ECE 901
 Homework 2

1. Consider the histogram classification rule discussed in Lecture 5. In lecture, we showed that the histogram rule is consistent if the number of bins $M \rightarrow \infty$ and $n / M \rightarrow \infty$ as the number of training data $n \rightarrow \infty$. The rate of convergence can be arbitrarily slow, depending on the complexity of the unknown conditional probability function $\eta(x)=P(Y=1 \mid X=x)$. However, if we make some assumptions about $\eta(x)$, then it is possible to determine a good choice for M and a rate of convergence. Specifically, let's assume that $\eta(x)$ is a Lipschitz function on $[0,1]^{d}$. Derive a good choice for M in terms of the sample size n, and determine the resulting rate of convergence.
Hint: Show that the approximation error of $\hat{\eta}_{n}$ will be $O\left(M^{-1 / d}\right)$ in this case. To bound the estimation error, we need to bound $E\left[N^{-1 / 2} \mid N>0\right]$ where N is the number of samples falling in a particular bin. Assuming that the density of X is bounded below and above by a constants C_{1} and C_{2}, respectively, it follows that the probability p of falling into a given bin $C_{1} / M<p<C_{2} / M$. If we have n training samples, then $N \sim \operatorname{Binomial}(n, p)$, for some $p \in\left[C_{1} / M, C_{2} / M\right]$. Use a first order Taylors series with remainder to approximate the function $f(k)=1 / \sqrt{k}$ about the point $k=n p$ and then compute the expectation (the first order term is zero in expectation and the second order remainder term tends to zero as $n \rightarrow \infty)$. Thus, $E\left[N^{-1 / 2} \mid N>0\right]=O(1 / \sqrt{n p})=O(\sqrt{M / n})$.
2. Consider a classification problem with $\mathcal{X}=[0,1]^{d}$ and $\mathcal{Y}=\{0,1\}$. Let \mathcal{F} denote the collection of all histogram classifiers $f:[0,1]^{d} \rightarrow\{0,1\}$ with M equal volume bins. Assume that $\min _{f \in \mathcal{F}} R(f)=0$. For a certain $\epsilon>0$ and $\delta>0$, how many samples n are needed for an (ϵ, δ)-PAC bound?
3. Consider a classification problem with $\mathcal{X}=[0,1]^{2}$ and $\mathcal{Y}=\{0,1\}$. Let $\left\{v_{j}\right\}_{j=1}^{K}$ be a collection of K points uniformly spaced around the perimeter of the unit square. Let \mathcal{F} denote the set of linear classifiers obtained by connecting any two points in $\left\{v_{j}\right\}$ with a line. Assume that $\min _{f \in \mathcal{F}} R(f)=0$. Give a bound for the estimation error in terms of K and the number of training data n.
