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Abstract

Many important problems in engineering and science are well-modeled by Poisson processes. In many
applications it is of great interest to accurately estimate the intensities underlying observed Poisson data.
In particular, this work is motivated by photon-limited imaging problems. This paper studies a new
Bayesian approach to Poisson intensity estimation based on the Haar wavelet transform. It is shown
that the Haar transform provides a very natural and powerful framework for this problem. Using this
framework, a novel multiscale Bayesian prior to model intensity functions is devised. The new prior
leads to a simple, Bayesian intensity estimation procedure. Furthermore, we characterize the correlation
behavior of the new prior and show that it has 1/f spectral characteristics. The new framework is applied

to photon-limited image estimation and its potential to improve nuclear medicine imaging is examined.
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I. INTRODUCTION

A great number of important phenomena, in science and engineering are modeled as Poisson processes. In
many instances, it is of interest to estimate the underlying intensity which gives rise to these phenomena.
The intensity estimation problem is encountered in many fields including medicine [1], astronomy [2], com-
munications [3], and networks [4]. This paper considers the problem of estimating the intensity of a Poisson

process from a single observation of the process. We observe counts
¢ ~ Poisson(A), (1)

where the intensity A may be a 1-d signal, 2-d image, or 3-d volume.

For example, the basic photon-limited imaging problem is described as follows. We observe photon
emissions in a compact region of the plane. The photon emissions are the result of an underlying two-
dimensional continuous intensity function. We are interested in estimating the intensity function from the
counts of photon detections. Nuclear medicine imaging is one application that motivates our study of the
photon-limited imaging problem. The major limitation of nuclear medicine imaging is the low-count levels
acquired in typical studies, due in part to the limited level of radioactive dosage required to insure patient
safety. Because of the variability of low-count images, it is very common to employ a post-filtering or
estimation procedure to obtain a “better” estimate of the underlying intensity [5].

To simplify the presentation we work with 1-d intensity functions, but all the results are easily extended
to multidimensional problems. Furthermore, we assume that the intensity function is discretized so that A
is represented as vector of length N with elements ()\k),]cvz_ol. The counts ¢ ~ Poisson(\g) are the elements
of the vector c, also of length N. The contribution of this paper is a novel multiscale, Bayesian approach to
Poisson intensity estimation.

There are several reasons for adopting a multiscale estimation framework.

e Many signals, including intensity functions, have sparse multiscale representations, i.e., a few large coef-
ficients dominate the representation. Consequently useful Bayesian priors are easily specified in the
multiscale analysis domain.

e The Poisson distribution is self-reproducing across scale (sum of independent Poisson variates is Poisson).
This implies that the data have Poisson statistics at all resolutions.

e Coarse-scale estimators of intensities are very reliable (high signal-to-noise ratio). Reliable coarse-scale

information can be leveraged to improve fine-scale estimators.

We discuss some of these motivations in more detail in sections IT and III.
Many earlier approaches to Poisson intensity estimation were based on the idea of modeling the variability

of the process by Gaussian fluctuations with non-stationary characteristics, e.g., [6, 7). Recently, simple



wavelet-based approaches to this problem make use of the square-root of the counts (a variance stabilizing
transformation that makes the data approximately Gaussian) and then apply standard wavelet thresholding
techniques for Gaussian noise removal [8]. More sophisticated wavelet-based estimation procedures attempt
to deal with the Poisson statistics directly. Kolaczyk has developed a wavelet-based thresholding scheme
for the estimation of a special class of Poisson processes termed “burst-like” processes [9]. The burst-
like Poisson process is characterized by a homogeneous, low intensity background with spatially isolated
bursts of high intensity, and is motivated by problems in astronomical imaging. Nowak and Baraniuk
propose a wavelet-based method for the estimation of more general Poisson intensities in [10] using the
cross-validation estimator developed in [11]. This method is applied to nuclear medicine image estimation
in [12]. Both methods [9, 10] can provide satisfactory results in certain situations. However, neither method
adopts a Bayesian perspective, and hence they do not explicitly make use of prior information that may be
available. We note, however, that several wavelet-based Bayesian estimation procedures have been proposed
for Gaussian data, e.g., [13, 14, 15, 16, 17], but such methods are not applicable to the Poisson problem
considered here.

In this paper, we present and analyze a new, multiscale, Bayesian framework for the modeling and esti-
mation of Poisson processes that was first proposed by the authors in the conference paper [18]. The new
framework provides a very natural and powerful approach to studying a wide variety of Poisson processes,
and we show how it can be applied in photon-limited imaging. The framework makes full use of the Poisson
probability model and enables the incorporation of realistic prior information into the estimation process.
There are four major contributions in the paper. First, we describe a new, multiscale, prior probability model
for non-negative intensity functions. This model employs a multiplicative innovations structure in the scale-
space domain. Second, based on this new prior we derive a simple and computationally efficient, Bayesian
estimator of the intensity given an observation of counts, under squared error loss. It is shown through
examples that the Bayesian estimation procedure significantly outperforms existing wavelet-based methods.
Third, we extend the multiscale, intensity prior to a shift-invariant one, and develop a shift-invariant es-
timation procedure. Furthermore, we obtain closed-form expressions for the correlation functions of both
priors, and show that the correlation behavior of the shift-invariant prior has 1/f spectral characteristics
and is more regular than that of the shift-variant prior. Fourth, we apply the framework to photon-limited
imaging and examine its potential to improve nuclear medicine imaging.

The paper is organized as follows. Section II sets some notation and briefly reviews the (unnormalized)
Haar wavelet representation of signals. Section III introduces the multiscale multiplicative innovations
(MMI) model as a new probability model for intensity functions. The MMI model is the cornerstone for
the proposed estimator, which is developed in Section IV. The mathematical details of this development

are left for the Appendices. Section V discusses a shift-invariant extension to the basic MMI model and



compares the correlation behaviors of the two models. In Section VI, we compare the performance of the new
estimation procedure to existing methods via simulated benchmark problems. In Section VII, we discuss
applications of the new framework to photon-limited imaging. We finish with comments and conclusions in

Section VIII.

II. THE HAAR WAVELET TRANSFORM

This paper uses the following wavelet representation and notation throughout. Let ¢y be the data sequence
of counts ¢ of length N = 27, and let co . be its k' element. The subscript 0 denotes the finest scale
(resolution) of analysis. Similarly, let A¢ be the finest resolution representation of the intensity sequence A,
i.€., A\g = A, also of length N. Then,

co ~ Poisson(Ao), (2)

and the objective is to estimate Ay from the observation cg.

A multiscale analysis of ¢y can be obtained by iterating

Cik = Cj—12k T Cj—12k+1; (3)

djr = Cj—12k — Cj—12k+1, (4)

forj=1,...,Jand k =0,...,N/2/ — 1, and J = logy(N). Here, J denotes the coarsest scale of analysis.
¢;r and dj  are termed the scaling and wavelet coefficients of the data, respectively, at scale j and position
(translation) k. These coefficients are simply the unnormalized Haar transform coefficients. The scaling

N/27 —

coefficients ¢; = (¢ k). , ! represent a lower resolution representation of the data c;_;. The “detail” infor-
mation in c;_1, which is absent in c;, is conveyed by the sequence of wavelet coefficients d; = (dj,k),]cvz/ gjfl.
Note that c;j_; can be perfectly reconstructed from c; and d;. Fig. 1 depicts the functional dependencies
among the various scaling coeflicients of a sequence c of length N = 8, using a tree-structured representation.

Similarly, as for ¢, we define the scaling coefficients \;; and the wavelet coefficients 6 of the intensity

function Ag:

Aik = ANji—t2k + Aj_1,2k+1, (5)

Oik = XNj—12k— Nj—1,2k+1- (6)

For the case when the intensity of interest is of discrete nature, Ay is simply the sequence A. If, on the
contrary, the intensity signal is a function of a continuous variable ¢ € [0, 1], say A(t), then A¢ can be viewed
as the sequence of integrated values of that function. That is, in accordance with the definition of the

(unnormalized) Haar wavelet transform on the interval [19], Aox = (A, dox) = fk(}cﬁl)/ N A(t) dt, and more

In this paper, scales corresponding to higher values of the index j represent coarser resolution levels. This convention is

advantageous in keeping notation simple, however, it is in contrast to the convention followed in some literature.



generally, \; = ()\,Zj/2¢j,k) = f;jﬁ;l)/N A(t) dt. Here, (-,-) denotes the inner product, and ¢;;, the Haar
scaling function at scale j and shift k. Similarly, the wavelet coefficients have also a congruent meaning with
(6) in the continuous variable case: 05 = (X, 2//2%4p; ) = X\j_1 2k — A\j_1,2k+1, Where 1; 1, is the Haar wavelet

at scale j and shift k.

