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ABSTRACT
This paper investigates data-adaptive path planning schemes
for wireless networks of mobile sensor platforms. We focus
on applications of environmental monitoring, in which the
goal is to reconstruct a spatial map of environmental fac-
tors of interest. Traditional sampling theory deals with data
collection processes that are completely independent of the
target map to be estimated, aside from possible a priori spec-
ifications reflective of assumed properties of the target. We
refer to such processes as passive learning methods. Alterna-
tively, one can envision sequential, adaptive data collection
procedures that use information gleaned from previous ob-
servations to guide the process. We refer to such feedback-
driven processes as active learning methods. Active learn-
ing is naturally suited to mobile path planning, in which
previous samples are used to guide the motion of the mo-
biles for further sampling. This paper presents some of the
most encouraging theoretical results to date that support
the effectiveness of active over passive learning, and focuses
on new results regarding the capabilities of active learning
methods for mobile sensing. Tradeoffs between latency, path
lengths, and accuracy are carefully assessed using our the-
ory. Adaptive path planning methods are developed to guide
mobiles in order to focus attention in interesting regions of
the sensing domain, thus conducting spatial surveys much
more rapidly while maintaining the accuracy of the esti-
mated map. The theory and methods are illustrated in the
application of water current mapping in a freshwater lake.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Sensors; I.5.4
[Pattern Recognition]: Applications—Signal Processing
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1. INTRODUCTION
Many environmental monitoring applications require fine

resolution and high fidelity mapping of a spatial phenomena
distributed over a vast physical extent, e.g. aquatic and ter-
restrial ecosystem studies, detection of toxic biological and
chemical spreads, oil spills and weather patterns. This re-
quires an impractically large number of sensing elements to
be distributed according to a pre-computed sampling strat-
egy over the given area. Mobile sensor networks offer an
alternative by trading off the cost of large number of sta-
tic sensors in exchange for increased latency, and provide
flexible sampling opportunities. Efficient path planning is
necessary to harness these benefits of mobile sensing sys-
tems and obtain the best possible resolution in minimum
time.

Traditional data sampling methods use a precomputed,
fixed strategy that involves uniform sampling of the field at
regular intervals, and the sampling pattern is not updated
as measurements are collected. We refer to such strategies
as passive learning methods. When the spatial phenomena
of interest is smoothly varying, passive methods are known
to perform well. However, many environmental variables ex-
hibit highly localized features in the spatial map like change-
points or edges that need to be accurately captured and
tracked. For such cases, one can envision sequential, adap-
tive path planning where information gleaned from previous
samples is used to focus mobile paths towards regions of
sharp changes in the environmental field where more inten-
sive sampling is required. Such feedback-driven approaches
where future sampling locations are determined by past sam-
pling locations and observations are referred to as active

learning methods. Active learning has been successfully ap-
plied to standard problems in statistical inference and ma-
chine learning, however there has been very little work aimed
at harnessing the power of active learning for designing effi-
cient sampling paths for mobile sensing networks [3,14]. In
this paper we use active learning methods to design adaptive
paths for mobile sensors that achieve minimax efficiency of
field reconstruction and latency for environmental monitor-
ing type applications. When the environmental phenomena



exhibits localized features, for example a sharp level tran-
sition, the proposed adaptive path algorithms significantly
outperform traditional non-adaptive sampling path strate-
gies. It is shown that for reconstruction of a d ≥ 2 di-
mensional piecewise constant field to a desired error level of
ε, active path designs require the mobile sensor to cover a

pathlength ∝ ε−
d−1

d and result in a latency that scales as
ε−(d−1). Notice that both the pathlength and latency in-
crease as the desired error level is decreased, as one would
expect. On the other hand, a non-adaptive uniform sam-
pling path scheme would require the sensor to move over a
pathlength ∝ ε−1 and result in latency that scales as ε−d. In
the non-adaptive case, the pathlength and latency both in-
crease much more rapidly as the error level is decreased. In
fact, adaptive path planning provides a significant reduction

in pathlength and latency (by factors of ε
1
d and ε, respec-

tively), that translates directly to network resource savings
or better capabilities for tracking the environmental phe-
nomena of interest. Also notice that the rate exponent gain
is equivalent to a dimensionality reduction of the estimation
task. Since the features of interest are located in a d − 1
dimensional subset of the original domain, one can see that
active learning results in paths that adapt to the effective
dimension of the data. Even more dramatic improvements
are possible in one-dimensional scenarios (e.g., vertical mea-
surements through a forest canopy or marine environment).

The path planning strategies developed in this paper can
be used for applications like the NIMS (Networked Infome-
chanical Systems) architecture [2,3]. The NIMS system uses
controlled mobility of sensors for spatiotemporal sampling
of various environmental variables like solar radiation inten-
sity, atmospheric water vapor, temperature, and chemical
composition over the vast expanse of a forest. The sampling
paths of these sensors need to be designed so that the scale
of motion matches the environmental monitoring needs in
terms of accuracy, fidelity and tracking capabilities. Many
of the phenomena of interest exhibit changepoints, for ex-
ample, the solar radiation intensity map exhibits edges due
to shadows cast by the vegetation. Further, measurements
of different environmental variables require diverse sensors
with different sampling duration and velocity requirements.
For example, the sampling duration required to achieve a
certain SNR (Signal-to-Noise Ratio) may vary from a few
seconds for solar intensity measurements to a few minutes
for CO2 sampling. We present path planning algorithms
that accommodate this wide range of sensing capabilities.

