joint source-
projection has no effect on the scaling behavior of knowthannel communication architecture for estimation of sens
subspace and CWS reconstruction MSEs (except a changaétwork data at the FC and analyzed the corresponding power-
the scaling constants). distortion-latency relationships as a function of the nemaf

The second simulation result, corresponding to Fig. 8ensor nodes. Our approach is built on distributed computat
illustrates the distortion scalin® of an M -sparse signal field of appropriately chosen projections of the sensor dataet th
with the number of sensor nodes using both CWS and knovirsion center. Phase-coherent transmissions from theoens
subspace case reconstructions, where we also scale theenurabable exploitation of the distributed beamforming gain fo
of DoF in the signal ad/ = n* = n'/3 in the Haar basis. For dramatic reductions in power consumption. A few distinct
the purposes of known subspace case reconstruction, the felatures of our approach are: 1) processing and commumricati
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Fig. 9. Distortion scaling of a/-sparse signal as a function of number ofFig. 10. Distortion scaling of a fixed length-compressible signal as a
sensor nodes under the effects of fading and phase synchronization ®rrofunction of number of projectiond. under the effects of fading and phase
(Known subspace case reconstruction only): number of eon-zoefficients synchronization errors (CWS reconstruction only): numifesensor nodes

M =< n'/3 (in Haar basis); baseline MSEr2)) = 1; measurement SNR = = 8192,« = 1 (in Haar basis), baseline MS&2,) = 1, measurement SNR =
20 dB; received communication SNR per projectiof €B; fading envelope: 20 dB, received communication SNR per projectiof &B; fading envelope:
Rayleigh distributed; number of projectiods= M =< n'/3. Rician distributed [ -factor of 7.5).

are combined into one distributed projection operationit2) and P, =< M, respectively. In this appendix we partially
requires almost no in-network processing and communieati@address the questioktow good is the power-distortion scal-
and 3) given sufficient prior knowledge about the sensed daitag of our proposed schemé®hile a comparison with all
asymptotically consistent signal estimation is possilviendf conceivable distributed estimation schemes does not seem
the total network power consumption goes to zero. possible, we compare the performance of the proposed scheme
In addition, we have also introduced and analyzed a univéwhich does not require data exchange between nodes) to a
sal estimation scheme — compressive wireless sensing (CWi@re favorable and idealized setup where the nodes in the
— that provides asymptotically consistent signal estisiatemetwork can communicate their observations in an err@-fre
even if little or no prior knowledge about the sensed dataanner to a designated cluster bf< n < n nodes. We
is assumed. Furthermore, power and latency requirementsl not make any assumptions on the nature of in-network
CWS grow at most sub-linearly with the number of nodesommunication and also ignore the incurred cost on energy
in the network. This universality, however, comes at thet cosonsumption (since quantifying this cost requires makidg a
of less favorable power-distortion-latency relationshipe ditional system-specific assumptions). Thus, our perfoicea
absence of sufficient prior knowledge about the signal fiebmparison is solely based on the power required for network
leads to probing the entire-dimensional space using randomo-FC communication to achieve optimal distortion scaling
projections instead of focusing on the subspace of intereNibte that7 = 1 corresponds to all nodes routing their
However, for precisely the same reason, CWS has the abilityeasurements to a single clusterhead in the network (using
to capture part of signal under all circumstances and does perhaps multi-hop communications), while= n corresponds
require reprogramming of the network for different sensing all the nodes in the network noiselessly sharing theia dat
scenarios — different hypotheses on the signal field stractwith each other (using perhaps gossip algorithms). Oice
can be tested at the fusion center via the reconstructinades in the network have access to the entire observation
algorithms. Furthermore, projecting the sensor networta davectorz* following each snapshot, they compute the required
onto a fixed subspace may result in a distortion much greafemprojection coefficients (with respect to a given basis) and
than the one achievable by CWS if prior information abouhen coherently transmit the resulting projection coedfits to
the signal field is inaccurate. Therefore, we contend thaSCWhe FC using a sum transmit power Bfper channel use. This
should be the estimation scheme of choice in cases whem eitifectively transforms the cluster-to-FC MAC into a point-
little prior knowledge about the sensed field is available goint AWGN channel withii-fold power-pooling gain due to
confidence level about the accuracy of the available knaydedcoherent beamforming of identical data.

is low. We focus on estimation af-compressible signals. Specifi-
cally, we assume that nodes in the designated cluster have
APPENDIX | access to identical estimates of the requife@-coefficients
IN-NETWORK COLLABORATION: POWER-DISTORTION at the end of the data-exchange stage, i.e.,

TRADE-OFF REVISITED

Analysis in Sections V-A and V-B shows that= O(1)
is necessary for optimal distortion scaling in estimatidn d@y a simple extension of the encoder structure of Section V,
compressible and sparse signals, resultingin= n'/(?«+t1)  the transmitting cluster af nodes coherently beamforms these

0F = pTab = o +o9lwk, ¢=1,....L. (92
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L projection coefficients per snapshotlirconsecutive channel k, the beamforming strategy described by the encoders in (93)
uses as follows and the decoder in (95) can achieve the following end-to-end
A T distortion by employind. channel uses per source observation
vi = F ({05) = (b ul)

0 =
1 Ak " T ) - £ 9 l O'ZCO < D < L720‘
T (\/m@l,---m/pr) S N <n o+ ()55 <D <G n

