
ECE 901
Homework 2

1. Consider the histogram classification rule discussed in Lecture 5. In lecture, we showed that
the histogram rule is consistent if the number of bins M →∞ and n/M →∞ as the number
of training data n → ∞. The rate of convergence can be arbitrarily slow, depending on
the complexity of the unknown conditional probability function η(x) = P (Y = 1|X = x).
However, if we make some assumptions about η(x), then it is possible to determine a good
choice for M and a rate of convergence. Specifically, let’s assume that η(x) is a Lipschitz
function on [0, 1]d. Derive a good choice for M in terms of the sample size n, and determine
the resulting rate of convergence.

Hint: Show that the approximation error of η̂n will be O(M−1/d) in this case. To bound
the estimation error, we need to bound E[N−1/2|N > 0] where N is the number of samples
falling in a particular bin. Assuming that the density of X is bounded below and above
by a constants C1 and C2, respectively, it follows that the probability p of falling into a
given bin C1/M < p < C2/M . If we have n training samples, then N ∼ Binomial(n, p),
for some p ∈ [C1/M, C2/M ]. Use a first order Taylors series with remainder to approximate
the function f(k) = 1/

√
k about the point k = np and then compute the expectation (the

first order term is zero in expectation and the second order remainder term tends to zero as
n →∞). Thus, E[N−1/2|N > 0] = O(1/

√
np) = O(

√
M/n).

2. Consider a classification problem with X = [0, 1]d and Y = {0, 1}. Let F denote the collection
of all histogram classifiers f : [0, 1]d → {0, 1} with M equal volume bins. Assume that
minf∈F R(f) = 0. For a certain ε > 0 and δ > 0, how many samples n are needed for an
(ε, δ)-PAC bound?

3. Consider a classification problem with X = [0, 1]2 and Y = {0, 1}. Let {vj}K
j=1 be a collection

of K points uniformly spaced around the perimeter of the unit square. Let F denote the set
of linear classifiers obtained by connecting any two points in {vj} with a line. Assume that
minf∈F R(f) = 0. Give a bound for the estimation error in terms of K and the number of
training data n.