A. Why the Unnormalized Haar Transform?

Multiscale analysis based on the unnormalized version of the Haar transform has the unique property that
every scaling coefficient is the sum of two finer-scale scaling coefficients, and consequently, due to the repro-
ducing property of the Poisson distribution,? every scaling coefficient is Poisson distributed. Furthermore, it
is well known that given two Poisson variates, C; ~ Poisson(\;) and Cy ~ Poisson(A2), the conditional dis-
tribution of C; given the sum C; + Cy is binomial [20]. This reveals a very simple “parent-child” relationship
between the scaling coefficients across scales. In Section IV, these facts are crucial in the development of the
proposed intensity estimator. Similar attributes (reproducibility and simple parent-child relationship) do not
hold for more general multiscale analyses of Poisson processes, based on other wavelet systems for example.
Hence, the unnormalized Haar transform can be viewed as the canonical multiscale analysis tool for Poisson
processes. This is in marked contrast to the Gaussian case, in which such attributes hold for a wide variety
of wavelet analyses (including all orthogonal wavelet systems). In short, multiscale transforms of Poisson
processes other than the unnormalized Haar transform are much more difficult to analyze and process. The
natural match between the unnormalized Haar transform and the Poisson process is our primary motivation
for choosing it.

The use of the unnormalized Haar wavelet transform to carry out the multiscale analysis of the data has
additional (secondary) benefits springing from the following points. Poisson processes result from counting
independent events occurring in disjoint regions of time or space of equal size. In such cases, the unnormalized
Haar scaling coefficients correspond exactly to these counts occurring at intervals of sizes varying according
to scale. Thus, the scaling and wavelet coefficient have a very natural interpretation according to (3) and
(4). The Haar basis functions also have the property of being completely localized in space. By this we
mean that at each scale, scaling functions, as well as wavelets, do not overlap. Therefore, at each scale,

scaling coefficients are conditionally independent, that is,
P(cj|Aj) = [T Pkl Nin)-
k

Also, Poisson processes are inherently nonnegative; therefore, a good estimator should always produce
intensity estimates that are either positive or zero. An estimator based on the Haar system may be designed

with this quality.

?C; ~ Poisson(\;), C; independent =Y C; ~ Poisson(}_ \i).



III. A NEw PROBABILITY MODEL FOR INTENSITY FUNCTIONS

A. Multiscale Signal Model Framework

To formulate a Bayesian estimator for this problem, we must first propose a prior probability model for
the unknown intensity. The observed data c is the realization of a random sequence C' (~ Poisson()), and
A is regarded as an unknown realization of a random sequence A with prior density fA . Given this prior,
we seek the optimal estimate of A with respect to squared error loss. The optimal estimate is the posterior

mean

>
Il

E[A|C =c]
= [AfQe)ax, ™)

where f(A|c) is the posterior density function fac(A|c), and E[-] denotes the expectation operator. We often
follow this simplifying convention of defining pdf’s and probability mass functions solely by their arguments.

A Bayesian approach facilitates the solution of (7) by expressing it in terms of the prior density fa.
Applying Bayes’ theorem to (7)

N f)\P(CP\)f(A)d)\
A= TR dx ®)

where P(c|A) is the likelihood that C' = ¢ given that A = X. The Bayes’ estimator (8) poses two interrelated
problems. First, the specification of a meaningful and useful prior fa. Second, the numerical computation of
the estimator. The role the above quantities play in the estimation process is illustrated in Fig. 2. The caret
symbol over a variate denotes its estimate. The remainder of this section describes a new prior probability
model for the Haar scaling and wavelet coefficients of a non-negative intensity that leads to a very simple
specification of fo. In Section IV, we derive an efficient algorithm for computing the optimal estimator (8).

There are two important reasons for adopting a multiscale approach to this problem:

e Prior models that are mathematically tractable, computationally practical, and empirically supported
can be specified very naturally.

e Poisson data is much more reliable at coarse scales than at fine resolutions (higher counts = higher
signal-to-noise ratio). Therefore, more reliable coarse-scale estimates can be leveraged to improve high

resolution estimators.

The first point is due partly to the fact that multiscale decompositions of real-world intensities are often
statistically self-similar. By this we mean the property that the various scale representations preserve the
major features and characteristics of the original object, except for the usual gradual loss of resolution. In
particular, it has been widely recognized that the distribution of the wavelet coefficients of real-world signals

tend to be similar at all scales of analysis, and are usually concentrated around the origin and unimodal [14].



The self-similarity captured by the Haar multiscale analysis is illustrated by considering the distributions of
the wavelet coeflicients at various scales. Fig. 3 illustrates this phenomena. The histograms in this figure
correspond to the wavelet coefficients® at scales 1, 2, 3, and 4 for the cameraman image of Fig. 8(a). The
similarity between these distributions facilitates the specification of Bayesian prior for the intensity in a very
natural way.

The second point above motivates an estimation process that evolves from coarse to fine scales. It is easily
verified that the signal-to-noise ratio (SNR) in a Poisson process increases linearly with the underlying
intensity (signal). Thus, according to (3), cz0 = Y-y Cok, and so the signal-to-noise ratio at scale J is
27 times as large as that for the average data point co k- For example, for a 128 by 128 pixel image, this

represents a SNR improvement of 42 dB.

B. Multiscale Multiplicative Innovations Model

We are now in a position to describe a new, Haar-based probability model for the intensity. Let A;; and
©; r denote the random variables corresponding to the j, k-th scaling and wavelet coefficient of the intensity,
respectively. At the coarsest scale j = J, the single scaling coefficient A ;o has a density with support on
IR*. In this work, we choose the gamma density, since it is especially easy to use in conjunction with the
Poisson mass function, and because it provides a reasonable mechanism for incorporating prior knowledge of
the intensity range. However, as noted earlier, the SNR in the count ¢ is typically very high, and therefore
any reasonable prior with support on IR™ will not significantly influence our estimation of A ,]’().4

Next, introduce statistically independent perturbation variables {A; ;} and model the wavelet coefficients
by

Ojk = Ajk Bjk- (9)

Each wavelet coefficient is modeled as independent perturbation of its corresponding scaling coefficient.
Furthermore, the perturbations at all scales and positions are assumed to be mutually independent. Applying
recursions (5) and (6) to these coefficients, we find that A;_; ; = %(A]’,[k/g] +(=1)* Oj,(x/2)); where [-] stands
for the largest integer no greater than the argument.

To gain some insight into this model, consider the random variable Y} ; defined by

1
Yig = 5 (1+4%). (10)

3More precisely, here we are plotting the histogram of the ratio of the wavelet coefficient relative to the corresponding scaling
coefficient. That is, each wavelet coefficient is divided by the corresponding scaling coefficient at the same scale and position.
If the scaling coefficient is zero, the operation maps to zero. The motivation for this ratio will become apparent in the following
sections.

“In fact, in practice we often use the estimate Ay o = cy,0-



The variable Y ; can be viewed as the canonical multiscale parameter for Poisson processes because of the
following parent-child relationship. It is well known that given two Poisson variates, C; ~ Poisson(A;) and
Cy ~ Poisson()z), the conditional distribution of C; given the sum C; + Cs = ¢ is binomial with parameter

y = /\1)4‘_1/\2 [20]. In the context of our multiscale analysis, this special property implies a very simple

parent-child relationship. Specifically, the conditional distribution of child C_; 2 given the parent C;; =
Cj—1,2k + Cj_12k+1 = ¢ is binomial with parameter Y; ;. This relationship demonstrates the fundamental
role of Y} ;. in the multiscale analysis of Poisson processes.

