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Abstract

Consider the problem of estimating the γ-level set G∗

γ = {x : f(x) ≥ γ}
of an unknown d-dimensional density function f based on n independent
observations X1, . . . , Xn from the density. This problem has been ad-
dressed under global error criteria related to the symmetric set difference.
However, in certain applications such as anomaly detection and cluster-
ing, a more uniform mode of convergence is desirable to ensure that the
estimated set is close to the target set everywhere. The Hausdorff error
criterion provides this degree of uniformity and hence is more appropriate
in such situations. It is known that the minimax optimal rate of conver-
gence for the Hausdorff error is (n/ log n)−1/(d+2α) for level sets with Lip-
schitz boundaries, where the parameter α characterizes the regularity of
the density around the level of interest. However, the estimators proposed
in previous work achieve this rate for very restricted classes of sets (e.g.
the boundary fragment and star-shaped sets) that effectively reduce the
set estimation problem to a function estimation problem. This character-
ization precludes the existence of multiple connected components, which
is fundamental to many applications such as clustering. Also, all previous
work assumes knowledge of the density regularity as characterized by the
parameter α. In this paper, we present a procedure that is adaptive to
unknown regularity conditions and achieves near minimax optimal rates
of Hausdorff error convergence for a class of level sets with very general
shapes and multiple connected components at arbitrary orientations.

1 Introduction

Level sets provide a useful summary of the function for many applications in-
cluding clustering [1, 2], anomaly detection [3, 4, 5], functional neuroimaging
[6, 7], bioinformatics [8], digital elevation mapping [9, 10], and environmental

1



monitoring [11]. In practice, however, the function itself is unknown a priori
and only a finite number of observations related to f are available. In this pa-
per we focus on the density level set problem; extensions to general regression
level set estimation should be possible using a similar approach, but are beyond
the scope of this paper. Let X1, . . . , Xn be independent, identically distributed
observations drawn from an unknown probability measure P , having density
f with respect to the Lebesgue measure, and defined on the domain X ⊆ R

d.
Given a desired density level γ, consider the γ-level set of the density f :

G∗
γ := {x ∈ X : f(x) ≥ γ}

The goal of the density level set estimation problem is to generate an estimate Ĝ
of the level set based on the n observations {Xi}n

i=1, such that the error between

the estimator Ĝ and the target set G∗
γ , as assessed by some performance measure

which gauges the closeness of the two sets, is small.
Most literature available on level set estimation methods [3, 4, 12, 9, 13,

14, 15, 16] considers error measures related to the symmetric set difference,
G1∆G2 = (G1 \ G2) ∪ (G2 \ G1). For example, in [3, 13, 14, 16] a probability
measure of the symmetric set difference is considered, and in [12, 9, 16] a prob-
ability measure of weighted symmetric set difference is considered, the weight
being proportional to the deviation of the function from the desired level. Both
these measures are global measures of average closeness between two sets. How-
ever, many applications such as anomaly detection and clustering require a more
local and uniform error measure. Controlling the symmetric difference error does
not provide this kind of control and does not ensure accurate recovery of the
topological features. To see this, consider a level set with two components as de-
picted in Figure 1. The figure also shows two candidate estimates, one estimate
connects the two components by a “bridge” (resulting in a dumbbell shaped
set), while the other preserves the (non)-connectivity. However, both candidate
sets have the same symmetric difference, and hence a method that controls the
symmetric difference may not favor the one that preserves topological properties
over the other. Thus, a uniform measure of closeness between sets is necessary
in such situations. We advocate the use of the Hausdorff error metric, defined
as follows between two non-empty sets:

d∞(G1, G2) = max{ sup
x∈G2

ρ(x, G1), sup
x∈G1

ρ(x, G2)}

where ρ(x, G) = infy∈G ||x − y||, the smallest Euclidean distance of a point in
G to the point x. If G1 or G2 is empty, then let d∞(G1, G2) be defined as
the largest distance between any two points in the domain. This error measure
provides a uniform mode of convergence as it controls the deviation of even a
single point from the desired set. In the dumbbell shaped set in Figure 1, the
Hausdorff error is proportional to the distance between the clusters (i.e., the
length of the bridge).

There are some existing results pertaining to nonparametric level set estima-
tion using the Hausdorff error metric [13, 14, 17], but these works focus on very
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Figure 1: (a) The γ-level set G∗
γ of a density function f(x) , (b) Two can-

didate set estimates GA and GB with the same symmetric difference error
(GA∆G∗

γ = GB∆G∗
γ), however GA does not preserve the topological proper-

ties (non-connectivity) and has large Hausdorff error d∞(GA, G∗
γ), while GB

preserves non-connectivity and has small Hausdorff error d∞(GB, G∗
γ).

restrictive classes of level sets (e.g., the boundary fragment and star-shaped set
classes). These restrictions, which effectively reduce the set estimation problem
to a function estimation problem (in rectangular or polar coordinates, respec-
tively), are typically not met in practical applications. In particular, the char-
acterization of level set estimation as a function estimation problem precludes
the existence of multiple connected components, which is fundamental to many
applications. Moreover, the estimation techniques proposed in [13, 14, 17] re-
quire precise knowledge of the local regularity of the distribution (quantified by
the parameter α, to be defined below) in the vicinity of the desired level set in
order to achieve minimax optimal rates of convergence. Such prior knowledge
is unavailable in most practical applications. Recently, a plug-in method based
on sup-norm density estimation was put forth in [18] that can handle more
general classes than boundary fragments or star-shaped sets, however density
estimation requires global smoothness assumptions. Also, the method only deals
with a special case of the regularity condition considered here (α = 1), and is
therefore not adaptive to unknown density regularity.

The major contribution of this paper is the development of a novel theo-
retical framework for Hausdorff accurate level set estimation that can handle
broad classes of level sets with very general shapes and multiple connected com-
ponents at arbitrary orientations, and is also adaptive to unknown degrees of
density regularity. It is thus applicable to clustering and other practical level
set estimation problems. Further, the theoretical guarantees only require the
density to be regular locally in the vicinity of the level of interest. The basic
approach is illustrated through the use of histogram-based estimators, although
extensions to more general partitioning schemes such as spatially adaptive par-
titions [19, 20, 21] are possible. The theory and method may also provide a
useful starting point for future investigations into alternative schemes, such as
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kernel-based approaches [5], that may be better suited for higher dimensional
settings.

To motivate the importance of Hausdorff accurate level set estimation, let
us briefly discuss its relevance in some applications.

Anomaly detection - A common approach to anomaly detection is to learn
a (high) density level set of the nominal data distribution [3, 4, 5]. Sam-
ples that fall outside the level set, in the low density region, are considered
anomalies. Level set methods based on a symmetric difference error mea-
sure may produce estimates that veer greatly from the desired level set
at certain places and potentially include regions of low density, since the
symmetric difference is a global error. Anomalous distributions concen-
trated in such places would elude detection. On the other hand, level set
estimators based on the Hausdorff metric are guaranteed to be uniformly
close to the desired level set, and therefore are more robust to anomalies
in such situations.

Clustering - Density levels set estimators are used by many data clustering
procedures [1, 2, 22], and the correct identification of connected level set
components (i.e., clusters) is crucial to their success. The Hausdorff cri-
terion can be used to provide theoretical guarantees regarding clustering
since the connected components of a level set estimate that is ǫ-accurate
in the Hausdorff sense, characterize the true level set clusters (in number,
shapes, and locations), provided the true clusters remain topologically
distinct upon erosion or dilation by an ǫ-ball. The last statement holds
since

d∞(G1, G2) ≤ ǫ =⇒ G1 ⊆ Gǫ
2, G2 ⊆ Gǫ

1,

where Gǫ denotes the set obtained by dilation of set G by an ǫ-ball.

Data Ranking - Hausdorff accurate level set estimation is also relevant for
ranking or ordering data using the notion of data-depth [23]. Density
level sets correspond to likelihood-depth contours and Hausdorff distance
is a robust measure of accuracy in estimating the data-depth as it is less
susceptible to severe misranking as compared to symmetric set difference
based measures.

Thus, Hausdorff accurate estimation of density level sets is an important prob-
lem with many potential applications. However, in all these applications there
are other issues, for example, selection of the density levels of interest, that are
beyond the scope of this paper.

The paper is organized as follows. Section 2 states the basic assumptions
needed for Hausdorff accurate level set estimation. Section 3 discusses the issue
with direct Hausdorff estimation and provides motivation for an alternate error
measure. Section 4 proposes a histogram-based approach to Hausdorff accurate
level set estimation, and Section 5 addresses adaptivity to unknown density reg-
ularity. Extensions and some concluding remarks are given in Section 6. Section
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7 characterizes the Hausdorff error performance of the estimation procedure and
presents proofs of the main results. The Appendix contains proofs of lemmas
used in the theoretical analysis.