Another potential application arises in the North Temper-
ate Lakes Long Term Ecological Research program in Wis-
consin [1]. This project involves a sensor network system
equipped on boats to take measurements of temperature,
water currents, dissolved gases, algae and other biological
species concentrations across the lake and at various depths.
Continuous monitoring of these phenomena and change de-
tection requires the boats to sample the 3D transect in the
most efficient manner. The results presented in this paper
provide guidelines for planning the path, velocity and num-
ber of boats required to achieve a certain desired accuracy
of measurement in the least time. To verify the effective-
ness of our methods and theoretical results, we present an
illustrative example that uses adaptive and passive sensor
mobility to estimate the water current velocity map for a
freshwater lake in Wisconsin.

Some other applications that can benefit from fast spatial

surveying adapted to the regions of interest include land-
scape scanning using sensor equipped aerial vehicles, esti-
mating boundary of an oil spill using aerial or buoy sensors,
prediction of weather patterns by monitoring atmospheric
pressure, and geological fault-line detection [8].

While several research papers have explored the use of
mobile sensors and proposed a variety of path planning al-
gorithms (e.g., game-theoretic approaches, pursuit evasion,
sensor exposure etc. [9,11,13]), the research has mainly be-
ing focused on target detection and tracking. In this pa-
per we develop path planning algorithms for mobile sensors
used in environmental monitoring type applications that in-
volve mapping of a spatially distributed field. We leverage
the benefits of active learning methods to design feedback-
driven adaptive sensing paths that achieve minimax optimal
efficiency in terms of mean square error (MSE) distortion
and latency under varying sensor capabilities (velocity and
sampling frequencies). A theoretical framework is provided
for the analysis of tradeoffs in latency, accuracy and path
lengths. We also investigate cooperative strategies for net-
worked systems of multiple mobile sensors or combination
of sensors with and without mobility. It is shown that the
advantages of task distribution under cooperative strategies
can also be attained while requiring minimal coordination
between sensors. Such a scheme is robust to sensor failures
and degrades gracefully as one or more sensors turn faulty.

The paper is organized as follows. Section II reviews
the active learning methods developed for function estima-
tion and associated theoretical results. Section III presents
the application of active learning methods to adaptive path
planning for a mobile sensing network and discusses the
tradeoffs in accuracy, latency and path lengths. In Section
IV we present the illustrative simulation study of water cur-
rent velocity in Lake Wingra using both passive and adap-
tive sensing paths. We conclude in Section V.

2. ACTIVE LEARNING FOR SPATIAL
MAPPING

Consider the task of spatial mapping of an environmental
variable by mobile sensors that sample the given transect at
n locations {Xi}

n
i=1. Denote the observed (scalar) sample

values by {Yi}
n
i=1, that are assumed to obey the measure-

ment model:

Yi = f(Xi) + Wi i ∈ {1, . . . , n},

where the function f is the field of interest and the sensor
measurement noise Wi is characterized as iid random vari-
ables that are independent of the sample locations {Xi}

n
i=1.

The task is to reconstruct a map of the spatial field f from
sample locations and noisy observations {Xi, Yi}

n
i=1. Clas-

sical (passive) sampling techniques consider uniform deter-
ministic or random sampling locations that are specified
prior to gathering the observations. Active learning meth-
ods, on the other hand, select the future sampling locations
online based on past locations and observations, i.e., Xi de-
pends deterministically or randomly on the past sample lo-
cations and observations {Xj , Yj}

i−1
j=1 [5–8,12].

While the concept of active learning is not new, there is
very little theoretical evidence to support the effectiveness of
active learning, and existing theories often hinge on restric-
tive assumptions that are questionable in practice. However,
there are a handful of key results that can be leveraged to aid



in the design of mobile wireless sensing systems. Burnashev
and Zigangirov [5] investigated the problem of changepoint
detection in a 1-d function using sequential sampling. They
show that the error in the location of the changepoint de-
cays exponentially in n, the number of samples, as opposed
to n−1 for non-adaptive sampling. More recently, Castro
et al. [6] investigate the fundamental limits of active learn-
ing for various nonparametric function classes including spa-
tially homogeneous Hölder smooth functions, and piecewise
constant functions that are constant except on a d − 1 di-
mensional boundary set or discontinuity embedded in the
d-dimensional function domain. They reveal that signifi-
cantly faster rates of convergence, in the minimax sense, are
achievable using active learning in cases involving a function
whose complexity is highly concentrated in small regions of
space. In this section we review the active learning methods
presented in [5] and [6].