Using Y} 1, in conjunction with (9) we have

N1 = AjpYjp, (11)

Aj1okt1 = Ajp(1=Yjp). (12)

We can interpret these refinements as a multiscale innovations structure, with the innovations Yj; and
(1-Y} ) entering in a multiplicative fashion, in contrast to the more standard additive innovations structure
encountered in Gaussian estimation problems [21]. We call this model a multiscale multiplicative innovations
(MMI) model. The model is graphically depicted in Fig. 4. The following are some key properties of the
MMI model.

So long as the distributions for the perturbations {A;} are chosen to be similar across scales, the MMI
model gives rise to self-similar intensity representations, which as discussed in section III-A, are typical of
real-world intensities. Also, here we only consider temporally homogeneous processes, it would be undesirable
if the prior depended on the observation time interval in a complicated manner. Due to the multiplicative
innovations structure, only the coarsest scale of the prior is dependent on the observation time interval.
Thus, the model is essentially invariant to the length of the observation time. Moreover, in Section IV the
MMI model is shown to provide a mathematically tractable match to the Poisson nature of the data which
leads to a very simple estimator formulation.

The MMI model is closely related to other models studied in physics and statistics. The MMI model
belongs to the class of cascade models, which are used in statistical physics for modeling a variety of natural
phenomena including turbulence modeling [22] and rainfall distributions [23]. In fact, because MMI model
is a type of cascade model, it can be shown that the MMI model is a random multifractal [24]. It is also
interesting to note that the MMI model is a special case of a Polya tree [25, 26]. In the statistics community,
Polya trees are used to model probability distributions, a problem analogous to modeling a non-negative

intensity function.



C. Prior Distribution for Innovations

In the MMI model, the prior density fa for A can be chosen as identical for all j, k, or may be defined
to be distributed differently at each scale for added flexibility. Location dependence can also be introduced,
but we have not pursued this at present. Desired properties for fa include support on the [—1,1] interval,
symmetry about the origin, unimodality, and concentration around zero. The first property is due to the
fact that the range of ©; is [—Ax, Ajx]. The second arises from the assumption that there is no reason
a priori to favor Aj_y o over Aj_iog41, or vice-versa. The third and fourth properties are based on the
characteristics of observed wavelet coefficient distributions resulting from natural signals [14], and which
have been exploited in other areas including wavelet-based compression [27, 28]. These properties are also
illustrated in the histograms of Fig. 3.

One very general class of probability density functions that possesses the desired characteristics, and which

we use throughout the remainder of the paper, are beta-mixture densities of the form

52)5,—1
13
ZPZ B(si,s;) 225 1 (13)
for —1 < 6§ < 1, where B is the Euler beta function, 0 < p; < 1 is the weight of the i-th beta density
% with parameter s; > 1, and Z, 1pi = 1. Fig. 5 depicts a mixture of three beta densities. A

similar method was also recently proposed using a prior based on a mixture of a Dirac impulse and a single
beta distribution [29].

Other classes of density functions may also provide the desired characteristics, but the beta family has a
significant computational advantage. As pointed out above, Y} ; parameterizes the conditional distribution
of the child Cj_1 9 given the parent C; ;. This conditional distribution is binomial. Hence, from a practical
perspective, the use of a prior that is conjugate to the binomial will greatly facilitate computations [30]. It
is well known that the beta family is conjugate to the binomial. For this reason, the beta mixture prior
described above leads to a very simple, closed-form estimator which is discussed in the next section. However,
for the sake of brevity, in our derivation of the optimal estimator, given in the Appendix, we directly compute

the posterior means based on a beta mixture prior, without explicitly noting the use of conjugacy.

IV. ESTIMATION

A. Bayesian Multiscale Intensity Estimator

In this paper, we focus on the posterior mean estimator, although other estimators (e.g., MAP) may also
be considered within our framework. The posterior mean is the optimal Bayes estimate under a quadratic
loss function. The posterior mean estimate of an intensity A;j, given all the information available in the
data ¢y and the MMI prior model fj, is the conditional mean S\j,k = E[A|co]. In this section we derive

simple closed-form expressions for the posterior mean.



First, based on the analysis in Appendix A,
Ajk = E[A; k|eo] = E[A; k[e;].
This implies that a simple coarse-to-fine procedure can be employed in the estimation process.

At the coarsest scale j = J, the intensity is represented by a single scaling coefficient A;o. Let us begin by
considering the estimation of A;o. We have ) 70 = E[Ajolco] = E[Ajolcso]. As argued in Section III, the
corresponding count cj is itself usually a very good estimate for Ao provided the total number of counts is
sufficient large. This choice has the added advantage of insuring the preservation of total number of counts,
i€y Dok Aok = 2ok Cok -

The posterior mean estimate for the wavelet coefficient 6 is given by

0ix = E[0;klco]

= E[Ajxlco] E[Ajklco],

where we have used (9), and have exploited the independence between A;j and A; ;. Now, we may simply

write

-~ ~

with the obvious definition Sj,k =E[A;k]col-

The desired form for Xj,k may be obtained using (5) and (6), and the linearity property of the expectation

operator:
~ 1
Ajg = E [5 (Mg + (-DF O jay2) CO]
1/~ .
= 3 (Aj+1,[k/2} + (-1 9j+1,[k/2]) : (15)

Here is where we exploit the multiscale framework for estimating the desired intensity. The estimate for Xj,k
is leveraged by the more robust coarser-scale scaling coefficient’s estimate Xj—|—1,[k /2)-
In Appendix B we show that
Y pi B(si+cj—1,2k,8i+Cj—1,2k+1)

B(si,5:) (2s5+cj k)

o B(sitej—1,28,8i+¢—1,2k41)
’Lpl B(si,si)

O = djk (16)

The parameters {p;,s;} are the defining parameters for the beta mixture model in (13). Note that gj,k
guarantees nonnegativity of the resulting intensity estimates. That is, Xj,k >0 for j=0,...,J and all k.

To verify this simply rewrite (16) with the factor d;; inside the upper summand and consider the fact that

d; 1 )
j.
25i+cj,k‘ < 1 for all 3.

The overall algorithm is described below.
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Bayesian Multiscale Intensity Estimation

1. Estimate coarsest scale coefficient

AJ0 = CJp

2. For j = J down to 1 and k =0 to N/2/ — 1

Compute:
8; 1 according to (16)
0k = Nk Ok
Refine:

These simple procedural steps produce posterior mean estimates for finer and finer representations of
the underlying intensity, and terminate with the desired, finest-scale estimate Xo. The complexity of the
proposed estimator is O(N), the same order as the fast wavelet transform itself.

For large data sets it is possible that the full J = log,(N) iterations over the scales in Step 2 above are
not necessary. For instance, for long data sequences the estimator may be initiated at a scale J* < logy(N),
for which the estimate A J» = ¢+ is already very reliable. In practice, even for low-count data, we have
found that J* = 5 provides excellent results. Using J* other than J is equivalent to dividing the original
data sequence into equal subsequences, estimating their underlying intensities separately, and concatenating
the individual results to obtain the overall intensity estimate. However, in Section V we introduce a shift-

invariant version of the estimator above, for which the equivalence just described does not hold.

B. Selection and Analysis of the Beta-Mizture Prior
Our experiments and analysis with real-world intensity functions have led to several conclusions.

1. The perturbation densities of many real-world intensities are very well characterized by a weighted
combination of three beta densities with shape parameters s; = 1, s = 100, and s3 = 10000.

2. The s; = 1 component is the uniform density, and we have found that fixing the corresponding weight to
a small positive constant (e.g., p1 = 0.001), to insure that the prior density fa is bounded from below
over the entire [—1, 1] interval, is appropriate in most situations we have studied.

3. The key parameter that distinguishes the characteristics of different intensity functions is the trade-off
between the so = 100 component and the lower variance s3 = 10000 component. The trade-off is

parameterized by the probability ps € [0,1 — p1]. (Note ps =1 — p; — po.)