2 Density assumptions

In this paper, we assume that the domain of the density f is the unit hypercube
in d-dimensions, i.e. X = [0, 1]d. Extensions to other compact domains are
straightforward. Further, the density is assumed to be bounded with range
[0, fmax]. Controlling the Hausdorff accuracy of level set estimates also requires
some smoothness assumptions on the density and the level set boundary, which
are stated below. But before that we need some definitions:

• ǫ-Ball: An ǫ-ball centered at a point x ∈ X is defined as

B(x, ǫ) = {y ∈ X : ||x − y|| ≤ ǫ}.

Here || · || denotes the Euclidean distance.

• Inner ǫ-cover: - An inner ǫ-cover of a set G ⊆ X is defined as the union
of all ǫ-balls contained in G. Formally,

Iǫ(G) =
⋃

x:B(x,ǫ)⊆G

B(x, ǫ)

We are now ready to state the assumptions. The most crucial one is the first,
which characterizes the relationship between distances and changes in density.
The last two are topological assumptions on the level set and are essentially a
generalization of the notion of Lipschitz functions to closed hypersurfaces.

[A] Local density regularity: The density is α-regular around the γ-level set,
0 < α < ∞ and γ < fmax, if there exist constants C2 > C1 > 0 and δ0 > 0
such that

C1ρ(x, ∂G∗
γ)α ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α

for all x ∈ X with |f(x)− γ| ≤ δ0, where ∂G∗
γ is the boundary of the true

level set G∗
γ .

This assumption is similar to the one employed in [14, 17]. The condition
states that the deviation in density from the level of interest scales as the
α-th power of distance from the level set boundary. The regularity param-
eter α determines the rate of error convergence for level set estimation.
Accurate estimation is more difficult at levels where the density is rela-
tively flat (large α), as intuition would suggest. It is important to point
out that in this paper we do not assume knowledge of α unlike previous
investigations into Hausdorff accurate level set estimation [13, 14, 17, 18].
Therefore, here the assumption simply states that there is a relationship
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between distance and density level, but the precise nature of the relation-
ship is unknown. The case α = 0, which corresponds to a jump in the
density at level γ, can also be handled but requires a slightly modified ap-
proach. Hence, we present the main analysis restricting α > 0 to keep the
presentation simple, and later discuss extension of the method to α ≥ 0
(see Section 6.1). We also discuss a generalization of this two-sided as-
sumption in Section 6.2 that allows the regularity parameter α to vary
along the level set boundary.

[B] Level set regularity: There exist constants ǫo > 0 and C3 > 0 such that
for all ǫ ≤ ǫo, Iǫ(G

∗
γ) 6= ∅ and ρ(x, Iǫ(G

∗
γ)) ≤ C3ǫ for all x ∈ ∂G∗

γ .

This assumption states that the level set is not arbitrarily narrow any-
where. It precludes features like cusps and arbitrarily thin ribbons, as
well as connected components of arbitrarily small size. This condition
is necessary since arbitrarily small features cannot be detected and re-
solved from a finite sample. However, from a practical perspective, if the
assumption fails to hold then it simply means that it is not possible to
theoretically guarantee that such small features will be recovered.

For a fixed set of positive numbers C1, C2, C3, ǫ0, δ0, fmax, γ and α, we define
the following class of densities:

Definition 1. F∗
1 (α) denotes the class of densities satisfying assumptions [A,B].

The dependence on other parameters is omitted as these do not influence the
minimax optimal rate of convergence. In the paper, we present a method that
provides minimax optimal rates of convergence for this class of densities, given
knowledge of the density regularity parameter α. We also extend the method
to achieve adaptivity to α under the following additional assumption:

[C] Level set boundary dimension: There exists a constant C4 > 0 such that
for all x ∈ ∂G∗

γ and all ǫ, δ such that 0 < δ ≤ ǫ, the minimum number of

δ−balls required to cover ∂G∗
γ ∩ B(x, ǫ) is ≤ C4(δ/ǫ)−(d−1).

This assumption is related to the box-counting dimension [24] of the
boundary of the level set. It essentially says that, at any scale, the bound-
ary behaves locally like a (d− 1)-dimensional surface in the d-dimensional
domain and is not space-filling. This condition is not restrictive since the
Hausdorff error itself is inappropriate for space-filling curves, and in fact
it is not required if the density regularity parameter α is known. However,
the condition is needed to achieve adaptivity using the proposed method,
as we shall discuss later.

The corresponding class of densities is defined as:

Definition 2. F∗
2 (α) denotes the class of densities satisfying assumptions [A,B,

C].
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Assumptions [B,C] are essentially a generalization of the notion of Lips-
chitz functions to closed hypersurfaces, and allow for level sets with multiple
connected components and arbitrary orientations. They basically imply that
the boundary looks locally like a Lipschitz function. Thus these restrictions on
the shape of the level sets are quite mild and less restrictive than those consid-
ered in the previous literature on Hausdorff level set estimation. In fact [B,C]
are satisfied by a Lipschitz boundary fragment or star-shaped set as considered
in [13, 14, 17]; please refer to Section 7.4 for a formal proof. Since the class
of densities with star-shaped Lipschitz level set boundaries considered by Tsy-
bakov [14] satisfy assumptions [A,B,C], it is a subset of F∗

2 (α) ⊂ F∗
1 (α). This

implies that the minimax lower bound for Lipschitz star-shaped sets established
by Tsybakov (Theorem 4 in [14]) holds for the classes F∗

1 (α) and F∗
2 (α) under

consideration as well. Hence, we have the following proposition. Let E denote
expectation with respect to the random data sample.

Proposition 1. There exists c > 0 such that

inf
Ĝn

sup
f∈F∗

1 (α)

E[d∞(Ĝn, G∗
γ)] ≥ c

(
n

log n

)− 1
d+2α

and

inf
Ĝn

sup
f∈F∗

2 (α)

E[d∞(Ĝn, G∗
γ)] ≥ c

(
n

log n

)− 1
d+2α

.

Here the inf is taken over all possible set estimators Ĝn, i.e. all measurable sets
in X .

Remark: Extensions to additional smoothness conditions on the boundary
∂G∗

γ (e.g., Hölder regularity > 1) may be possible, but are beyond the scope of
this paper. The earlier work of [13, 14, 17] does address higher smoothness of the
boundary, but that is possible only because for the classes under consideration,
level set estimation reduces to a function estimation problem.

3 Motivating an Error Measure for Hausdorff

control

Direct Hausdorff estimation is challenging as there exists no natural empirical
measure that can be used to gauge the Hausdorff error of an estimate. In
this section, we investigate how Hausdorff control can be obtained indirectly
using an alternate error measure that is based on density deviation error rather
than distance deviation. While the alternate error measure we introduce in this
section is easily motivated and arises naturally, it requires global smoothness
assumptions on the density, whereas only local smoothness in the vicinity of the
level set is required for accurate level set estimation. Hence, in the next section,
we present our final alternate measure that is based on the insights gained here.
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Notice that the density regularity condition [A] suggests that control over
the deviation of any point in the estimate from the true level set boundary
ρ(x, ∂G∗

γ) can be obtained by controlling the deviation from the desired den-
sity level. In other words, a change in density level reflects change in distance.
Moreover, in order to obtain a sense of distance from an estimate of density
variation based on a small sample, the level set boundary cannot vary too ir-
regularly. Specifically, the boundary should not have arbitrarily small features
(e.g., cusps) that cannot be reliably detected from a small sample. Such fea-
tures are ruled-out by assumption [B]. Thus, under regularity conditions on
the function and level set boundary, the deviation of the density function from
the desired level can be used as a surrogate for Hausdorff error. Consider the
following error measure:

E(G) = max{ sup
x∈G∗

γ\G

(f(x) − γ), sup
x∈G\G∗

γ

(γ − f(x))} (1)

= sup
x∈X

(γ − f(x))[Ix∈G − Ix 6∈G] (2)

where I denotes the indicator function and by convention supx∈∅ g(x) = 0 for
any non-negative function g(·). The error measure E(G) has a natural empirical

counterpart, Ê(G), obtained by simply replacing f(x) by a density estimator

f̂(x). Notice that the set Ĝ minimizing the empirical error corresponds to a

plug-in level set estimator. It can be shown (see Appendix A) that, if f̂(x) is
consistent in the sup-norm, then under assumptions [A] and [B]

d∞(Ĝ, G∗
γ) ≤ C E(Ĝ)1/α,

where C > 0 is a constant. Since the difference between the true and empirical
errors can be bounded as

|E(G) − Ê(G)| ≤ sup
x∈X

|f(x) − f̂(x)|,

we have:
d∞(Ĝ, G∗

γ) = O(||f(x) − f̂(x)||1/α
∞ ).