In [5], Burnashev and Zigangirov address the problem of
estimating the confidence interval of an unknown parameter
from n controlled observations. This problem is equivalent
to estimating the changepoint in a 1-d function by adaptive
sampling. The problem can be stated formally as follows.
Consider the class of functions

F = {f : [0, 1] → R|f(x) = 1[0,θ)(x)}

where θ ∈ [0, 1]. The goal is to estimate the changepoint θ
from observations {Yi}

n
i=1, where

Yi =

�
f(Xi) with probability 1 − p
1 − f(Xi) with probability p

= f(Xi) ⊕ Wi,

where ⊕ indicates a sum modulo 2 and Wi represents
Bernoulli noise. Clearly, if there is no noise (p = 0) it is

easy to design an estimator θ̂n using binary bisection that
attains exponential error probability i.e. |θ − θ̂n| = 2−n.
Burnashev and Zigangirov show that even when p > 0, a
similar probabilistic bisection approach can be used to get
E[|θ̂n − θ|] ≤ 2−Cn, where C > 0 is a constant. Notice that
this adaptive sampling rate is much faster than the passive
rate of n−1. The probabilistic bisection method is based on
a bayesian posterior update. We describe here a generaliza-
tion of the method [10] which does not restrict the noise Wi

to be Bernoulli.
In practice, a discretized distribution for θ (e.g. a his-

togram form) is considered. The next sampling location
is randomly chosen to be either end point of the interval
in which the median lies by flipping a coin with head/tail
probability that ensures the average value is the actual me-
dian. A corresponding modification is required in the dis-
tribution update. Refer to [5] for details. In the next sec-
tion, we present an illustrative example using this method
to design a mobile sensor’s path assuming sensor readings
contaminated with Gaussian noise (measurement error) and
Bernoulli noise (sensor fault).

For multidimensional settings, Castro et al. [6] developed
an active learning method based on dyadic partitioning that
provides near-minimax optimal error convergence for cer-
tain classes of nonparametric multivariate functions. One
of the main results of that work shows that any piecewise
constant d-dimensional function separated by a d-1 dimen-
sional boundary can be accurately estimated through adap-
tive sampling methods using far fewer samples than required
by conventional non-adaptive sampling. For d = 1 they ob-
tain the same exponential rates as shown by Burnashev.

Probabilistic Bisection Sampling

1. Initialization: Assume uniform prior for θ.

p0
θ(x) = uniform([0, 1])

2. Repeat i = 1,. . . ,n

Sample selection: The sample location xi is se-
lected to be the median of the distribution of θ.

xi :

xi�
0

pi−1
θ (x)dx = 1/2

Record noisy observation Yi = f(xi) ⊕ Wi.

Posterior update: Update the distribution of θ
based on the observed sample Yi at location Xi

according to Bayes rule.

pi
θ(x) =

pYi
(y|θ = x)pi−1

θ (x)

pYi
(y)

,

where y ∈ {0, 1}.

3. Estimator :

θ̂n = arg max
x∈[0,1]

pn
θ (x).

Their main results (for d ≥ 2) can be summarized in the
following three theorems:

Set up: An estimation strategy consists of a pair (f̂n, Sn),

where f̂n denotes an estimator of the d-dimensional function
f using n noisy observations {Yi}

n
i=1, and Sn denotes a sam-

pling strategy for choosing the sampling locations {Xi}
n
i=1.

Let Θactive denote the set of all active estimation strategies.
Theorem 1 Let H(α) denote the class of spatially ho-

mogenous Hölder-α smooth functions1, then

inf
(f̂n,Sn)∈Θactive

sup
f∈H(α)

Ef,Sn
[||f̂n − f ||2] � n−

2α

2α+d .

The notation an � bn means that an = O(bn) and bn =
O(an). This rate is the same as the minimax learning rate
with passive methods, hence for this class of smooth func-
tions that do not contain highly localized features, both pas-
sive and active methods perform equally well.

Theorem 2 Let PC denote the class of piecewise constant
functions with d-1 dimensional boundaries, then

inf
(f̂n,Sn)∈Θactive

sup
f∈PC

Ef,Sn
[||f̂n − f ||2] � n−

1
d−1 .

Thus the error rate is determined by the effective dimension
of the function. On the other hand, in this situation the
non-adaptive sampling error decays like n−1/d, and thus we
see that active methods can lead to significant improvements
in such cases.

Theorem 3 Let PS(α) denote the class of more general
piecewise Hölder-α smooth functions with d-1 dimensional

1
The function has bαc continuous derivatives, where bαc is the max-

imal integer < α, and the function can be well approximated by
degree-bαc Taylor polynomial approximation.



boundaries, then

inf
(f̂n,Sn)∈Θactive

sup
f∈PS(α)

Ef,Sn
[||f̂n − f ||2]

� max{n−
2α

2α+d , n−
1

d−1 }

This theorem follows directly from the previous two and es-
sentially states that active learning methods adapt to the
complexity of the problem at hand, the rate of convergence
being determined by the dominating cause of function com-
plexity - dimensionality of the edge or complexity of function
derivatives away from the boundary.