11



To gain some insight into the functioning of the MMI model estimator, consider Fig. 6 which plots Sj,k
versus the ratio d;/c;r for three cases: low (¢ = 10), medium (¢ = 30), and high counts (¢ = 1000).
These are, respectively, the dashed, solid, and dot-dashed curves. The ratio d;/c;; may be regarded as
an empirical counterpart to the perturbation variate d; ;. Fig. 6(a) and (b) correspond to two d-priors with
po = 0.1, and py = 0.9, respectively. The rest of the parameters take the values given in points 1-3 above.

From these figures we can observe the following. At high counts, when the SNR is high, the estimator
regards d;;/c; to be a good estimate of d;; for almost every value of d;x/c;; thus, the resemblance to
the unit-slope linear function. In contrast, for low counts, the SNR is much lower, and consequently the
estimator severely attenuates d;/c; k. This phenomenon is reminiscent of the behavior of wavelet-domain
threshold estimators designed for additive Gaussian white noise (AGWN) [8], except that the threshold is
adaptive to the local intensity.

The MMI model estimator minimizes the expected squared error with respect to the MMI model prior.
Of course, the error is minimized by balancing the trade-off between fidelity to the data and fitting to the
prior model. If the data are very ‘reliable,” then the estimator favors the data. If the data are unreliable,
then the estimator favors the prior. As noted, at low counts the ratios d;x/c; ) are not accurate estimates
for 4, and so, the Bayesian estimator attenuates them to minimize the expected squared error in accordance
with the prior. The nonlinearities in Fig. 6(a) correspond to a lower-variance prior (smaller py) than that
giving rise to the nonlinearities of Fig. 6(b). As a result, the nonlinearities in Fig. 6(a) display a ‘dead-band’
characteristic, since the prior requires that a greater number of d; ;/c; » samples be mapped towards zero, in
contrast to the higher-variance prior which displays a less harsh attenuation of small d;/c;x in Fig. 6(b).
This behavior is similar to that observed in other wavelet-based Bayesian estimators designed for AGWN
[13, 15, 16].

However, the functioning of the MMI model estimator is in contrast to that of estimators for AGWN
processes. In the latter cases, all wavelet coefficients are typically attenuated independently and in disregard
to the values of the corresponding scaling coefficients [13, 15, 16]. The MMI model estimator, on the other
hand, adapts not just to the statistics of a particular scale, but also naturally incorporates information from
coarser scales. This is crucial in the Poisson problem since the coarse-scale intensities (scaling coefficients)

are indicative of the statistical reliability of the wavelet coefficient.

C. Estimation of prior parameters

The Haar wavelet coefficient distributions of real-world intensities often fit a profile which resembles that
of Fig. 5 as previously discussed. However, while many distributions follow this general characteristic, one
expects that subtle variations will exist from application to application. Therefore, it is of interest to adapt

the prior to the problem at hand. Here we give a very simple approach to fitting the prior based on a
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moment-matching method. This adaptation can be viewed as an empirical Bayesian extension of framework
described above.

Recall, we assume that for each scale j, the set {A;;} is independent identically distributed (i.i.d.)
with an M-component beta-mixture density distribution with parameters {p;;, s;}}£,. We let the mixing
probabilities {p;;} depend on scale to enable variations of the density across scale. Also note that here the
index 7 does not refer to shift (as does k in Y} for example), but rather it refers to the i-th component
of the mixture density. Then, by (10), at each scale 7, {Y],k}kN:/ gj_l is also i.i.d. with an M-component

standard-beta-mixture density distribution with parameters {p;;, s;};:

M si—1 si—1
YT (1 —y)*
(@) = Y pi , 0<y<L 17
f] (y) i_lpj,l B(Sz’, Si) y ( )

Since Y}, is independent of Ajx, E[A] 5] = E[AT,]E[Y],] and

E[A7 1 o]

SR (18)

B[V =

The moments E[Y; ;] need not be computed using this expression since the prior model (17) gives the
mean 3 for any choice of parameters. For n > 2, the moments E[AT_; 5;] and E[AT,] are easily estimated

from the data. Since E[C} x|Aj k] = Ajk,
E[Ajx] = E[E[C;klA;k]] = E[Cj ]
And in general, it can be shown that for all n there exist a degree n polynomial p,(-) such that
E[A7 k] = Elpn(Cj4)]-

For example,
1

E[AZ,] = E[C}, —Cjx] ~ Njo ;(Cik — Cjk)-

Substituting these estimates for various n into (18) we can obtain empirical estimates for the various
moment of Y; ;. Equating these to the moments of the beta-mixture model (17) produces a set of equations
that can be solved for the parameters {p;,s;}M,.

As mentioned above, we have found that the choice of a three component prior beta-mixture model
suffices for many real-world intensities. At all scales j, we suggest the shape parameters s; = 1, so = 100,
and s3 = 10000, with weights p;; = .001, p; 3 = 1-p; 1-pj 2, and p;2 adapted at each scale using the second

moment estimate for Y ;:

1 3 2 _ .

S+ 1 g (C'—l 2 Cj—1 2m)
E[Y? :/2. d:}p..sz ~ Em I em \
[ Jak] 0 Yy f](y) Yy = J’Z48i + 2 Em(cg,m_cj/m)

(19)
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V. A STATIONARY INTENSITY MODEL AND ESTIMATOR

One potential limitation of MMI model is that it is not stationary due to the fact that the Haar wavelet
transform is shift-dependent. That is, the analysis and estimation depends on the alignment between
the Haar basis functions and the data. Moreover, the coarse scale approximation by Haar wavelets is
piece-wise constant, an unrealistic intensity model. To circumvent such problems, shift-invariant wavelet
transforms have been proposed in literature [31, 32, 33, 34, 35, 36]. In this section, we provide a unified
Bayesian framework for shift-invariant analysis and estimation based on the MMI model. We characterize the
autocorrelation functions of the MMI model (non-stationary) and a shift-invariant MMI model (stationary),
and show that the shift-invariant MMI model has a more regular correlation behavior which may be better

suited for modeling real-world intensities.

A. Shift-Invariant MMI Models

Shift-invariant MMI intensity models can be easily constructed within our Bayesian framework. Specif-
ically, the shift of the intensity function with respect to the Haar wavelet system can be viewed as an
additional degree of freedom in the model, and a probability measure on the shift parameter can be intro-
duced. Tt is assumed that all shifts are circular. If we regard the original model as “unshifted” (shift = 0),
then the standard MMI model introduced in Section III is denoted f(A|shift = 0). Now let P(shift = m)

denote a probability mass function for the shift, and consider the averaged MMI model
F(A) =" f(Alshift = m)P(shift = m). (20)
m

If P(shift = m) is the uniform distribution, a non-informative prior expressing no preference for any particular
shift, then the averaged MMI model provides a shift-invariant (stationary) intensity prior and we call it the
shift-invariant (SI) MMI model. Moreover, it is shown in the next section that the SI-MMI model is more
regular than the basic MMI model.

Estimation using the SI-MMI model is easily carried out by computing the optimal Bayes shift-dependent
estimator given in Section IV for each shift, and then computing an average of the results. The complexity
of the shift-invariant estimator is O(N?) operations. However, note that if we employ a J*-scale SI-MMI
model, with J* < logy(N), then the estimator is invariant to shifts modulo 2/°. This is due to the fact
that the scaling functions at the coarsest scale have support over 27" samples. In general the J*-scale SI-
MMI model only requires a uniform shift prior over a 27" sample region of support, rather than over the
entire range of circular shifts. Thus, if J* < logy(N), then the complexity of shift-invariant estimation is
only O(N27"). As pointed out earlier (see Section IV), in many applications it suffices to take J* smaller
than logy(N). Also note that the fast shift-invariant methods described in [32, 33] are not applicable in

this case due to the dependence between wavelet coefficients across scale. This dependence stems from the
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multiplicative relationship between scaling and wavelet coefficients.’

B. Autocorrelation Functions of MMI and SI-MMI Models

The underlying beta mixture densities capture the key heavy-tailed, non-Gaussian nature of wavelet
coefficient distributions. However, the shift-dependent nature of the Haar wavelet transform generates a
non-stationary correlation structure as illustrated next. For the sake of illustration, we focus on the 1-d
case. Extensions to higher dimensions are straightforward. Also, to keep things simple, we assume that the
maximum number of scales J = logy(IN) are computed in the analysis, where N is the length of the intensity
vector. The results easily extend to other choices for J* # J.