This shows that the sup-norm error of a density estimate gives an upper bound
on the Hausdorff error of a plug-in level set estimate, which agrees with Cuevas’
result [18] for α = 1. However, Hausdorff accuracy of a level set estimate only
depends on the accuracy of the density estimate around the level of interest.
Arbitrarily rough and complicated behavior of the density away from the level
of interest can cause a large sup-norm density error, leading to large Hausdorff
error of the plug-in level set estimate. This reflects a major drawback of the
plug-in approach. Therefore, we follow Vapnik’s maxim: When solving a given
problem, try to avoid solving a more general problem as an intermediate step
[25], and instead of solving the harder intermediate problem of sup-norm den-
sity estimation (which depends on the global smoothness of the density), we
approach the set estimation problem directly.
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4 Hausdorff accurate Level Set Estimation using

Histograms

We consider a modified version of the error measure introduced above. This
alternative will form the basis for our theory and methodology. Let Π denote
a partition of [0, 1]d and let G be any set defined in terms of this partition
(i.e., the union of any collection of cells of the partition). We will consider a
hierarchy of partitions with increasing complexity and the sets G, defined in
terms of the partitions, form candidate representations of the γ level set of the
density f . The partition could, for example, correspond to a decision tree or
regular histogram. In this paper, we will focus on the regular histogram. Define
the error of G as

Eγ(G) = sup
A∈Π(G)

(γ − f̄(A))[IA⊆G − IA*G].

Here Π(G) denotes the partition associated with set G and f̄(A)=P (A)/µ(A)
denotes average of the density function on the cell A, where P is the unknown
probability measure and µ is the Lebesgue measure. Note the analogy between
this error and that defined in (1). We would like to point out that even though
this error depends on the class of candidate sets being considered, we will use
it to establish control over the Hausdorff error which is independent of the
candidate class. This performance measure evaluates a set based on the maxi-
mum deviation of the average density in a cell of the partition from the γ level.
Note that

(
γ − f̄(A)

)
[IA⊆G − IA*G] > 0 whenever a cell with average density

f̄(A) < γ is included in the set G or a cell with f̄(A) > γ is excluded. We
establish that control over Eγ(G), along with appropriate choice of the parti-
tion resolution, is sufficient for Hausdorff control. The appropriate resolution
depends on the density regularity α near the level of interest. If the density
varies sharply (small α) near the level of interest, then accurate estimation is
easier and a fine resolution suffices. Level set estimation is more difficult if the
density is very flat (large α) and hence a lower resolution (more averaging) is
required. We develop a method that automatically selects an appropriate reso-
lution without requiring prior knowledge of the density regularity. Notice that
even though the method is based on density averages over some partition, it is
not a plug-in approach as the partition is not optimized for density estimation.

We propose to select a density level estimate based on regular histograms.
Let Aj denote the collection of cells in a regular partition of [0, 1]d into hyper-
cubes of dyadic sidelength 2−j, where j is a non-negative integer. Then the
family of candidate sets, denoted Gj , is comprised of sets G formed by taking
the union of any collection of cells in Aj . Let j(G) denote the smallest j such
that G ∈ Gj . Then we may write Π(G) = Aj(G). Therefore, for histogram based
sets, the error measure can be written as:

Eγ(G) = max
A∈Aj(G)

(
γ − f̄(A)

)
[IA⊆G − IA*G]
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A natural empirical error, Ê(G), is obtained by replacing f̄(A) with its em-
pirical counterpart.

Êγ(G) = max
A∈Aj(G)

(
γ − f̂(A)

)
[IA⊆G − IA*G]

Here f̂(A) = P̂ (A)
µ(A) , where P̂ (A) = 1

n

∑n
i=1 I{Xi∈A} denotes the empirical prob-

ability of an observation occurring in A.
Among all sets at a fixed resolution, the one minimizing the empirical error

Êγ is a natural candidate:

Ĝj = arg min
G∈Gj

Êγ(G) j = 0, 1, . . . , J (3)

This rule selects the set that includes all cells with empirical density f̂(A) >

γ and excludes all cells with f̂(A) < γ. The empirical error minimization
procedure is sufficient to guarantee minimax optimal Hausdorff estimation if
the appropriate resolution can be determined. If the regularity parameter α is
known, then the correct resolution can be chosen (as in [14, 17]). In this case,
the empirical error minimization procedure of Eq. (3) achieves the minimax rate
over the class of densities given by F∗

1 (α).
We introduce the notation an ≍ bn to denote that an = O(bn) and bn =

O(an). Also, let E denote expectation with respect to the random data sample.

Theorem 1. Assume that the local density regularity parameter α is known.
Pick j such that 2−j ≍ sn(n/ log n)−1/(d+2α), where sn is a monotone diverging

sequence. Let Ĝj be the estimate generated by empirical error minimization as
per Eq.(3). Then

sup
f∈F∗

1 (α)

E[d∞(Ĝj , G
∗
γ)] ≤ Csn

(
n

log n

)− 1
d+2α

for all n, where C ≡ C(C1, C3, ǫo, fmax, δ0, d, α) > 0 is a constant.

The proof is given in Section 7.
Theorem 1 provides an upper bound on the Hausdorff error of our estimate.

If sn is slowly diverging, e.g. if sn = (log n)ǫ where ǫ > 0, this upper bound
agrees with the minimax lower bound of Proposition 1 up to a (log n)ǫ factor.
Hence the empirical error minimization method can achieve near minimax opti-
mal rates, given knowledge of the density regularity. We would like to point out
that if the parameter δ0 characterizing the locality of assumption [A] and the
density bound fmax are also known, then the appropriate resolution can be cho-
sen as j = ⌊log2

(
c−1(n/ logn)1/(d+2α)

)
⌋, where the constant c ≡ c(δ0, fmax).

With this choice, the optimal sidelength scales as 2−j ≍ (n/ log n)−1/(d+2α),
and the empirical error minimization procedure exactly achieves the minimax
optimal rate.
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5 Adaptivity to unknown density regularity

Without prior knowledge of α, determining the proper resolution is a delicate
matter. This is because the Hausdorff error of the set minimizing Eγ is deter-
mined by one of the cells intersecting the boundary of G∗

γ . The average density
in a boundary cell could be arbitrarily close to the level γ (error Eγ can be ar-
bitrarily small), irrespective of the density regularity and the resolution. As an
extreme example, even if the density varies significantly over [0, 1]d it is possible
that the average density on the unit hypercube is γ, and clearly this single-cell
partition would provide a very poor level set estimate in general.

Thus, an additional criterion is required to select the appropriate resolution,
one that gauges the uniformity of the density (as governed by α) within the
boundary cells. Thus, we introduce the following auxiliary device or vernier:

Vγ,j = min
A∈Aj

{
|γ − max

A′∈Aj′∩A
f̄(A′)| + |γ − min

A′′∈Aj′∩A
f̄(A′′)|

}
.

Here j′ = ⌊j + log2 sn⌋, where sn is a slowly diverging monotone sequence,
e.g. log n, log log n, etc. Hence Aj′ ∩ A denotes the collection of subcells with

sidelength 2−j′ ∈ [2−j/sn, 2−j+1/sn) within the cell A. Even though the average
density on a cell A may be close to γ, contrasting the average density within
subcells of A indicates whether or not the density is uniformly close to γ over
the cell. Thus, because the vernier gauges whether or not the histogram values
are reasonable surrogates for the density function, it indicates if the histogram
resolution is fine enough. We will show that in fact the vernier allows our
procedure to adapt to the unknown regularity parameter α. And by choosing
sn with arbitrarily slow divergence, it is possible to get arbitrarily close to the
optimal rate of convergence in the Hausdorff sense. However, note that the
vernier may not function properly if the boundary of G∗

γ passes through every
subcell of A (since then the subcell averages too may be deceptively close to γ).
Assumption [C] precludes this possibility at sufficiently high resolutions.