(93) 27 C o
| | <£> o2 (1402 d.6) + <1) 2020 Co ) (gg)
where {p,}L_, are scaling factors used to satisfy the sum n n AP

power constraintP in each of theL channel uses. At the ) ) .
end of theL-th channel use, the received signal at the input _Proof: To establish this theorem, first observe that (95)
of the decodeG is given by implies thatv k& € N

S Vi el -,
— |8 — 8
r" hiyt + 2 n 2
J=1

L
L 1 o?
_ 5 i\ 7 < C, L7 4 <—) -+ (—) =
:n(\/p_lyf,...,,/pLGE) + 2k - n ) v n ;Hng
~ - T ~
= arep +ar (#hiwt) + 2 99 _ oy (5) o2+ (Uz‘ﬁdi;&)'
whereI' £ diag(\/p1, - .-, /pr ), 05 = (0F,...,0%)7, 2F ~ N
N(0p«1,02I1«1) is an AWGN vector, and is the power- Zﬁ_ga_l n L 52 € o2
pooling gain of identical coherent transmissions frdmodes. )oY

An estimate of the noiseless data vector can be formed at the
FC as

—1_k
- et - v (F T )
T 1-171 k
sP) 4wk (sp’; wk) + sp’z( ﬁz > (95)

As for fixing the values of{ p,}, note that (93) implies that L L
Vie=1,...,L, Zk‘m*l < 1+/ 2 e < 2 (100)
=1 1

IN

L
C, L2 + (ﬁ) ai(1+a§ duc) +

() (455). o

where the last inequality follows from the fact that

7 7 2
ZE “yfgﬂ = ZIE {% oy ] and L= < L. Furthermore, from (95), we also have a lower
i=1 j=1 Y bound of
2] &~ pr 2 L 52
- efprevel] S Gl =+ = (B) + ()2
i=1 ' n 2 n n ne pe
J =1
< ﬁpf duc <nC—Q€2a1 + 0'12u> ) (96) > £ 0.2 4 l Gg OO
P ~\n,) " n AP |-

where the upper bound essentially follows from the fact that (101)
the squared magnitudes of the ordered coefficigifs in ] o
the case of compressible signals are boundeddhg < Finally, combining the upper and lower bounds of (99) and

%g—mq (see (9)). This implies that (101), and taking the limit irk yields (98), thus completing
» the proof. [ ]
v = AP L 0=1,....L, (97) Remark 13:Under the assumption oi nodes coherently

transmitting the identical data, the cluster-to-FC MACflee
tively transformed into a point-to-point multiple-inpungle-
would suffice to satisfy the sum power constrainfbfor each output AWGN channel. Consequently, while the distortion
of the L channel uses, wher€, = C,/C, and\ € (0,1] is expression in (98) has been obtained corresponding to an
again the power scaling factor for controlling total netlworanalog beamforming strategy of (93), a similar expression
power consumption. We are now ready to state the distortitor distortion can be obtained by appropriately transfomgni
achievable for am-compressible signal under the assumptiothe compressible source model into a stochastic one, and
of in-network collaboration. employing standard rate-distortion and capacity-costyaisa
Theorem 3:Given the sensor network model of Section I{i.e., by employing “digital” beamforming).
for an a-compressible signal and under the assumption of in-Remark 14:Note that the last term in the upper and lower
network collaboration enabling nodes in the network to havebounds in (98) corresponds to the distortion component due
access to the entire observation vectrat each time instant to the noisy communication channel. The factoroin that

fidy,* (n C,0—20-1 ¢ 012“)



term corresponds to the power-pooling gain due to coherett]
transmission of identical data: the greater the number of
nodes coherently beamforming the identical data, the great
the power-pooling gain. Comparing this communication @ois11]
term to the last term in the upper and lower bounds in
(39) shows that, in terms of scaling, the performance of the
proposed estimation scheme of Section V is equivalent [t
that of an in-network collaboration based system that has a
beamforming cluster ofi = # nodes. [13]
Analysis of (98) reveals that for optimal distortion scglin
under the in-network collaboration assumptiénx n!/(2e+1)
and the distortion component due to the communication noiddl
should also scale at least gs= n=2%/(22+1)_ Consequently,
this implies that as long as the extent of in-network collal§t5]
oration is such thati < n?®/(22+1) one cannot achieve 16]
the optimal distortion scaling under a fixed transmit powér
constraint of P: the power constraint itself needs to be scaled
up asP = n2*/(2o+1) /i to achieve optimal distortion scaling.17]
On the other hand, if the extent of in-network collaboratfi®n
such thatn > n2®/(2a+1) then, in fact,\ need not be given
by A = O(1). Rather, in that situation, it can be scaled dowH8!
as A = n2*/o+1) /i Going back to the two extremes of
n = 1 andn = n, this means that for the case of a singleo]
clusterhead in the network, we hati; = O(AL P) = O(n)
and for the case where all the nodes in the network a[%]
as a big clusterhead, we havgy = OALP) = O(1).
Essentially, as the cardinality of the beamforming cluster
scales up ad " n, the total network power scales dowr[21
from O(n) to O(1). Remarkably, the proposed estimation
scheme of Section V achieves the performance equivalent to
that of a cluster with, = n2*/(2¢+1) nodes, without requiring 2]
any in-network collaboration. Furthermore, while we have
ignored the cost of in-network communication, we expect tha
it will increase monotonically with increase in the size bét (23]
beamforming clustef:.
[24]
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