Castro et al. also present an active learning algorithm
that nearly achieves these minimax rates. We now review
the active learning strategy proposed in [6] for piecewise
constant functions.

Multiscale Adaptive Sampling

1. Preview Step: n/2 samples are collected at uniformly
spaced points and a coarse estimate of the field f
is generated from these data using a complexity-
regularized tree pruning procedure. This provides a
rough indication of where boundaries may exist.

2. Refinement Step: n/2 additional samples are collected
at points in regions near the rough location of bound-
aries detected in the Preview Step. A similar tree
pruning procedure is used in these regions to obtained
refined estimates in the vicinity of boundaries.

3. Fusion Step: The estimates from Preview and Refine-
ment Steps are combined to produce an overall esti-
mate.

This procedure produces a non-uniform sampling pattern
in which more samples are concentrated near boundaries in
the field; half of the samples are focused in a small region
about the boundary. Since accurately estimating f near
the boundary set is key to obtaining faster rates, we expect
such a strategy to outperform the passive learning technique
described earlier.

The estimators used in the first two steps are built over
recursive dyadic partitions (RDPs) of the function domain.
An RDP can be identified with a tree structure, where each
leaf of the tree corresponds to a cell of the dyadic partition
(see Fig. 1). An estimate is generated on each leaf of the
RDP by averaging the observations collected in each leaf. If
the field is Hölder-α smooth on either side of the boundary,
the estimator consists of a least square degree-bαc polyno-
mial fit to the observations [6] rather than simple averaging,

(a) (b)

Figure 1: (a) An example Recursive Dyadic Parti-
tion (RDP) of a 2-d function domain and (b) asso-
ciated tree structure.

as for piecewise constant field. If we consider Π to be the set
of all RDPs that can be generated on the input domain, the
best RDP is chosen according to the following complexity-
regularized estimation rule:

π̂ = arg min
π∈Π � n�

i=1

(Yi − f̂ (π)
n (Xi))

2 + λ(|π|)� , (1)

where λ(·) is a penalty term that depends on |π|, the number

of leaves in RDP π and f̂
(π)
n is the estimator containing

average of all observations in each leaf of the RDP. The
final estimate for each step, f̂n is given by

f̂n = f̂ (π̂)
n . (2)

The computation of f̂n can be done efficiently using bottom-
up tree pruning algorithms, in the spirit of CART [4]. In
the Preview Step, leaves that are not pruned back indicate
regions of the field where further averaging (through prun-
ing and aggregation) would have led to large data fitting
errors. Thus, these leaves indicate regions that probably
contain boundaries or other sharply varying characteristics
of the field, and these are the focus regions for sampling in
the Refinement Step. There are a few additional subtleties
involved in the procedure [6], but this gives one the main
idea of the method.

The MSE of f̂n can be shown to decay like n−1/(d−1+1/d),
much faster than the best passive rate of n−1/d. Further-
more, performing repetitive refinement steps leads to an im-
proved rate of n−1/(d−1+δ), where 0 < δ ≤ 1/d decreases
with the number of refinements. Thus, this method can be
arbitrarily close to the minimax rate of Theorem 2.

We use this algorithm to plan the path of a current veloc-
ity sensor equipped boat and generate a spatial map of the
water current velocity profile for a freshwater lake in Wis-
consin. Simulation results reveal that huge savings in time
can be achieved for reconstructing the spatial map to same
accuracy as a passive path. In the next section we show how
the active learning methods discussed here can be used to
design fast adaptive spatial survey paths for mobile sensing
networks and explore the tradeoffs in path length, accuracy
and latency under varying sensor capabilities.

3. ACTIVE LEARNING FOR MOBILE
SENSING

Research efforts in designing mobile sensor paths have pri-
marily been focused on target detection, tracking and eva-
sion [9,11,13]. Spatial mapping of a vast area is a fundamen-
tally different task that confronts the challenges of unpre-
dictable variability of environmental variables and demands
for high spatial resolution. For such applications, active
learning can be used to guide the mobile sensor along re-
gions of interest resulting in shorter and faster survey paths,
for a desired resolution accuracy. We now apply the active
learning methods discussed in the last section to design ef-
ficient adaptive paths for a mobile sensing network that is
required to generate a high fidelity, fine resolution estimate
of a spatially varying environmental phenomena.

3.1 Single mobile sensor
We start with the simplest case of a single mobile sen-

sor that needs to efficiently sample a 1-d field containing a
change point. This situation is well-suited, for example, to a
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Figure 2: A toy example of estimating a 1-d solar in-
tensity map containing a single changepoint at 70m
using a NIMS type mobile sensor. The sample loca-
tions and observations are shown in (a) for adaptive
survey and (b) for passive survey.