Since Vγ,j requires knowledge of the unknown probability measure, we must
work with the empirical version, defined analogously as:

V̂γ,j = min
A∈Aj

{
|γ − max

A′∈Aj′∩A
f̂(A′)| + |γ − min

A′′∈Aj′∩A
f̂(A′′)|

}

Here f̂(A) = P̂ (A)
µ(A) , where P̂ (A) = 1

n

∑n
i=1 I{Xi∈A} denotes the empirical proba-

bility of an observation occurring in A. We propose a complexity regularization
scheme wherein the empirical vernier V̂γ,j is balanced by a penalty term:

Ψj := 2 max
A∈Aj

√

8
log(2j(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j(d+1)16/δ)

nµ(A)

)

where 0 < δ < 1 is a confidence parameter. Notice that the penalty is com-
putable from the given observations. The precise form of Ψ is chosen so that
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minimizing the empirical vernier plus penalty provides control over the true
vernier (refer to Section 7.2). The vernier control leads to selection of the
appropriate resolution. The final level set estimate is given by

Ĝ = Ĝĵ (4)

where
ĵ = arg min

0≤j≤J

{
V̂γ,j + Ψj′

}
(5)

Recall that j′ = ⌊j + log2 sn⌋. Observe that the value of the empirical vernier
decreases with increasing resolution j as better approximations to the true level
are available. On the other hand, the penalty is designed to increase with j to
penalize high complexity estimates that might overfit the given sample of data.
Thus, the above procedure chooses the appropriate resolution automatically by
balancing these two terms.

We now establish that our complexity penalized procedure and use of the
vernier Vγ,j, that is sensitive to the resolution and unknown regularity parameter
α, ensures optimal choice of the resolution. Hence, the proposed method leads
to minimax optimal rates of convergence without requiring prior knowledge of
any parameters.

Recall the notation an ≍ bn to denote an = O(bn) and bn = O(an). Also,
let E denote expectation with respect to the random data sample.

Theorem 2. Pick J = J(n) such that 2−J ≍ sn(n/ logn)−1/d, where sn is a

monotone diverging sequence. Let ĵ denote the resolution chosen by the com-
plexity penalized method as given by Eq. (5), and Ĝ denote the final estimate of
Eq. (4). With probability at least 1 − 3/n, for all densities in the class F∗

2 (α),

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

for n large enough (so that sn > 4C46
d), where c1, c2 > 0 are constants. And

sup
f∈F∗

2 (α)

E[d∞(Ĝ, G∗
γ)] ≤ Cs2

n

(
n

log n

)− 1
d+2α

for all n, where C ≡ C(C1, C2, C3, C4, ǫo, fmax, δ0, d, α) > 0 is a constant.

The proof is given in Section 7.
The maximum resolution 2J can be easily chosen, based only on n, and

allows the optimal resolution for any α to lie in the search space. Observe that
by appropriate choice of sn, for example sn = (log n)ǫ/2 with ǫ a small number
> 0, the bound of Theorem 2 matches the minimax lower bound of Proposition
1, except for an additional (log n)ǫ factor. Hence our method adaptively achieves
near minimax optimal rates of convergence.

Remark 1: To prove the results of Theorems 1 and 2, we do not need to assume
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an exact form for sn except that it is a monotone diverging sequence. However,
sn needs to be slowly diverging for the derived rates to be near minimax optimal.
Remark 2: The factor of 6d in the condition sn > 4C46

d can be eliminated if
assumption [C] is stated as a box-counting dimension [24] assumption, i.e. in
terms of cells of a uniform partition of the domain rather than ǫ and δ balls,
and hence the number of samples required only depends on the constant C4.
Remark 3: We would like to point out that even though we state the conver-
gence results in expectation, the proofs also establish convergence in probability.
Thus, convergence actually holds in a stronger sense.

6 Conclusions and Extensions

In this paper, we developed a Hausdorff accurate level set estimation method
that is adaptive to unknown density parameters and handles very general classes
of level sets, while achieving minimax optimal rates. We now discuss extensions
of this framework to handle jump in the density (α = 0) around the level of
interest, and generalize the two-sided regularity assumption to allow the reg-
ularity α to vary along the level set boundary. We also extend the results to
multiple level set estimation and discuss adaptive partition based estimators.

6.1 Allowing jumps in the density

The case α = 0 corresponds to a jump in the density at the level of interest, and
can be handled by a slight modification of the earlier framework. Notice that
the current form of the vernier may fail to select an appropriate resolution in
the jump case; for example, if the density is piecewise constant on either side of
the jump, the vernier output is the same irrespective of the resolution. A slight
modification of the vernier as follows

Vγ,j = 2−j′/2 min
A∈Aj

{
|γ − max

A′∈Aj′∩A
f̄(A′)| + |γ − min

A′′∈Aj′∩A
f̄(A′′)|

}
,

makes the vernier sensitive to the resolution even for the jump case and biases a
vernier minimizer towards finer resolutions. A fine resolution is needed for the
jump case to approximate the density well (notice that a fine resolution implies
less averaging, however the resulting instability in the estimate can be tolerated
as there is a jump in the density). Since the penalty is designed to control the
deviation of empirical and true vernier, it also needs to be scaled accordingly:

Ψj := 2 · 2−j/2 max
A∈Aj

√

8
log(2j(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j(d+1)16/δ)

nµ(A)

)

This ensures that balancing the vernier and penalty leads to the appropriate
resolution for the whole range of the regularity parameter, 0 ≤ α < ∞.

While it is clear why the modification is needed, the exact form of the mod-
ifying factor 2−j′/2 arises from technical considerations and is somewhat non-
intuitive. Hence, we omitted the jump case in our earlier analysis to keep the
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presentation simple. Also, the proof arguments are slightly different and rely on
the fact that for large enough n, only the cells intersecting the boundary can be
in error with high probability. Please refer to Appendix B for a detailed proof.

6.2 Allowing regularity variation along the boundary

The two-sided regularity assumption [A] used in this paper and in earlier work
[13, 14, 17] is necessary for adaptive Hausdorff accurate level set estimation.
The lower bound is necessary to translate control over density level deviation
to control over distance deviation. In fact, a similar lower bound is also needed
when one is interested in symmetric difference control [14], and not density devi-
ation weighted symmetric difference. The upper bound is needed for adaptivity
so that balancing approximation and estimation errors for density deviation im-
ply balancing the same for distance deviation. However, the two-sided nature
of this assumption might be stringent in practice, and hence we consider the
following generalization of this condition:

[A’] The density is [α2, α1]-regular around the γ-level set, 0 < α2 ≤ α1 < ∞,
if there exist constants C1, C2 > 0 and δ0 > 0 such that

C1ρ(x, ∂G∗
γ)α1 ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α2

for all x ∈ X with |f(x)− γ| ≤ δ0, where ∂G∗
γ is the boundary of the true

level set G∗
γ .

Now let us consider the class of densities F ′∗
2(α1, α2) satisfying assumptions [A’,

B] and [C]. Observe that F∗
2 (α1) ⊆ F ′∗

2(α1, α2), hence we have a lower bound

that scales as (n/ log n)
− 1

d+2α1 . If α1 is known, the resolution can be chosen as
2−j ≍ sn(n/ log n)−1/(d+2α1), and we obtain an upper bound (using Lemma 3
in the proof of Theorem 1) that matches the lower bound up to an sn factor.
However, if the regularity is not known, we obtain the following generalization
of Theorem 2:

Corollary 1. Pick J = J(n) such that 2−J ≍ sn(n/ logn)−1/d, where sn is a

monotone diverging sequence. Let Ĝγ denote the estimate generated using the
complexity penalized procedure of Eq. (4). Then

sup
f∈F ′∗

2(α1,α2)

E[d∞(Ĝγ , G∗
γ)] ≤ Cs2

n

(
n

log n

)−
α2/α1
d+2α2

for all n, here C ≡ C(C1, C2, C3, C4, ǫo, fmax, δ0, d, α1, α2) > 0.

Notice that the upper bound is not minimax optimal. This is because the
adaptive resolution needs to be picked based on some form of density estimate,
in our case the vernier, which results in a choice of 2−j ≍ sn(n/ log n)−1/(d+2α2)

for the resolution under assumption [A’] (see proof of Theorem 2), which is not
optimal unless α1 = α2.
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6.3 Multiple level set estimation

The proposed framework can easily be extended to simultaneous estimation of
level sets at multiple levels Γ = {γk}K

k=1 (K < ∞). Assuming the density
regularity condition [A] holds with parameter αk for the γk level, we have:

Corollary 2. Pick J = J(n) such that 2−J ≍ sn(n/ logn)−1/d, where sn is a

monotone diverging sequence. Let Ĝγk
denote the estimate generated using the

complexity penalized procedure of Eq. (4) for level γk. Then

max
1≤k≤K

sup
f∈F∗

2 (αk)

E[d∞(Ĝγk
, G∗

γk
)] ≤ Cs2

n

(
n

log n

)−1/(d+2maxk αk)

for all n, here C ≡ C(C1, C2, C3, C4, ǫo, fmax, δ0, d, {αk}K
k=1) > 0.