First, consider that basic MMI model (shift= 0) and let us introduce the following notation. Let
u?] = E[A%yo], the second moment of the scaling coefficient at the coarsest scale, and let p? =E [Yﬁk] =
E[(1 —Yjx)?], the second moment of the innovations variates. Recall that we assume the distribution of
Y;  does not depend on position k. The variables Y}, and 1 — Y} have a common second moment due to
the symmetry of the distribution of Y} ; about %

For illustration consider the correlation between the intensities Ay and A2 in the MMI model depicted

in Fig. 4. Note that the finest scale for which Ag and Ag 2 have a common predecessor above in the tree is

J = 2 and the predecessor is Ay g. Therefore we can write

Ao = Yio Yoo Aoy,

k]

Aop = Yii1 (1-Ya) Aop.
The correlation between the two intensities is computed
E[AooMop2] =E [Y1,0 Yi1 Yoo (1 —Yap) A%,o] .
Exploiting the independence of the innovations variates, we have
E[Aoohoz] = E[Yi0] E[¥i1] El¥ao (1 - Ye0)] E[A3].

Examining the individual product terms and making use of the moments defined above,

ElYio)=E[Yi,] = 270,
E[Yoo (1—Ya0)] = 1/2—p3,
E[A3o] = u3e}

Hence,

E[Aopho2] = 272 (1/2 — p3) p3ps.

5The fast shift-invariant methods treat all wavelet coefficients independently.
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Now consider a general case in which we are interested in the correlation between two intensities, say Ag x,
and Ag,. Let j* be the finest scale for which Agy, and Ag, have a common predecessor (above) A in
the MMI model tree. The scale j* can be explicitly calculated using the binary representations of k1 and ko,
and depends on the exact positions of k1 and ke with respect to the alignment of the Haar basis functions.

Assuming that k1 < ko, we have

7 -1

Aoy = I Yik Yok Aje s (21)
i—1
i1

Ao, = I Yik Q=Yjek) Ajo g (22)
i=1

In the expressions for Ag, and Aoy, above, we use a generic spatial index k, since the distributions of
independent innovations variates do not depend on position. We do, however, use Y} ; and Y]’, i to distinguish

the independent innovations variates corresponding to Ag, and A ,, respectively. The correlation is given

by
j*—1 31

E Ao M) =B | IT Vi I Yik Yo (1= Y5 ) AS- 4] - (23)
i=1 i=1
Again exploiting the independence of the innovation variates and making use of the moments defined above,

we have E [Ai*,k] = u3 H%]:j*+1 p; and

T(kl,kg) é E[Ao,klAO,kz]
J

= 272D (2-p2) i [T e 24)
i=j*+1

Note that because j* depends on the alignment between the intensity function and the Haar basis, r(k1, k2)
is not a function of the difference k; — ko alone. This shows that the intensity distribution represented by the
MMTI model is non-stationary. Two columns (fixed k1) of the autocorrelation function of a 256 length MMI
model intensity prior are shown in Fig. 7. Note also that the autocorrelation function is highly irregular
(piecewise-constant), which is an undesirable model for real-world intensities.

Now consider the autocorrelation function of the SI-MMI model. Given a displacement of n between two
intensities, say Agg and A, we can compute the probability of the finest scale j* of a common predecessor,
with respect to the uniform distribution over the shift parameter, as follows. We need to count the number
of shifts that give rise to each possible value of j*, or more precisely the probability of the set of shifts that
give rise to each possible j*. For example, suppose n = 1 and consider the tree in Fig. 4. In this case, four
shifts (out of eight) result in j* = 1, another two shifts result in j* = 2, and two shifts (one wrapping around
due to circularity) result in j* = 3. Hence, we compute P(j* = 1jn = 1) = 1/2, P(j* = 2|n = 1) = 1/4,
and P(5* = 3|n = 1) = 1/4. Similarly, if n = 2, then P(* = 1|n = 2) = 0, P(5* = 2|n = 2) = 1/2, and
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P(j* = 3|n = 2) = 1/2, where again we must be careful to account for the wrap-around effect of the circular
shifting.

Given a displacement of n = k between two scaling coefficients in a J-scale MMI model, the probability
of the scale j* is determined by inspecting the associated binary tree. We need only consider |k| < 2/~! due
to the periodicity of the MMI. First note that we have P(j* < J|n = k) = 1. Next, notice that (2™ — k)
is the number of shifts of a length-k sequence that fit within a length-2" sequence, where (z); = max(z, 0).
In other words, (2™ — k)4 is the total number of scaling coefficient pairs spaced k apart at the bottom of a
m-level binary tree. Also note that the number of m-level subtrees, m < J, at the bottom of a larger J-level

binary tree is precisely 2/~™. Hence, for m < J

P(j* <m|n=Fk) = (2™ —|k|),2/ ™27/
= @™ - |k)s2™ (25)
It follows that
p(mlk) = P(j*=m|n=k)

0, < [logy(|k| +1)]
B 1—27"k|, m = [logy(|k|+1)]

2™ |k, [logo (k| +1)] <m < J

\ |k‘2_J+1a m = J,

where [logs(|k| + 1)] denotes the smallest integer greater than or equal to log,(|k| + 1).

With these probabilities defined, the autocorrelation function is given by

J
T(k) = E[AO,ZAO,Z—HC] = Z Vmp(m|k), (26)
m=1
where ;
v =272 (12— 2y iy T (27)
1=m+1

is simply the autocorrelation between two intensities at the bottom of an MMI binary tree model for which
j* = m, as in (24). Note that the SI-MMI autocorrelation is stationary. The autocorrelation function for
a 256 length SI-MMI intensity prior is shown in Fig. 7. Unlike the autocorrelation of the MMI model, the
SI-MMI model’s autocorrelation is piece-wise linear (compared to piece-wise constant) and hence is more
regular and potentially better suited for the analysis of natural intensities. These results are similar in

spirit to the the analysis in [32], where it is observed that the shift-invariant Haar wavelet transform is

line-preserving.® Moreover, the results here suggest possible schemes for choosing the parameters of the

5These conclusions extend to the SI-MMI model as well.

17



SI-MMI model. For example, the decay of the autocorrelation function may be tailored by appropriate
choices of the p?, i = 1,...,J. Larger values for the p? cause r(k) to decay faster. We also note that similar
correlation analysis may be carried out for related wavelet-domain signal models developed for Gaussian
data [13, 14, 15, 16, 17]. We also note that the issue of combining or mixing trees (which is essentially what
is being done in the SI-MMI model) has been studied in the more general setting of the Polya tree. Some
very interesting theoretical results concerning the continuity of densities generated by mixtures of Polya
trees (SI-MMI models are a special case) are given in [26]. These results may provide further insights into
the SI-MMI model and may suggest other extensions of our framework, but these issues are beyond the

scope of this paper.

C. SI-MMI Model and 1/f Processes

Remarkably, the SI-MMI correlation function has a fractal 1/ f-like character. Fractal 1/f random process
models are commonly used in image modeling, and it has been observed that natural signals and images
often display a correlation structure similar to that of the MMI model [37, 38, 39]. To see that the SI-MMI
correlation is 1/f, consider the simple case in which the second moments of the innovations are constant

independent of scale, i.e., pj = p, 7 =1,...,J. Then

v = 272007 (172 = p?) p5p* ™ (28)

— e, (20)
where C is a constant independent of m. Next equate (2p) 2™ with 20r=1m and solve for . This gives
U = C 207 1m, (30)

where v = —1 — log,p?. Note that 1/4 < p? < 1/2, where the lower and upper bounds corresponds to the
two extreme limits of the beta density: a point mass at 1/2 or two point masses at 0 and 1, respectively.
This implies 0 < v < 1. Combining (30) with (26) and after some algebra, we have

r(k) = C(20-DM0g(K+D] _ g |o0r-27

+8k[202) flng(\kl‘Hﬂ) (31)

for |k| > 0, where 8 = % In the case k = 0, 7(0) = p%p?’/. Finally, making use of the approximation

2Ml0g;(IK+11 » |k, for |k| > 0 we have

r(k)