NIMS [2] like sensor suspended on cableways that measures
solar radiation intensity within the forest transect with the
shadow cast by an object constituting a changepoint. We
model a toy example (Figure 2) for estimating this 1-d func-
tion under two scenarios:

I. Measurement noise - Typically the sensor measure-
ments are noisy due to environmental fluctuations and
slight uncertainties in sensor readings. Such noise can
be modelled as a Gaussian random variable. Figure 2
shows the sampling locations and the corresponding
noisy observations made by the mobile sensor with (a)
adaptive sampling using probabilistic bisection and (b)
passive sampling. In the adaptive case, though the
sensor takes longer excursions for the initial samples,
it quickly “homes-in” on the more interesting feature
of the field concentrating most of its measurements
around the changepoint with only a few samples where
the field is constant. For a 100 m transect containing
a changepoint at 70m that needs to be mapped to
a resolution of 0.1 m and assuming noise variance of
0.1, the number of samples required in the adaptive
scheme are exponentially less - only about 10 as op-
posed to 700 samples for passive case. A NIMS sensor
typically moves at 1m/s and takes 1 sec to record a
sample of the solar intensity, which implies that an
adaptive mobile sensor would take 2mins instead of
13 mins to accomplish the task.

II. Sensor fault - We model this case by assuming the
noise Wi is a Bernoulli(p) random variable with p de-
noting the probability that either the sensor fails to
record a reading or the reading is corrupted and has
to be discarded. We simulate the same example as be-
fore for Bernoulli noise with p = 0.2. It was observed

that 20 samples were required with the adaptive path
to achieve the desired resolution of 0.1 m, as opposed
to nearly 700 for non-adaptive path.

For a 2-d transect, the multiscale adaptive sampling tech-
nique developed by Castro et al. [6] can be used for designing
adaptive paths for a mobile sensor. We start with the case of
a single mobile sensor and later extend the result to multiple
mobile sensing network and a network system comprised of
heterogeneous sensors with and without mobility.

The design of the sensing path for a single mobile sensor
can be described as follows. For simplicity, we assume that
the coordinates are scaled so that the area to be monitored
can be described as a unit square or hypercube [0, 1]d. Also,
we only describe the case where the field is piecewise con-
stant, i.e. the variable of interest exhibits a level transition
taking on constant values on either side of the boundary.
If the field is not constant, but say Hölder-α smooth on
either side of the boundary, the path planning is same as
described for the piecewise constant case, except that the
estimator involves a least square degree-bαc polynomial fit
to the observations rather than simple averaging [6].

1. Coarse survey - With no prior knowledge of the field,
the mobile sensor starts by doing a coarse passive sur-
vey of the field in a raster scan fashion. The sen-
sor collects n/2 samples at regular intervals along the
coarse survey path of length `. A complexity penal-
ized estimate f̂c is constructed using the n/2 samples
over recursive dyadic partitions of the field accord-
ing to equations (1) and (2), with penalty λ(|π|) =
Cσ2log(n/2)|π|, that is proportional to the number of
leaves |π| and sensor measurement noise σ2. C > 0 is a
constant that depends on the dimension d and smooth-
ness of the field. Notice that this penalizes RDPs with
fine partitions and leaves at maximum depth are re-
tained only if pruning by averaging the observations
would lead to large data fitting errors. The estimator
averages out the noise where the field is smooth (re-
duces the variance where bias is low), while perform-
ing no averaging on the samples around the boundary
(where bias is high). This yields an RDP estimate of
the field with leaves at the greatest depth J providing
a rough location of the boundary.

B = {Regions of [0, 1]d where the coarse estimate

contains leaves at maximum depth}

Since at each depth in the tree, the sidelength of cells
is halved, at maximum depth J the leaves have side-
length 2−J , which is equal to the finest resolution of
1/` provided by a pathlength of `. The volume at this
maximum depth is `−d, which implies that the maxi-
mum possible number of leaves at this depth is `d. Of
these, only O(`d−1) intersect the boundary since the
boundary occupies a d-1 dimensional subspace in the
monitored region. Thus, |B| = O(`d−1).

2. Refinement pass - The mobile sensor is now guided
along the regions identified as containing the boundary
in the coarse survey (set B) to collect an additional n/2
samples in these regions, again traversing a pathlength
`. A complexity penalized estimator f̂r is generated on
each region in the set B, similar to the estimator built
on the entire area in the coarse survey. This confines
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Figure 3: Multiscale adaptive path of a mobile sen-
sor for mapping a field containing a boundary. In
the first step, the mobile sensor follows a coarse sur-
vey path (a) and produces a rough estimate of the
field (b). In the refinement pass (c), the mobile fol-
lows a path adapted to the interesting regions of the
field and produces a fine resolution estimate (d).

the boundary location (and hence bias) to even smaller
regions, while averaging out the noise and lowering the
variance in the smooth regions of set B.

3. Field reconstruction - A final estimate of the field is
now generated by fusing the estimates obtained in the
coarse survey and the refinement pass as follows:

f̂active(x) =

�
f̂r(x) if x ∈ B

f̂c(x) otherwise

Figure 3 shows the two stages of the adaptive mobile sens-
ing path. The advantage of a two-step method is that the
computation involved can be done either on the mobile plat-
form or if enough processing power is not available on board
the mobile, the data can be dumped to a fusion center after
each pass where processing and design of future paths may
be carried out.