Notice that, while the estimate Ĝγk
at each level is adaptive to the local den-

sity regularity as determined by αk, the overall convergence rate is determined
by the level where the density is most flat (largest αk).

Another issue that comes up in multiple level set estimation is nestedness.
If the density levels of interest Γ are sorted, γ1 ≤ γ2 ≤ . . . ≤ γK , then the
true level sets will be nested G∗

γ1
⊇ G∗

γ2
⊇ . . . ⊇ G∗

γK
. However, the estimates

{Ĝγk
}K

k=1 may not be nested as the resolution at each level is determined by the
local density regularity (αk). For some applications, for example hierarchical
clustering, nestedness of the estimates may be desirable. We can enforce nest-
edness by choosing the same resolution, corresponding to the largest αk, at all
levels. Since the largest αk corresponds to smallest vernier Vγk,j (see Lemma 5),
this is accomplished by selecting the resolution according to

ĵ = arg min
0≤j≤J

{
min

1≤k≤K
V̂γk,j + Ψj′

}
.

This does not change the rate of convergence, however if the density is flat at
one level of interest, this forces large Hausdorff error at all levels, even if the
density at those levels is well-behaved (varies sharply near the level of interest).

6.4 Adaptive vs. non-adaptive partitions

It is well known that spatially adaptive partitions such as recursive dyadic par-
titions (RDPs) [19, 20, 21] may provide significant improvements over non-
adaptive partitions like histograms for many set learning problems involving
a weighted symmetric difference error measure, including classification [21],
minimum volume set estimation [4] and level set estimation [9]. In fact, for
many function classes, estimators based on adaptive, non-uniform partitions
can achieve minimax optimal rates that cannot be achieved by estimators based
on non-adaptive partitions. However, the results of this paper establish that
this is not the case for the Hausdorff metric. This is a consequence of the fact
that symmetric difference based errors are global, whereas the Hausdorff error is
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sensitive to local errors and depends on the worst case error at any point. Hav-
ing non-uniform cells adapted to the regularity along the boundary can lead
to faster convergence rates under global measures, whereas the Hausdorff error
being dominated by the worst case error does not benefit from adaptivity of the
partition.

While spatially adaptive, non-uniform partitions do not provide an improve-
ment in convergence rates under the Hausdorff error metric, it should be noted
that in practice these may have certain advantages. For example, if the con-
nected components of a level set have different density regularities, non-uniform
partitions are capable of adapting to the local smoothness around each compo-
nent and this may generate better estimates in practice.

7 Proofs

In this section, we analyze the performance of the estimation procedure and
establish Theorems 1 and 2. Also, we establish the lower bound of Proposition
1. The reader is referred to the Appendix for detailed proofs of the associated
lemmas.

Before proceeding to the proofs, we establish two lemmas that are used
throughout the proofs. Define

Φj := max
A∈Aj

√

8
log(2j(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j(d+1)16/δ)

nµ(A)

)

where 0 < δ < 1 is a confidence parameter. Notice that Φj = Ψj/2 and both are
empirical quantities, though we suppress the dependence on n in the notation.
The choice of penalty Ψj is motivated by this relation since Φj bounds the
deviation of true and empirical density averages, as the following lemma shows.

Lemma 1. Consider 0 < δ < 1. With probability at least 1 − δ, the following
is true for all resolutions j:

max
A∈Aj

|f̄(A) − f̂(A)| ≤ Φj .

The lemma is proved in the Appendix and hinges on a pair of relative Vapnik-
Chervonenkis (VC) inequalities ([26], Chapter 3).

The next lemma states how the density deviation bound Φj scales with
resolution. This will be used to derive rates of convergence. For this purpose,
we set δ = 1/n.

Lemma 2. For all resolutions j ≡ j(n) such that 2j = O((n/ log n)1/d), there
exist constants c3, c4 ≡ c4(fmax, d) > 0 such that for all n, with probability at
least 1 − 1/n,

c3

√
2jd

log n

n
≤ Φj ≤ c4

√
2jd

log n

n
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It essentially reflects the fact that at finer resolutions, the amount of data
per cell decreases leading to larger estimation error. The proof is given in the
Appendix.

We are now ready to prove the main results. We would like to point out
that some arguments in the proofs hold for sn large enough. This implies that
some of the constants in our proofs will depend on {si}∞i=1, the exact form that
the sequence sn takes (but not on n). However, we omit this dependence for
simplicity.

7.1 Proof of Theorem 1

We analyze the performance of the empirical error minimization procedure of
Eq. (3), and first establish the following bound on the Hausdorff error.

Lemma 3. Consider densities satisfying assumptions [A] and [B]. Let Ĝj de-

note the set at resolution j that minimizes the empirical error Êγ as per Eq. (3).
Then for all resolutions j ≡ j(n) such that 2j = O(s−1

n (n/ log n)1/d), where sn

is a monotone diverging sequence, and n ≥ n0(fmax, d, δ0, ǫo, C1, α) with proba-
bility at least 1 − 3/n

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 1, 8

√
dǫ−1

o )

[(
Φj

C1

)1/α

+
√

d2−j

]
.

A detailed proof is given in the Appendix. The first term denotes the estimation
error while the second term that is proportional to the sidelength of a cell (2−j)
reflects the approximation error. Recall that the estimation error for average
density estimation in a cell is bounded by Φj as per Lemma 1. Under regularity
assumption [A] this translates to an estimation error bound of (Φj/C1)

1/α for
deviation in distance of the estimated set from the true boundary ρ(x, ∂G∗

γ).
Under assumption [B], the true boundary itself is well-behaved and hence does

not deviate too much from the estimated boundary; thus ρ(x, ∂Ĝj) scales simi-
larly.

We now establish the result of Theorem 1. Since the regularity parameter α is

known, the appropriate resolution can be chosen as 2−j ≍ sn(n/ logn)−
1

(d+2α) .
Let Ω denote the event such that the bounds of Lemma 2 (with δ = 1/n) and
Lemma 3 hold. Then for n ≥ n0, P (Ω̄) ≤ 4/n. For n < n0, we can use the
trivial inequality P (Ω̄) ≤ 1. So we have, for all n

P (Ω̄) ≤ max(4, n0)
1

n
=: C′ 1

n

Here C′ ≡ C′(fmax, d, δ0, ǫo, C1, α).

So ∀f ∈ F∗
1 (α), we have:

E[d∞(Ĝj , G
∗
γ)] = P (Ω)E[d∞(Ĝj , G

∗
γ)|Ω] + P (Ω̄)E[d∞(Ĝj , G

∗
γ)|Ω̄]
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≤ E[d∞(Ĝj , G
∗
γ)|Ω] + P (Ω̄)

√
d

≤ max(2C3 + 1, 8
√

dǫ−1
o )

[(
Φj

C1

)1/α

+
√

d2−j

]
+ C′

√
d

n

≤ C(C1, C3, ǫo, fmax, δ0, d, α)max

{(
2jd log n

n

) 1
2α

, 2−j,
1

n

}

≤ C max

{
s−d/2α

n

(
n

log n

)− 1
d+2α

, sn

(
n

log n

)− 1
d+2α

,
1

n

}

≤ C(C1, C3, ǫo, fmax, δ0, d, α)sn

(
n

log n

)− 1
d+2α

The second step follows by observing the trivial bounds P (Ω) ≤ 1 and since

the domain X = [0, 1]d, E[d∞(Ĝj , G
∗
γ)|Ω̄] ≤

√
d. The third step follows from

Lemma 3 and the fourth one using Lemma 2.

�

7.2 Penalty Design

Careful selection of the penalty term is crucial to the performance of the pro-
posed adaptive method. Ideally the appropriate resolution is obtained by min-
imizing the vernier Vγ,j, and hence if the penalty term is chosen such that

Vγ,j ≤ V̂γ,j + Ψj′ with high probability for all resolutions j, then the chosen
resolution will be the one for which an upper bound on the vernier Vγ,j is min-
imized. If this upper bound is tight, it will lead to an effective estimator and
the correct rate of convergence. This leads to the choice of the penalty

Ψj := 2Φj = 2 max
A∈Aj

√

8
log(2j(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j(d+1)16/δ)

nµ(A)

)

where 0 < δ < 1 is a confidence parameter. Notice that the penalty increases
with decreasing cell size (i.e. increasing j) and thus penalizes high resolution
sets as desired. With this penalty design, we have the following desired vernier
control.

Lemma 4. Consider 0 < δ < 1. With probability at least 1 − δ with respect to
the draw of the data, the following is true for all resolutions j:

|Vγ,j − V̂γ,j| ≤ Ψj′ .