Q

C =Bkl + gle20 2] (32)

For large J and v < 1, the term ﬂ|k|2(7_2)‘] is negligible, and hence the correlation function behaves

like ||~ and the power spectrum decays like ﬁ (see [40] for the relationship between autocorrelation
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functions and power spectrums of 1/f processes). That is, the SI-MMI model produces a non-negative,
stationary processes with 1/f characteristics. For more details on SI wavelet models and 1/f processes see

[36].
VI. NUMERICAL COMPARISON OF WAVELET-BASED INTENSITY ESTIMATORS

Here we compare the performance of the new Bayesian estimation algorithm with several existing methods.
To assess the performance of each method four test intensity functions were used. These functions were the
“Doppler,” “Blocks,” “HeaviSine,” and “Bumps” test signals proposed in [8]. Each test function is 1024
samples long (i.e., N = 1024, J = 10). These functions serve as benchmark tests for signal estimators,
and they were designed to be representative of a variety natural signal structures. We refer the reader
to [8] for more information about the test functions. Since the intensity functions must be non-negative,
each test function was shifted and scaled to obtain an intensity with a desired peak value and a minimum

value of Realizations of counts are generated from each intensity using a standard Poisson

peak value-
random number generator [30]. We compare the performance of the simple estimator based on the raw
counts (COUNT), a shift-invariant version of the the cross-validation estimator’ (CV) proposed in [10],
the SI-MMI model estimator described in this paper with a three component beta-mixture model for the
innovations with parameters® s; = 1, s, = 100, and s3 = 10000, the square-root estimation methods using a
shift-invariant version of the Haar wavelet transform (D2), and the square-root estimation method using a
shift-invariant version of the Daubechies-8 (D8) wavelet. The method proposed in [9] is not compared since
it is derived under a “burst-like” process model which is not appropriate for these test functions with the
exception of the Bumps function.

The square-root method first computes the square-root of the counts, then treats the square-root data as
though it were Gaussian, takes the shift-invariant discrete wavelet transform [32, 33], applies a soft-threshold
nonlinearity to wavelet coeflicients, and computes the inverse transform of the thresholded coefficients.
After this processing, the result is squared to obtain an intensity estimate. For both square-root methods
the universal threshold proposed in [8] was used. We consider both the D2 and D8 wavelet (which can
be applied in the case of Gaussian data) to demonstrate that our Haar-based method can outperform
the square-root method even when more regular wavelets like the D8 are used. All methods employ a
5-scale wavelet transform. In practice, we could use full J-scale transforms, but their performances were
roughly the same as that of the 5-scale transforms in our experiments, and the 5-scale transforms are more

computationally efficient. Table 1 gives the average mean-square errors (AMSE) of the various methods for

"This estimator is a wavelet threshold type operation that is derived using the statistical method of cross-validation [11].
8The mixing parameter p; = 0.001, and parameter p» (and hence p3) is determined using the data-adaptive moment-matching

method given in Section IV-C.
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a peak intensity of 8. Table 2 gives the AMSE of each method for a peak intensity of 128. The AMSE is
estimated using 25 independent trials in each case, and each AMSE is normalized by the squared Euclidean
norm of the underlying intensity function. Inspection of the tables shows that all methods offer significant
improvements over the simple, count estimator. Moreover, the SI-MMI based estimator outperforms all
others in every case. We also note that similar tests and comparisons were made with the shift-variant
versions of each estimator. As expected, the shift-variant estimators did not perform as well as their shift-
invariant counterparts. However, the MMI model estimator outperformed the other shift-variant methods

in all cases as well.

Table I. AMSE results for various test intensities and estimation algorithms. Peak intensity = 8.

Intensity | COUNT | CV | BAYES D2 D8

Doppler 0.1786 | 0.0588 | 0.0154 | 0.0548 | 0.0443
Blocks 0.1935 | 0.0617 | 0.0178 | 0.0700 | 0.0800
HeaviSine | 0.1833 | 0.0552 | 0.0052 | 0.0294 | 0.0300
Bumps 0.5207 | 0.1877 | 0.1475 | 0.4570 | 0.4317

Table II. AMSE results for various test intensities and estimation algorithms. Peak intensity = 128.

Intensity | COUNT | CV | BAYES D2 D§
Doppler 0.0111 | 0.0047 | 0.0026 | 0.0095 | 0.0059
Blocks 0.0120 | 0.0040 | 0.0027 | 0.0077 | 0.0126

HeaviSine | 0.0115 | 0.0039 | 0.0007 | 0.0036 | 0.0028

Bumps 0.0324 | 0.0171 | 0.0143 | 0.1046 | 0.0908

VII. APPLICATION TO PHOTON-LIMITED IMAGING

In this section we apply the MMI models and estimation procedure to the problem of photon-limited
imaging. Photon-limited imaging arises in many fields including medicine and astronomy. The fundamental
problem in photon-limited imaging is the variability due to quantum effects in the emission and detection
of photons. In many problems, the photon counts collected during image acquisition are well-modeled by a
temporally homogeneous and spatially inhomogeneous Poisson process.

Assume that we detect photon emissions in a compact region of the plane. The photon emissions are the

result of an underlying two-dimensional continuous intensity function. We are interested in estimating the
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intensity function from the photon detections. For practical reasons (computing and display), we seek an
estimate of the intensity at a finite scale (resolution) represented by a “pixelized” intensity. A crude estimate
of the pixelized intensity is obtained by simply counting the number of photons detected in each square pixel
region of the plane. This “count” image is highly variable due to the random nature of the photon emission
process. However, lower resolution images, obtained by counting the number of photons detected in larger
square pixel regions of the plane, provide better (less variable) estimates of the low-resolution intensities. This
illustrates the advantage of multiscale analysis in photon-limited imaging. Relatively reliable coarse-scale
estimators of the intensity can be leveraged to obtain finer details using our multiscale Bayesian framework.

To illustrate the effectiveness of the framework in photon-limited imaging applications, we consider a
simulated experiment and a real-world application to nuclear medicine imaging. Note that the MMI models
and estimator are easily generalized to two dimensions. Specifically, we take the 2-d multiscale parameters
to be the factors corresponding to the multiplicative refinement of a coarse scaling coefficient (intensity)
into four finer scaling coefficients by first splitting it vertically (horizontally) into two halves, then next
horizontally (vertically) splitting each half into two quarters. That is, if Ay ; is a 2-d intensity function, then

we define Ag g ; = Ay, at the finest scale j = 0 and for coarser scales take

Nivikr = Njoror + Ajokoirt + Ajoky1,20 + Ajoky1,2041,
Ajokor + Njok2i41

Y}
17kal )
It Aok + Njog o1 + Njokr1,20 + Ajokt1,2141

Ajok2

Y2k
j+1,k, )
A Ajokor + Njok o1
Ajokt1,2
ik = 2 (33)

Ajoks1,21+ Njok+12141

Note that in the 2-d case we have three sets of multiplicative innovations, one vertical set Y' and two
horizontal sets Y2 and Y3. In the analysis of count images, each scaling coefficient is the sum of four counts,
and each wavelet coefficient is simply the difference of two counts. Hence, all the machinery developed for
the one-dimensional case, based on sums and differences of pairs of counts, is immediately applicable to
two (or even higher) dimensional data. Note that this 2-d multiscale analysis defined above differs from the
standard 2-d Haar wavelet analysis [19], which involves a vertical, horizontal and diagonal differences. We
use the alternative 2-d analysis because, unlike the standard 2-d Haar analysis, it allows us to decouple the
Poisson problem, just as in the 1-d case. In both experiments, the 5-scale Haar transform is employed and
a three component beta-mixture density is used for the SI-MMI model with fixed shape parameters s; = 1,
s9 = 100, and s3 = 10000. The mixing probability p; is fixed at 0.001, and py (and p3) is adapted to the data
at each scale using the moment-matching method described in Section IV-C. We have found these choices
of s1, so, and s3, combined with the flexibility of the data-adaptive po, to provide very good results for a

wide-variety of imagery.
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A. Photon-Limited Imaging Simulation

Fig. 8 depicts a typical realization of a simulated photon-limited imaging application and the resulting
estimates provided by the MMI and SI-MMI models. The maximum intensity in the image in Fig. 8(a) is
60.00, and the average intensity is 25.40. Hence, this simulation models a fairly low intensity (low SNR)
imaging problem. A realization of counts is generated from this intensity using a standard Poisson random
number generator [30]. Note the visual improvement provided by the MMI and SI-MMI model estimates in
Fig. 8(c) and (d), respectively, in comparison to the count image Fig. 8(b). Furthermore, the estimate based
on the SI-MMI model appears to be better than that of the MMI model. In fact, in 25 independent trials
of this experiment we estimated the average mean squared pixel error to be 25.28 for the count image, 7.36

for the MMI model estimator, and 4.01 for the SI-MMI model estimator.