The mean square error (MSE) of the estimator can be
upper bounded using the Craig-Bernstein inequality as in
[6]:

E[||f̂active − f ||2] ≤ C1 �log n′

n′ �1/d

2−J + C22
J(d−1) log n

n

where J denotes the maximum depth of the RDP tree esti-
mator in the coarse step and n′ = n/(2|B|) denotes the num-
ber of samples in each preview leaf collected in the refine-
ment pass and C1, C2 > 0 are constants. Since 1/` = 2−J

as discussed before, in terms of pathlength the above bound
can be expressed as:

MSE ≤ C1 �log n′

n′ �1/d

`−1 + C2`
d−1 log n

n
(3)

where n′ = n/(2`(d−1)), n/2 samples distributed over |B| =
O(`d−1) leaves that contain rough location of the boundary.
The first term denotes the error incurred in the refinement
pass in regions close to the boundary and the second term
denotes the error incurred in the coarse survey in regions
away from the boundary. The two terms can be balanced
by appropriately choosing the number of samples and path
length:

` ∼ O �n d−1

(d−1)2+d � , (4)

where ∼ denotes polynomial order dependence, dropping
any log terms. This represents the classical bias-variance
tradeoff since the length ` primarily determines the bias in
estimating the boundary location, while the number of sam-
ples n determines the variance. If a spatial map with a MSE
accuracy ε is desired, then by setting the MSE bound in (3)
to ε and combining with (4), we find that the minimum num-
ber of samples required and the optimal sensing path length
would scale with the desired accuracy as:

nopt ∼ O(ε−(d−1+ 1
d
))

and,

`opt ∼ O(ε−
d−1

d ),

where the latter expression is obtained by substituting nopt

into (4). This implies that for a 2-d field, as in the water
current mapping in a lake, increasing the accuracy by a fac-
tor of 10 would require the mobile sensor to traverse roughly
3 times longer pathlength and collect about 30 times more
samples. This is a significant improvement over the passive
approach, where the mobile would have to cover 10 times
longer path and collect 100 times more samples.

If the mobile sensor moves at a velocity v and requires
time T to record one sample of the environmental variable
to a desired Signal to Noise Ratio (SNR), the total time
required to generate the estimate is given by

t = nT +
`

v

Thus for a fixed sampling time T and fixed velocity v,

t ∼ O(max{nopt, lopt})

∼ O(ε−(d−1+ 1
d
))

for all 0 ≤ ε < 1. As discussed in section II, multiple refine-
ment steps can be carried out to reduce the time required
to O(ε−(d−1+δ)), where 0 < δ ≤ 1

d
decreases with successive

refinement passes.
If the mobile sensor was to move along a passive path, the

time required to achieve the same accuracy would be O(ε−d),
and the mobile would need to traverse a length of O(ε−1).
Thus, the improvement provided by adaptive path planning
is essentially equivalent to a dimensionality reduction of the
field estimation problem. This shows that active learning
adapts to the complexity of the problem, since the effective
dimension of the field in the piecewise constant case is the
dimension of the boundary (d-1). This represents a huge re-
duction in latency and pathlengths, that directly translates
to network resource savings as well as allows for more accu-
rate tracking of the temporal changes in the spatial map of
the environmental variable.



In practice, sensors for measuring different environmental
variables may have sampling time anywhere from a few sec-
onds for measuring water current velocity to few minutes for
measuring CO2 level in a forest canopy. Also sensors might
be restricted in mobility to a certain maximum velocity. For
example, NIMS type sensors that are suspended on cable-
ways are limited to a maximum velocity of about 1m/s, on
the other hand sensors mounted on aerial vehicles can move
at hundreds of m/s. Thus for a desired small accuracy of ε,
one can identify two distinct regimes of operation based on
sensor capabilities.

I. Sampling time constrained - If the sensor mobility is
constrained by the sampling time, the latency incurred
is primarily due to the time spent in recording samples.
This represents the variance limited regime since the
noise in sensor measurements limits achievable accu-
racy, while the sensor can move at high enough velocity
to cover the path length required to reduce bias. In
this situation the latency scales according to

t ∼ O(nopt) ∼ O(ε−(d−1+ 1
d
))

Balancing the two terms contributing to latency (nT =
`/v), we find that the mininum velocity required for a
sampling time constrained sensor scales like

vopt ∼ O(εd−2+ 2
d ).

The sensor can move at any velocity greater than or
equal to the optimal velocity. However if the sensor’s
velocity is limited to less than vopt, we are in the ve-

locity constrained regime.

II. Velocity constrained - If the sensor mobility is velocity
limited (i.e., if the platform is not capable of moving at
the minimum required velocity above), then the time
to move from one sampling location to the other is the
primary cause of latency. This corresponds to the bias
limited regime since enough samples can be collected
to reduce the variance, while the path length that the
sensor can cover and hence reduction in bias, is limited.
In this regime the latency scales like

t ∼ O(`opt) ∼ O(ε−( d−1
d

))

Again this rate is faster than that for passive paths
O(ε−1), leading to time savings of the same order as
in the variance limited regime where the sensor is sam-
pling time constrained.