A detailed proof is given in the Appendix. The proof follows by observing that
|Vγ,j − V̂γ,j| ≤ 2 maxA∈Aj′

|f̄(A) − f̂(A)| ≤ Ψj′ .
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7.3 Proof of Theorem 2

First we prove that the complexity penalized procedure automatically picks the
right resolution for level sets with densities f ∈ F∗

2 (α), i.e. for densities satis-
fying assumptions [A-C]. To analyze the resolution chosen by the estimation
procedure, we need the following lemma. It establishes that the vernier is sen-
sitive to the resolution and density regularity.

Lemma 5. Consider densities satisfying assumptions [A] and [C]. Recall that
j′ = ⌊j + log2 sn⌋, where sn is a monotone diverging sequence. Then for all
resolutions j

min(δ0, C1)2
−j′α ≤ Vγ,j ≤ C(

√
d2−j)α

holds for n large enough such that sn > 4C46
d. Here C ≡ C(C2, fmax, δ0)> 0.

Please refer to the Appendix for proof.

Now observe that Lemmas 2, 3 and 4 hold together with probability at
least 1 − 5/n (taking δ = 1/n). Using these lemmas, we will show that for

the resolution ĵ chosen by Eq. (5), both Vγ,ĵ and Ψĵ′ are upper bounded by

Cs
dα

d+2α
n (n/ logn)−

α
d+2α , where C ≡ C(C2, fmax, δ0, d, α) > 0. If this holds, then

using Lemma 5, we have the following upper bound on the sidelength: For
sn > 4C46

d,

2−ĵ ≤ sn

( Vγ,ĵ

min(δ0, C1)

)1/α

≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

,

where c2 ≡ c2(C1, C2, fmax, δ0, d, α) > 0. Also notice that since 2J ≍ s−1
n

(n/ logn)1/d, we have 2j′ ≤ 2J′ ≤ sn2J ≍ (n/ log n)1/d, and hence Lemma 2
can be used. Observe that Lemma 2 provides a lower bound on the sidelength:
Since Ψj = 2Φj,

2−ĵ >
sn

2

(
Ψ2

ĵ′

4c2
3

n

log n

)−1/d

≥ c1sn

(
s

2dα
d+2α
n

(
n

log n

)− 2α
d+2α n

log n

)−1/d

= c1sns
−2α

d+2α
n

(
n

log n

) −1
d+2α

= c1s
d

d+2α
n

(
n

log n

) −1
d+2α

,

where c1 ≡ c1(C2, fmax, δ0, d, α) > 0. So we have for sn > 4C46
d, with proba-

bility at least 1 − 5/n,

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

where c1 ≡ c1(C2, fmax, δ0, d, α) > 0 and c2 ≡ c2(C1, C2, fmax, δ0, d, α) > 0.
Hence the automatically chosen resolution behaves as desired.
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Let us now derive the claimed bounds on Vγ,ĵ and Ψĵ′ . Using Lemma 4 and

Eq. (5), we have the following oracle inequality:

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ = min
0≤j≤J

{
V̂γ,j + Ψj′

}
≤ min

0≤j≤J
{Vγ,j + 2Ψj′}

Lemma 5 provides an upper bound on the vernier Vγ,j, and Lemma 2 provides
an upper bound on the penalty Ψj′ . We now plug these bounds into the oracle
inequality. Here C may denote a different constant from line to line.

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ ≤ C min
0≤j≤J

{
2−jα +

√
2j′d

log n

n

}

≤ C min
0≤j≤J

{
max

(
2−jα,

√
2jdsd

n

log n

n

)}

≤ Cs
dα

d+2α
n

(
n

log n

)− α
d+2α

Here C ≡ C(C2, fmax, δ0, d, α). The second step uses the definition of j′, and the
last step follows by balancing the two terms for optimal resolution j∗ given by

2−j∗ ≍ s
d

d+2α
n

(
n

log n

)− 1
d+2α

. This establishes the desired bounds on Vγ,ĵ and Ψĵ′ .

Now we can invoke Lemma 3 to derive the rate of convergence for the Haus-
dorff error. Consider large enough n ≥ n1(C4, d) so that sn > 4C46

d. Also,
recall that the condition of Lemma 3 requires that n ≥ n0(fmax, d, δ0, ǫo, C1, α).
Pick n ≥ max(n0, n1) and let Ω denote the event such that the bounds of Lemma
2, Lemma 3 and Lemma 4 hold with δ = 1/n. Then, we have P (Ω̄) ≤ 5/n. For
n < max(n0, n1), we can use the trivial inequality P (Ω̄) ≤ 1. So we have, for
all n

P (Ω̄) ≤ max(5, max(n0, n1))
1

n
:= C

1

n

Here C ≡ C(C1, C4, ǫo, fmax, δ0, d, α).

So ∀f ∈ F∗
2 (α), we have: (Here C may denote a different constant from line to

line.)

E[d∞(Ĝ, G∗
γ)] = P (Ω)E[d∞(Ĝ, G∗

γ)|Ω] + P (Ω̄)E[d∞(Ĝ, G∗
γ)|Ω̄]

≤ E[d∞(Ĝ, G∗
γ)|Ω] + P (Ω̄)

√
d

≤ C

[(
Φĵ

C1

)1/α

+
√

d2−ĵ +

√
d

n

]

≤ C max

{(
2ĵd log n

n

) 1
2α

, 2−ĵ,
1

n

}
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≤ C max

{
s

−d2/2α
d+2α

n

(
n

log n

)− 1
d+2α

, sns
d

d+2α
n

(
n

log n

)− 1
d+2α

,
1

n

}

≤ Csns
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ Cs2
n

(
n

log n

)− 1
d+2α

Here C ≡ C(C1, C2, C3, C4, ǫo, fmax, δ0, d, α). The second step follows by observ-

ing the trivial bounds P (Ω) ≤ 1 and since the domain X = [0, 1]d, E[d∞(Ĝ, G∗
γ)|Ω̄]

≤
√

d. The third step follows from Lemma 3 and the fourth one from Lemma

2. The fifth step follows using the upper and lower bounds established on 2−ĵ .

�

7.4 Proof of Proposition 1

Notice that since F∗
2 (α) ⊂ F∗

1 (α), we have

inf
Ĝn

sup
f∈F∗

1 (α)

E[d∞(Ĝn, G∗
γ)] ≥ inf

Ĝn

sup
f∈F∗

2 (α)

E[d∞(Ĝn, G∗
γ)]

Therefore, it suffices to establish a lower bound for the class of densities given
by F∗

2 (α).
We consider the class of densities FSL with star-shaped levels sets having

Lipschitz boundaries, as defined in [14]. We establish that FSL (re-defined so
that densities have domain [0, 1]d) is a subset of F∗

2 (α), i.e. densities in FSL

satisfy assumptions [A,B,C]. If this holds, then

inf
Ĝn

sup
f∈F∗

2 (α)

E[d∞(Ĝn, G∗
γ)] ≥ inf

Ĝn

sup
f∈FSL

E[d∞(Ĝn, G∗
γ)] ≥ c

(
n

log n

)− 1
d+2α

The last step follows from Theorem 4 in [14]. Thus the result of the proposition
holds.

We proceed by recalling the definition of FSL as defined in [14]. The class
corresponds to densities bounded above by fmax, satisfying the local density
regularity assumption [A], and with γ level sets of the form

G∗
γ = {x = (r, φ); φ ∈ [0, π)d−2 × [0, 2π), 0 ≤ r ≤ g(φ) ≤ R},

where (r, φ) denote the polar/hyperspherical coordinates, R > 0 and g is a
periodic Lipschitz function that satisfies g(φ) ≥ h > 0 and

|g(φ) − g(θ)| ≤ L||φ − θ||1, ∀ φ, θ ∈ [0, π)d−2 × [0, 2π).

Here L > 0 is the Lipschitz constant, and || · ||1 denotes the ℓ1 norm.
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We set R = 1/2 in the definition of the star-shaped set so that the domain
is a subset of [−1/2, 1/2]d. With this domain, the following lemma shows that
the level set G∗

γ of a density f ∈ FSL satisfies [B] and [C]; assumption [A] is
satisfied as per the definition of FSL. The same result holds for star-shaped sets
defined on the shifted domain [0, 1]d, and hence FSL (defined with R = 1/2 and
origin shifted to the center of [0, 1]d) is a subset of F∗

2 (α).

Lemma 6. Consider the γ level set G∗
γ of a density f ∈ FSL. Then G∗

γ satisfies
the assumptions [B] and [C] on the level set regularity and the level set boundary
dimension, respectively.