B. Application to Nuclear Medicine Imaging

Nuclear medicine imaging is a widely used commercial imaging modality [41]. Unlike many other medical
imaging techniques, nuclear medicine imaging can provide both anatomical and functional information. How-
ever, nuclear medicine imaging has a much lower signal-to-noise ratio relative to other imaging techniques.
Hence, improvements in image quality via optimized signal processing represent a significant opportunity to
advance the state-of-the-art in nuclear medicine.

Nuclear medicine images are acquired by the following procedure [41]. Radioactive pharmaceuticals that
are targeted for uptake in specific regions of the body are injected into the patient’s bloodstream. As the
radioactive pharmaceuticals decay, gamma rays are emitted from within the patient. Imaging the gamma
ray emissions provides a mapping of the distribution of the pharmaceutical, and hence a mapping of the
anatomy or physiologic function of the patient. Gamma rays are detected and spatially located using a
gamma camera, which converts gamma rays into light. Photomultiplier tubes then detect and locate the
emissions. The raw nuclear medicine data is an image of photon detections (counts). The raw data may be
viewed directly or used for tomographic reconstruction. The major limitation of nuclear medicine imaging is
the low-count levels acquired in typical studies, due in part to the limited level of radioactive dosage required
to insure patient safety. Because of the variability of low-count images, it is very common to employ a post-
filtering or estimation procedure to obtain a “better” estimate of the underlying intensity. An excellent
discussion of the potential diagnostic benefits of various frequency domain processing methods is given in
[5]. Advantages of multiscale methods over frequency domain methods for photon-limited imaging problems
are discussed in [42].

To illustrate the potential of our multiscale Bayesian framework in nuclear medicine imaging, consider
the spine and heart studies depicted in Fig. 9. Fig. 9(a) depicts the count image from a nuclear medicine

spine study. The radiopharmaceutical used here is Technetium-99m labeled diphosphonate. In bone studies
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such as this, brighter areas indicate increased uptake of blood in areas where bone growth is occurring.
This may reflect areas where bone damage has occurred. Functional changes in bone can be detected using
nuclear medicine images before they will show up in x-ray images. The maximum count in this image is
178 in the “hot-spot” at the bottom of the spine. The maximum count in the upper portion of the spine
is 75. Fig. 9(b) shows the SI-MMI model estimate of the underlying intensity. Fig. 9(c) depicts an image
of a heart obtained from a nuclear medicine study. The image was obtained using the radiopharmaceutical
Thallium-201, and the maximum count is 33. In this type of study, the radiopharmaceutical is injected
into the bloodstream of the patient and moves into the heart wall in proportion to the local degree of
blood perfusion. The purpose of this procedure is to determine if there is decreased blood flow to the
heart muscle. Fig. 9(d) shows the SI-MMI model estimate. In both studies, we see that the SI-MMI model
estimator preserves the important image structure and has significantly lower variance compared to the raw
count image. The intensity estimates provided by the SI-MMI model may enable better diagnosis in clinical
nuclear medicine. The feedback we have received from our collaborators in several radiology departments
has been very encouraging, and we are beginning more exhaustive studies to assess the potential of our new

framework to improve the diagnostic capability of nuclear medicine imaging.

VIII. CONCLUSIONS

We have introduced a Bayesian approach for Poisson intensity estimation. We argued that the multiscale
analysis is the right framework for carrying the Bayesian estimation. We introduced a novel MMI prior
model for intensity functions based on a multiplicative innovations structure. The MMI captures many of
the key features of real-world intensity functions and provides an excellent match to the Poisson distribution.
The MMI model facilitates a multiscale Bayesian estimation procedure that proceeds in a natural fashion
from coarse-to-fine resolutions. The estimator has a simple closed expression and can be implemented in
O(N) operations, where N is the dimension of the finest resolution of the discretized intensity. The issue
of choosing the parameters of the prior model was addressed, and a simple moment-matching method was
proposed for fitting the parameters to a given set of data. The MMI model was extended to a shift-invariant
(stationary) model called the SI-MMI model, and it was shown that the SI-MMI model has a 1/f correlation
structure that is more regular than that of the MMI model.

We hayve illustrated the performance of the multiscale Bayesian estimator by comparing its performance
to other wavelet-based approaches on several benchmark problems. We have also studied the application of
the framework to photon-limited imaging problems, and examined its potential to improve the quality of
nuclear medicine images. Our initial investigations are promising, and the feedback we have received from
our collaborators in various radiology departments has been very encouraging. Ongoing work is investigating

the use of the multiscale Bayesian framework in other imaging applications, including computed tomography.
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The framework also appears to have potential in other applications such as network tomography [4] and
network traffic modeling and synthesis. We are also investigating relationships between the MMI model and
the theories of cascade models of physics [24, 23] and Polya trees in statistics [25, 26]. Finally, the framework
for multiscale Bayesian analysis of Poisson processes presented here can be extended to more general priors
based on hidden Markov models, which capture the key inter-scale dependencies present in many natural

intensities. The interested reader is referred to [43] for more information.
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APPENDIX A

POSTERIOR DISTRIBUTIONS

In this appendix we show that
f(Ajleo) = f(Ajlej) (34)
and

f(Gjkleo) = f(djklci-1,2k Cj—1,2k+1) - (35)

These are proved in the following two propositions.

Proposition 1  f(Aj|co) = f(Ajlc;) for j=0,---,J
Proof: Since the same information contained in the set {co} is contained in {co, ¢;}, applying Bayes’ theorem

f (Aj|co) may be written as

f(Ajle;)
Ajleo) = f(Ajleo,cj) = P (colej, Aj) 2ondlS9)
f( ]‘CO) f( ]|00,CJ) (CO|CJ’ ]) P(C()'Cj)
Thus, it sufficies to show that P(co|c;, A;) = P(eole;) for j =1,---,J.
Define sequences of even and odd elements of ¢;_1 and Aj_1: €§_; = (¢j-1,0,¢j-1,2,"**,€j_1,n/2i-1—2) and
ci_ 1 = (¢j-1,1,¢j-1,3, " Cj_1,n/2i-1—1), and similarly for A;_; and A7_,. Clearly,
P(Cj_llzjc'?c_yl,cj_i:c;_l‘Aj) if C-(;_l — CJ _ c;_l 2 0
P(cj_ilcj, Aj) = (Ci=cjlAj) (36)
0 otherwise.
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Then, with the aid of the total probability theorem we may write for the non-trivial case

fP(C§—1aCj - C§—1|)‘ja ?—1) f()\?ﬂ)\j) d)‘§71
P(cj|A;)
Sk Plej—126lAj—1,26) Tl Plej — cim1,26l Ajk — Aj—1,26) F(AS_1]Ag) dAS_4
[ PlcjrlAjin)

P(cj_1lej, Aj) =

(Aj—1,28) 91,2k A (N —Aj—1,25) Tk =12k e ‘ e
_ fer Yi-nk (cj—1,2k)" er PRI L2k Cjk—C—1,2k)" f()‘j—l‘)‘ﬂ)d)‘j—l
B Nk
_A],k (AJ,k) 75
[e (cj,1)!
Cj—1,2k Cj,k—Cj—1,2k
Cik i 7 i
— 7 j—1,2k j—1,2k e e
o /H ( s ) <1 Y f(Aj—l‘Aj)d)‘j—l
Cj—1,2k Jsk 7,k

where all the indicated products are over k = 0 through N/2/ — 1. In these expressions we have exploited
the conditional independence of the data scaling coefficients at any specific scale given their corresponding
intensity scaling coefficients.