Notice that even for the noise-free case (i.e. when
the sensor reading has high enough SNR), latency
scales with pathlength since the variance is negligi-
ble (ideally zero) and the error is completely due to
bias in locating the boundary. In this case, no error
is incurred in cells away from the boundary, and the
pathlength determines the resolution or bias. Thus
the adaptive rates for bias-limited regime also charac-
terize the noise-free case and one sees that multiscale
adaptive scheme performs better than passive whether
noise is present or not.

It should be noted that if the environmental variable does
not exhibit much variability and the spatial map is smooth,
the path planning strategies described above will yield per-
formance similar to a uniform passive scan of the field. Thus

active learning paths are data adaptive, resulting in shorter
localized paths if the interesting phenomena are confined
to certain regions of space and longer uniform paths if the
phenomena is spatially well distributed.

3.2 Mobile Sensing Network
So far we have developed strategies to design adaptive

paths for a single mobile sensor. Now we consider a network
of mobile sensors. Intuitively, it is clear that if there are
k mobile sensors, the field estimation task can be distrib-
uted amongst them leading to reduced latency (by a factor
of k). However, the way the task distribution is done can
have significant impact on the robustness of the system. For
example, an obvious approach is to divide the field into k
equal regions and require each mobile to perform field es-
timation on one region. Assuming, for example, that the
mobile sensors have a fixed sampling time and are moving
at the optimal velocity, the MSE distortion is reduced by a

factor of k−1/(d−1+ 1
d
) for a desired latency, or equivalently,

for a given distortion it yields a factor k improvement in
latency.

However, this approach is clearly not robust to sensor fail-
ure. We wish to devise a path planning strategy that would
degrade gracefully with node failures. Certainly, as long as
there is at least one working sensor, the error should be no
larger than the error in the single mobile sensor case. A
cooperative strategy needs to be followed where sensors co-
ordinate their movements so that even with sensor failures
there is adequate sampling of the entire field, though at a
reduced resolution. We outline such a collaborative strategy
below.

Cooperative strategy for k mobile sensors

1. Initialization - The mobile sensors start at uniformly
spaced locations in the field. This provides robustness
if sensors are likely to fail with progression in time.

2. Coarse survey - The mobile sensors survey the whole
field in a raster scan fashion moving along paths that
are interleaved such that spacing between adjacent mo-
biles’ paths is 1/`, where ` is the pathlength a sensor
would traverse if acting alone (see Fig. 3). Notice
that rows of each raster scan are now k/` apart since
there are k sensors. Thus, each mobile covers a k times
shorter (and hence less dense) path and collects n/k
measurements. The measurements are transmitted to
a fusion center where a coarse RDP estimate of the
field is constructed using measurements from all k mo-
biles. The rough location of the boundary is then con-
veyed back to all the mobiles.

3. Refinement pass - The mobile sensors move along coor-
dinated paths, similar to the coarse survey (each path
is again widely spaced by a factor of k), along the re-
gions identified as possibly containing the boundary to
collect additional n/k measurements each. The final
refined estimate is then generated using the collective
measurements.

If the failures are random, with p the probability of a
sensor failure, it can be shown that under this coopera-
tive strategy the distortion will be reduced by a factor of



(pk)−1/(d−1+ 1
d
), with pk reflecting the effective number of

active sensors. (The proof is omitted due to space con-
straints.) Thus this cooperative strategy is robust and de-
grades gracefully with sensor failures. The coordination re-
quirements of this scheme during the data collection process
can actually be reduced. It can be shown that if the mobile
sensors start at uniformly random locations and collect uni-
formly random samples independent of other sensors in each
pass, we can still guarantee distortion improvement by the
same factor, provided the estimates in each step are formed
using collective measurements and the fusion center trans-
mits the rough location of the boundary to all sensors after
the first step.

It is envisioned that in many cases mobile sensors will
be used to complement a static network of sensors. In this
case, the static sensor network can be deployed uniformly
across the region of interest to form a low resolution esti-
mate of the spatial map. This would provide continuous
monitoring of the environmental variable, and if an event
of interest occurs the mobile sensor(s) can be dispatched to
collect guided measurements and form a refined estimate of
the changepoints.

4. CASE STUDY: LAKE MAPPING
In this section, we use the path planning strategies devel-

oped in the paper for a real-life problem of water current
mapping in a freshwater lake. The Lake Ecology research
group in Wisconsin [1] is interested in studying hydrody-
namics in lakes and how the biophysical setting of the lake
influences these dynamics. One of the primary requirements
for such studies is the spatial mapping of the water cur-
rent velocity in the lake. Currently, such measurements are
taken by a sensor called Acoustic Doppler Current Profiler
mounted on a boat that moves around the lake taking sam-
ples at regular intervals. However, the time requirements
for producing a spatial map of the entire lake have restricted
the researchers to base their inference on field measurements
collected from a small part of the lake, and at coarse resolu-
tions. The techniques developed in this paper for designing
adaptive paths that yield low latency, high resolution spatial
map can greatly benefit such research efforts.