The proof is given in the Appendix.

�

Appendix

Here we present the proofs of various lemmas used in Section 7.

Proof of Lemma 1: The proof relies on the following pair of VC inequalities
(See [26] Chapter 3) that bound the relative deviation of true and empirical
probabilities.
Let Y1, . . . , Yn be iid random variables taking values in the R

d with common
distribution

P (B) = P{Y1 ∈ B} (B ⊂ R
d).

Define the empirical distribution

P̂ (B) =
1

n

n∑

i=1

I{Yi∈B} (B ⊂ R
d).

Consider a class B of subsets of R
d. Then for any ǫ > 0,

P

(
sup
B∈B

P (B) − P̂ (B)√
P (B)

> ǫ

)
≤ 4SB(2n)e−nǫ2/4

and

P



sup
B∈B

P̂ (B) − P (B)√
P̂ (B)

> ǫ



 ≤ 4SB(2n)e−nǫ2/4.

Here SB(n) is the nth VC shatter-coefficient of B, defined as

SB(n) = max
z1,...,zn∈Rd

|{{z1, . . . , zn} ∩ B : B ∈ B}|.

In words, SB(n) is the maximal number of different subsets of a set of n points
which can be obtained by intersecting it with the elements of B.
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To establish bounds on the deviation of true and empirical average density,
first observe that

P̂ (A) ≤ P (A) + ǫ

√
P̂ (A) =⇒ P̂ (A) ≤ 2 max(P (A), 2ǫ2) (6)

and
P (A) ≤ P̂ (A) + ǫ

√
P (A) =⇒ P (A) ≤ 2 max(P̂ (A), 2ǫ2). (7)

To see the first statement, consider two cases:

1) P̂ (A) ≤ 4ǫ2. The statement is obvious.

2) P̂ (A) > 4ǫ2. This gives a bound on epsilon, which implies

P̂ (A) ≤ P (A) + P̂ (A)/2 =⇒ P̂ (A) ≤ 2P (A).

The second statement follows similarly.
Using these statements and the relative VC inequalities for B = Aj (SB(n) ≤

2jd), we have: With probability > 1 − 8 · 2jde−nǫ2/4, ∀A ∈ Aj both

P (A) − P̂ (A) ≤ ǫ
√

P (A) ≤ ǫ

√
2 max(P̂ (A), 2ǫ2)

and

P̂ (A) − P (A) ≤ ǫ

√
P̂ (A) ≤ ǫ

√
2 max(P̂ (A), 2ǫ2)

In other words, with probability > 1 − 8 · 2jde−nǫ2/4, ∀A ∈ Aj

|P (A) − P̂ (A)| ≤ ǫ

√
2 max(P̂ (A), 2ǫ2)

Define δj = 8 · 2jde−nǫ2/4. Then we have, with probability > 1 − δj , ∀A ∈ Aj

|P (A) − P̂ (A)| ≤
√

8
log(2jd8/δj)

n
max

(
P̂ (A), 8

log(2jd8/δj)

n

)

Setting δj = δ2−(j+1) and taking union bound, we have with probability > 1−δ,
for all resolutions j and all cells A ∈ Aj

|P (A) − P̂ (A)| ≤
√

8
log(2j(d+1)16/δ)

n
max

(
P̂ (A), 8

log(2j(d+1)16/δ)

n

)

The result follows after dividing both sides by µ(A).

�
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Proof of Lemma 2: Recall the definition of Φj

Φj := max
A∈Aj

√

8
log(2j(d+1)16/δ)

nµ(A)
max

(
f̂(A), 8

log(2j(d+1)16/δ)

nµ(A)

)

We first derive a lower bound. Observe that since the total empirical probability
mass is 1, we have:

1 =
∑

A∈Aj

P̂ (A) ≤ max
A∈Aj

P̂ (A) × |Aj | = max
A∈Aj

P̂ (A)

µ(A)
= max

A∈Aj

f̂(A)

Use this along with δ = 1/n, j ≥ 0 and µ(A) = 2−jd to get:

Φj ≥
√

2jd8
log 16n

n

To get an upper bound, using Eq. (6) from the proof of Lemma 1 and dividing

by µ(A) = 2−jd we have with probability > 1 − 8 · 2jde−nǫ2/4, for all A ∈ Aj

f̂(A) ≤ 2 max(f̄(A), 2jd+1ǫ2) ≤ 2 max(fmax, 2
jd+1ǫ2).

Define δj = 8 · 2jde−nǫ2/4. Then we have with probability > 1 − δj, for all
A ∈ Aj

f̂(A) ≤ 2 max

(
fmax, 2

jd8
log(2jd8/δj)

n

)

Setting δj = δ2−(j+1) and taking union bound, we have with probability > 1−δ,
for all resolutions j and all cells A ∈ Aj

f̂(A) ≤ 2 max

(
fmax, 2

jd8
log(2j(d+1)16/δ)

n

)

This implies

Φj ≤
√

2jd8
log(2j(d+1)16/δ)

n
· 2 max

(
fmax, 2jd8

log(2j(d+1)16/δ)

n

)

Using δ = 1/n and 2j = O((n/ log n)1/d), we get:

Φj ≤ c4(fmax, d)

√
2jd

log n

n �

Proof of Lemma 3: Let J0 = ⌈log2 4
√

d/ǫo⌉, where ǫo is as defined in assump-
tion [B]. Also define

ǫj :=

[(
Φj

C1

)1/α

+
√

d2−j

]
.

Consider two cases:
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I. j < J0.
For this case, since the domain X = [0, 1]d, we use the trivial bound

d∞(Ĝj , G
∗
γ) ≤

√
d

≤ 2J0(
√

d2−j)

≤ 8
√

dǫ−1
o ǫj .

The last step follows by choice of J0 and since Φj , C1 > 0.

II. j ≥ J0.
For this case, we argue that for large enough n, with high probability,
Ĝj ∩ G∗

γ 6= ∅ and hence Ĝj is not empty. Also, observe that assumption
[B] implies that G∗

γ is not empty since G∗
γ ⊇ Iǫ(G

∗
γ) 6= ∅ for ǫ ≤ ǫo. Thus

the Hausdorff error is given as

d∞(Ĝj , G
∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝj), sup
x∈Ĝj

ρ(x, G∗
γ)}, (8)

and we need bounds on the two terms in the right hand side.

We now prove that Ĝj is not empty and obtain bounds on the two terms
in the Hausdorff error. Towards this end, we establish two propositions.
The first proposition proves that for large enough n, with high probability,
the distance of all points that are erroneously excluded or included in the
level set estimate, from the true set boundary is bounded by ǫj. Notice

that, if Ĝj is non-empty, this provides an upper bound on the second term
of the Hausdorff error (Eq. 8). Building on this proposition, the second
one establishes that, for large enough n and j ≥ J0, with high probability,
every ball in the inner cover I2ǫj (G

∗
γ) contains points that are correctly

included in the level set estimate, and hence lie in Ĝj ∩ G∗
γ . Thus Ĝj is

not empty. And along with assumption [B], this provides a bound on the

distance of any point in G∗
γ from the estimate Ĝj , thus bounding the first

term of the Hausdorff error (Eq. 8).

Proposition 2. If Ĝj∆G∗
γ 6= ∅, then for resolutions satisfying 2j =

O(s−1
n (n/ log n)1/d) and n ≥ n1(fmax, d, δ0) with probability at least 1−2/n

sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤

(
Φj

C1

)1/α

+
√

d2−j = ǫj .

Proof. Since by assumption Ĝj∆G∗
γ 6= ∅, consider x ∈ Ĝj∆G∗

γ . Let Ax ∈
Aj denote the cell containing x at resolution j. Consider two cases:

(i) Ax ∩ ∂G∗
γ 6= ∅. This implies that

ρ(x, ∂G∗
γ) ≤

√
d2−j.
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(ii) Ax ∩ ∂G∗
γ = ∅. This implies that Ax ⊆ Ĝj∆G∗

γ and hence it is erro-

neously included or excluded from the level set estimate Ĝj . Notice
that Ax is included in the true set G∗

γ if f̄(Ax) > γ and excluded if

f̄(Ax) < γ. Since Ĝj includes all cells with f̂(A) > γ and excludes all

cells with f̂(A) < γ, this implies that |γ − f̄(Ax)| ≤ |f̄(Ax)− f̂(Ax)|.
Using Lemma 1, we get |γ − f̄(Ax)| ≤ Φj with probability at least
1 − δ.

