ECE 901 Homework 2

Consider the histogram classification rule discussed in Lecture 5. In lecture, we showed that the histogram rule is consistent if the number of bins M → ∞ and n/M → ∞ as the number of training data n → ∞. The rate of convergence can be arbitrarily slow, depending on the complexity of the unknown conditional probability function η(x) = P(Y = 1|X = x). However, if we make some assumptions about η(x), then it is possible to determine a good choice for M and a rate of convergence. Specifically, let's assume that η(x) is a Lipschitz function on [0, 1]^d. Derive a good choice for M in terms of the sample size n, and determine the resulting rate of convergence.

Hint: Show that the approximation error of $\hat{\eta}_n$ will be $O(M^{-1/d})$ in this case. To bound the estimation error, we need to bound $E[N^{-1/2}|N > 0]$ where N is the number of samples falling in a particular bin. Assuming that the density of X is bounded below and above by a constants C_1 and C_2 , respectively, it follows that the probability p of falling into a given bin $C_1/M . If we have n training samples, then <math>N \sim \text{Binomial}(n, p)$, for some $p \in [C_1/M, C_2/M]$. Use a first order Taylors series with remainder to approximate the function $f(k) = 1/\sqrt{k}$ about the point k = np and then compute the expectation (the first order term is zero in expectation and the second order remainder term tends to zero as $n \to \infty$). Thus, $E[N^{-1/2}|N > 0] = O(1/\sqrt{np}) = O(\sqrt{M/n})$.

- 2. Consider a classification problem with $\mathcal{X} = [0,1]^d$ and $\mathcal{Y} = \{0,1\}$. Let \mathcal{F} denote the collection of all histogram classifiers $f : [0,1]^d \to \{0,1\}$ with M equal volume bins. Assume that $\min_{f \in \mathcal{F}} R(f) = 0$. For a certain $\epsilon > 0$ and $\delta > 0$, how many samples n are needed for an (ϵ, δ) -PAC bound?
- **3.** Consider a classification problem with $\mathcal{X} = [0,1]^2$ and $\mathcal{Y} = \{0,1\}$. Let $\{v_j\}_{j=1}^K$ be a collection of K points uniformly spaced around the perimeter of the unit square. Let \mathcal{F} denote the set of linear classifiers obtained by connecting any two points in $\{v_j\}$ with a line. Assume that $\min_{f \in \mathcal{F}} R(f) = 0$. Give a bound for the estimation error in terms of K and the number of training data n.