The water current velocity in a lake is influenced by many
factors including the lake bathymetry, littoral-zone vegeta-
tion, stratification induced by temperature and the wind
profile generated by the lake surroundings. The circulation
velocity map is shown in Figure 4 for a freshwater lake. The
map exhibits two distinct regions with significant velocity
gradient between the two. Hence, the field can be charac-
terized as a level transition with an irregular boundary. This
situation is ideally suited for the multiscale adaptive sam-
pling based path planning approach developed in the last
section. We investigate the performance of the multiscale
adaptive approach against a passive approach by designing
the path for the sensor-carrying boat using both strategies
and comparing the accuracies obtained for the reconstructed
maps.

To apply our algorithms to the lake model, we consider a
square region around the lake with the values at the edges
of the lake interpolated to fill the square area. This is neces-
sary to prevent the algorithm from focusing samples along
the boundary of the lake itself, rather than the boundary
of the velocity gradient that we really seek. We use the
data from a three-dimensional non-hydrostatic and strati-

Figure 4: Simulated low resolution water current
velocity profile in Lake Wingra. Notice there are
two distinct regions characterized by low or high
velocity, with significant gradient between them.

fied flow model (3DNHYS) [16] for our experiments. For
simplicity we model the lake with a piecewise constant func-
tion. In general, platelet or polynomial fits can be used to
approximate the velocity on either side of the boundary.
The platelet fit has been used in [15] for a network of static
sensors and is shown to provide good approximation to a
smooth field using the active learning method of [6].

To study the circulation pattern, spatial map of the wa-
ter current velocity at a resolution of ∼ 10m is required.
The original discrete model data provided by the limnol-
ogy group is for a 2 km × 1 km lake with a resolution of
25 m between samples. We interpolate this data using near-
est neighbor interpolation to get a sampling resolution of
25/3 = 8.3 m. These samples can be thought of as the data
collected using a sensor mounted on a boat that moves along
a dense uniform passive path around the entire lake. Of the
256 × 256 samples in our square region, 37323 samples ac-
tually lie in the lake region and are meaningful to evaluate
the accuracy, latency and pathlength of a boat recording
these measurements. In the field experiments done by the
lake research group, the sampling rate of data collection us-
ing the acoustic doppler current profile sensor is 2Hz (i.e.
0.5 secs/sample), and the boat speed is about 2m/s. This
implies that the boat needs to cover an extensive pathlength
of 310 km and takes nearly 48 hrs to collect all the samples.
Analysis of the latency shows that only 5 hrs are spent in the
measurement process, while most of the time is consumed
in moving around the lake. Thus for this problem, we are in
the “velocity-constrained” regime. The reconstructed esti-
mate for the passive case is shown in Figure 5(a) with MSE
= 3 × 10−4.

In the two-step adaptive approach, the boat makes an
initial coarse survey collecting samples at 33.2 m resolution.
Figure 5(b) shows the estimate obtained after the coarse
survey and 5(c) shows the cells corresponding to the rough
boundary locations (as indicated by the coarse estimator),
superimposed on the noisy field. In the refinement pass, the
boat is guided along the rough boundary location identified
by the coarse survey to collect additional samples at finer
resolution of 8.3 m. The final reconstructed map is shown in
5(d). The adaptive approach achieves nearly the same accu-
racy as the passive with MSE = 4 × 10−4 and requires only
8077 samples in the lake. The pathlength is thus reduced by
a factor of 3 to 92 km and the time reduced to nearly 14 hrs.
This represents huge savings in time, and makes the desired
task much more feasible. Multiple sensors, if available, can



be used to reduce the latency further, e.g. 5 such sensors
would reduce the time to less than 3 hrs.

5. CONCLUSION
This paper proposes adaptive path planning approaches to

design paths of mobile sensors used for mapping a spatially
distributed environmental phenomena. Using ideas from the
active learning literature, fast spatial surveying methods are
developed to guide the mobile sensors along interesting re-
gions of the sensing domain. A theoretical framework is
developed for evaluating the accuracy, pathlength and la-
tency tradeoffs under varying sensor capabilities. It is shown
that the proposed data-adaptive path planning procedures
achieve significant improvements in latency and pathlength,
for a given desired accuracy, over a non-adaptive raster-scan
approach. Application of the developed methods to water
current mapping in a lake results in latency improvement
from 48 hrs to 14 hrs.
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(a) Estimate generated by a boat mov-
ing along a uniform passive path. MSE
= 3 × 10−4, latency = 48 hrs.

(b) Estimate generated after the coarse
survey in a 2-step adaptive path ap-
proach.

(c) Cells denoting rough location of the
boundary as indicated by the coarse es-
timate, superimposed on the noisy field.

(d) Final estimate generated after the
refinement pass over the cells in 5(c).
MSE = 4 × 10−4, latency = 14 hrs.

Figure 5: Comparison of passive and adaptive path
planning approaches for water current velocity map-
ping in a freshwater lake. The adaptive strategy re-
quires only 14hrs for mapping the nearly 2km× 1km
lake to a resolution of < 10m, as opposed to 48hrs
using the passive method.