Since the innovation variates are given by Y;; = % (see (11)), the conditional densities within the
integral signs may also be written as fA;f_1|Aj (Af_1lAg) = 0, )\ ka <<—Jﬂ)k | (Aj,k)k)’ where Y; =
(Y0, Yj1, -, Y, N/Qj_l). Then, with a change of variables and recalling the mutual independence of Y'; and

A;, we obtain the equivalent expression

Cjk , e
P(cj-1lcj, Aj) = /H ’ (yj k)12 (1 =y p)Pr 120 f(y;) dy;. (37)
k ijl,Qk

The absence of A; in this expression indicates that c;_1|c; is, at least explicitly, independent of A;. However,
one may argue that A; intervenes only functionally to define the probability mass P(c;_1|c;, A;). That is,
if we denote the right side of (37) by g(c;_1,c;), we must still verify whether g(c;_1,¢;) = P(cj_1|c;). We

may achieve this as follows.

P(Cj71|Cj) = /P Cj— 1|C], ) ()‘ ‘CJ)

Therefore, P(cj_1|c;j,A;) = P(cj_1|c;). Using this result one can arrive at the desired final conclusion

P(colcj, Aj) = P(co|c;) using induction.

Proposition 2 f(d;xlco) = f (djklcj—1,26,Cj—1,2041) forj=1,---,J

Proof: In order to keep the mathematical notation as clean as possible in these and subsequent derivations,
we introduce the following simplifying notations: ¢1 = ¢; 1,2 and c2 = ¢j 12511, €} = cj—1\(c1,c2), and
Y; = y;\yjk- Now, since y; = S(1+6;x) (see (10)), it suffices to show that f(y;klco) = f(yjxle1,c) for
j=1,---,J. This may be done as follows.
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By the total probability and Bayes’ theorems,

Flwirleo) = [ gz Agleo) dy; ax,

/P(CO\yj,Aj)

S dytd.
P(C()) f(y]a ]) y] ]

Since the information conveyed by {y;, A;} is the same as that conveyed by {A; 1}, P(coly;, Aj) = P(co|Aj-1) =
f(Aj-1leo)P(co)/f(Aj-1). Using Proposition 1, this becomes P(coly;, Aj) = f(Aj-1]ej-1)P(co)/f(Aj-1) =
P(cj—1|Aj—1)P(co)/P(cj—1). Upon substitution in the above integral

1A
fWikleo) = /%ﬂyp)\j)dy;w\j

_ / P(cj-1]y;, Aj)
P(cj-1)

- /P(01762|yj,k7>‘j,k)

f(y;, ) dyj dA;

P(c*_,|y%, A
A2 iy, 3 ays an,

P(cj-1)
= f(y'k)/P(q c2|Yjk )\-k)ip(c;_l‘)‘j)f()\.)d)\.
s ? VIR P P(c]_l) J J
ACL+C2 A P(ck_ | A;)
= (1 — g )C2 117 N Y.
Flae) U5 0 -0 | aleal Plep) 1)

Thus, f(y;klco) = f(y;klc1,c2)-

APPENDIX B

MULTIPLICATIVE INNOVATION’S OPTIMAL ESTIMATION

In this section we find a closed form for the optimal estimate gjyk of the innovation coefficient ;. For
the sake of simplicity, in the few steps that follow we will disregard the indices j and k, and simply write ¢
for ¢; and similary for other quantities.

The minimum mean square error (mmse) optimal estimate of the innovation coefficient §, given all the

information available in ¢ is given by

5 = Blale] = [ 556le)ds = [ 8(ler,ea)do

in accordance with (35). Applying Bayes’ theorem to this expression we obtain

~ [1 0P (ca, c2|0)f(6) do B J1 2 6P (e, cald, N) F(A|S) dX f(0) do

J11 P(ex, c2|6) f(6) S 21 52 Pler, c2ld, N f(M6) dA f(6) d6

Here, f(A|6) = f(A) due to the independence of A and A; ;.. Also, notice that ¢; and cz only depend on A

and § by way of their respective statistical means Ay = 3 (1+6) and Az = 3A (1 —6) (See (11) and (12)).

Given A1 and A2, A and ¢ do not convey any further information on the behavior of ¢; and ca. Moreover,
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given A1 and A2, ¢1 and ce are independent. Therefore,

: J5 052 0P (er,00 N2 AL52) F(M) dA £(6) do
S5 05 P (en,e2 [AEEE,AISE) F(X) A £(5) do
JLse o G (Vg0) T g (M) T T ax s (9) do
Jh oo 2R (W)™ 7‘“;2!‘”” (A2)™ F() dx £(5) dd

It is now possible to factor out every A-dependent term from the integrals in §. Doing this, the resulting

integrals in A in the numerator and denominator cancel out leading to
s 26 (L) (1-0) f(6)dd
JLA+6) (1 —08)2f(5)ds

Substituting the beta mixture model (13) into this expression and carrying out the integration we obtained

(38)

the desired result:
(sitc1,8i+c2)

. Ezpzm
(5]"1@ = G5k _B(sitc1,sitc2) (39)
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Fig. 1. Multiscale scaling coefficients {c; . }. At the top, we have scaling coefficients at the coarsest resolution.
At the bottom, we have the finest resolution, expressed by the data themselves. The connecting segments

illustrate the functional dependencies among the various scaling coefficients c;j according to expression (3).

Haar-Based
Intensity Model

f

A
{d'k} { 'k} A A
Co = (Co 1) Haar — Haar —L  Haar Ay = (Ag )
—> Coefficient A Inverse ———»
Transform | ¢, , 10
——> Processing ——— g Transform

Fig. 2. Structure of a Haar-based intensity estimator.
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Fig. 3. Histogram of perturbation variates (6 = 6/)) for scale (a) j =1, (b) j =2, (c) =3, and (d) j =4

of the cameraman image of Figure 8(a). The general invariance of the distributions’ structure across scales

illustrates a self-similar property of real-world image statistics.

Fig. 4. MMI model interpreted as a probabilistic tree. The MMI model can be viewed as a tree-structured
probability model in which the intensity A; at coarse scale j is refined (split) via the multiplicative inno-
vation Y}y to obtain two new intensities Aj_1 o and Aj_q 41 at the next finer scale of analysis j — 1. The

innovations variates {Y}} are mutually independent at all scales j and positions k.
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02 -0l 0 1 0.2
coefficient value

Fig. 5. Three component Beta-mixture distribution (solid line) superimposed on the histogram of the
perturbation variates (6 = 6/)\) of Figure 8(a). The beta mixture parameters here are s; = 1, so = 100,

s3 = 10000, p; = 0.001, py = 0.400, and p3 = 0.599.

perturbation
perturbation

Fig. 6. Perturbation estimate 6 as a function of d/c for ¢ = 10 (dash), ¢ = 30 (solid), and ¢ = 1000
(dot-dash). The estimator’s defining parameters are s; = 1, so = 100, s3 = 10000, p; = 0.01, and (a)
p2 =1—p; —p3 =0.100, and (b) po =1 — p; — p3 = 0.900.
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--- r(0,k)
‘‘‘‘‘‘ r(55,k+55)
— r(k) SI-MMI

Fig. 7. Correlations functions for MMI and SI-MMI 256-point (J = 8) intensity priors.

MMI model

autocorrelation r(0,k) (dash-dash) and r(55,k + 55) (dash-dot) plotted as a function of k. Stationary SI-

MMI model autocorrelation r(k) (solid). For both the MMI and SI-MMI models in this example, p% = 1

and p5 =0.26, j=1,...,J.

Fig. 8. Photon-limited image estimation using MMI models. (a) intensity function, (b) realization of Poisson

counts (average squared pixel error = 24.80), (c) intensity estimate using MMI model (average squared pixel

error = 7.36), (d) intensity estimate using SI-MMI model (average squared pixel error = 3.98).
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() (d)

Fig. 9. Nuclear medicine image estimation using SI-MMI models. (a) Spine count image. (b) SI-MMI model

estimate of underlying intensity. (c) Heart count image. (d) SI-MMI model estimate.
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