Now let x0 be any point in Ax such that |γ − f(x0)| ≤ |γ − f̄(Ax)|
(Notice that at least one such point must exist in Ax since this cell
does not intersect the boundary). As argued above, |γ− f̄(Ax)| ≤ Φj

with probability at least 1−1/n (for δ = 1/n) and using Lemma 2, Φj

decreases with n for resolutions satisfying 2j = O(s−1
n (n/ log n)1/d)

with probability at least 1−1/n. So for large enough n ≥ n1(fmax, d,
δ0), Φj ≤ δ0 and hence |γ− f(x0)| ≤ δ0. Thus, the density regularity
assumption [A] holds at x0 with probability > 1 − 2/n and we have

ρ(x0, ∂G∗
γ) ≤

( |γ − f(x0)|
C1

)1/α

≤
( |γ − f̄(Ax)|

C1

)1/α

≤
(

Φj

C1

)1/α

.

Since x, x0 ∈ Ax,

ρ(x, ∂G∗
γ) ≤ ρ(x0, ∂G∗

γ) +
√

d2−j ≤
(

Φj

C1

)1/α

+
√

d2−j.

So for both cases, we can say that for resolutions satisfying 2j = O(s−1
n

(n/ log n)1/d) and n ≥ n1(fmax, d, δ0) with probability at least 1 − 2/n

∀x ∈ Ĝj∆G∗
γ

ρ(x, ∂G∗
γ) ≤

(
Φj

C1

)1/α

+
√

d2−j = ǫj .

Proposition 3. Recall assumption [B] and denote the inner cover of G∗
γ

with 2ǫj-balls, I2ǫj (G
∗
γ) ≡ I2ǫj for simplicity. For resolutions satisfying

2j = O(s−1
n (n/ log n)1/d), j ≥ J0 and n ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α),

with probability at least 1 − 3/n, I2ǫj 6= ∅ and for every 2ǫj-ball in I2ǫj ,

all points in the interior of the concentric ǫj-ball are in Ĝj ∩ G∗
γ .

Proof. Observe that for j ≥ J0, 2
√

d2−j ≤ 2
√

d2−J0 ≤ ǫo/2. And using
Lemma 2 for large enough n ≥ n2(ǫo, fmax, C1, α), 2(Φj/C1)

1/α ≤ ǫo/2
with probability at least 1 − 1/n. Therefore for all j ≥ J0 and n ≥ n2,
2ǫj ≤ ǫo with probability at least 1−1/n and hence I2ǫj 6= ∅. Now consider
any 2ǫj-ball in I2ǫj . Then the distance of all points in the interior of the
concentric ǫj-ball from the boundary of I2ǫj , and hence from the boundary
of G∗

γ is greater than ǫj . As per Proposition 1 for n ≥ n0 = max(n1, n2),
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with probability > 1 − 3/n, none of these points can lie in Ĝj∆G∗
γ , and

hence must lie in Ĝj ∩ G∗
γ since they are in I2ǫj ⊆ G∗

γ .

Now since G∗
γ and Ĝj are non-empty sets, we use Propositions 2, 3 to

bound the two terms that contribute to the Hausdorff error:

sup
x∈G∗

γ

ρ(x, Ĝj) and sup
x∈Ĝj

ρ(x, G∗
γ)

The following statements hold for resolutions satisfying 2j = O(s−1
n (n/

log n)1/d), j ≥ J0 and n ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with probability
at least 1 − 3/n.

To bound the second term, observe that

(i) If Ĝj \ G∗
γ = ∅, then supx∈Ĝj

ρ(x, G∗
γ) = 0.

(ii) If Ĝj \ G∗
γ 6= ∅, it implies that Ĝj∆G∗

γ 6= ∅. Hence, using Proposi-
tion 2, we have

sup
x∈Ĝj

ρ(x, G∗
γ) = sup

x∈Ĝj\G∗

γ

ρ(x, ∂G∗
γ) ≤ sup

x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤ ǫj.

Thus, for either case
sup

x∈Ĝj

ρ(x, G∗
γ) ≤ ǫj . (9)

To bound the first term, observe that

(i) If G∗
γ \ Ĝj = ∅, then supx∈G∗

γ
ρ(x, Ĝj) = 0.

(ii) If G∗
γ \ Ĝj 6= ∅, we proceed as follows:

sup
x∈G∗

γ

ρ(x, Ĝj) ≤ sup
x∈G∗

γ

ρ(x, Ĝj ∩ G∗
γ) = sup

x∈∂G∗

γ

ρ(x, Ĝj ∩ G∗
γ).

Now consider any x ∈ ∂G∗
γ . Then

ρ(x, Ĝj ∩ G∗
γ) ≤ ρ(x, z) + ρ(z, Ĝj ∩ G∗

γ) ∀z ∈ I2ǫj

≤ ρ(x, z) + ǫj ∀z ∈ I2ǫj .

The first step follows using triangle inequality since ∀y ∈ Ĝj ∩
G∗

γ , ρ(x, y) ≤ ρ(x, z) + ρ(z, y), which implies infy∈Ĝj∩G∗

γ
ρ(x, y) ≤

ρ(x, z) + infy∈Ĝj∩G∗

γ
ρ(z, y). The second step follows by considering

a 2ǫj-ball in I2ǫj that contains z and using Proposition 3. Thus we
get

ρ(x, Ĝj ∩ G∗
γ) ≤ ρ(x, I2ǫj ) + ǫj ≤ 2C3ǫj + ǫj.

Here the second step invokes assumption [B].
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Therefore, for either case we have

sup
x∈G∗

γ

ρ(x, Ĝj) ≤ (2C3 + 1)ǫj . (10)

From Eq. (9) and (10), we have that for all densities satisfying assump-
tions [A, B], for resolutions satisfying 2j = O(s−1

n (n/ log n)1/d), j ≥ J0

and n ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with probability > 1 − 3/n,

d∞(Ĝj , G
∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝj), sup
x∈Ĝj

ρ(x, G∗
γ)} ≤ (2C3 + 1)ǫj.

And addressing both the cases j < J0 and j ≥ J0, we finally have that
for all densities satisfying assumptions [A, B], for resolutions satisfying 2j =
O(s−1

n (n/ logn)1/d) and n ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with probability
> 1 − 3/n,

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 1, 8

√
dǫ−1

o )ǫj .

�

Proof of Lemma 4: Let A0 ∈ Aj denote the cell achieving the min defining

Vγ,j and A1 ∈ Aj denote the cell achieving the min defining V̂γ,j. Also let
A′

0 and A′
1 denote the subcells at resolution j′ within A0 and A1, respectively,

that have maximum average density, and let A′′
0 and A′′

1 denote the subcells
at resolution j′ within A0 and A1, respectively, that have minimum average
density. Similarly, let Â′

0 and Â′
1 denote the subcells at resolution j′ within A0

and A1, respectively, that have maximum empirical density, and let Â′′
0 and Â′′

1

denote the subcells at resolution j′ within A0 and A1, respectively, that have
minimum empirical density. Then we have:

Vγ,j − V̂γ,j = |γ − f̄(A′
0)| + |γ − f̄(A′′

0 )| − |γ − f̂(Â′
1)| − |γ − f̂(Â′′

1 )|
≤ |γ − f̄(A′

1)| + |γ − f̄(A′′
1 )| − |γ − f̂(Â′

1)| − |γ − f̂(Â′′
1 )|

≤ |f̄(A′
1) − f̂(Â′

1)| + |f̄(A′′
1 ) − f̂(Â′′

1 )|
≤ max{f̄(A′

1) − f̂(Â′
1), f̂(Â′

1) − f̄(A′
1)}

+ max{f̄(A′′
1 ) − f̂(Â′′

1 ), f̂(Â′′
1 ) − f̄(A′′

1 )}
≤ max{f̄(A′

1) − f̂(A′
1), f̂(Â′

1) − f̄(Â′
1)}

+ max{f̄(Â′′
1 ) − f̂(Â′′

1 ), f̂(A′′
1 ) − f̄(A′′

1 )}
≤ 2 max

A∈Aj′

|f̄(A) − f̂(A)|

≤ Ψj′

The first inequality invokes definition of A0, the fourth inequality invokes def-
initions of the subcells A′

1, A′′
1 , Â′

1 and Â′′
1 , and the last one follows from the
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uniform density deviation control established in Lemma 1. Similarly,

V̂γ,j − Vγ,j = |γ − f̂(Â′
1)| + |γ − f̂(Â′′

1 )| − |γ − f̄(A′
0)| − |γ − f̄(A′′

0 )|
≤ |γ − f̂(Â′

0)| + |γ − f̂(Â′′
0 )| − |γ − f̄(A′

0)| − |γ − f̄(A′′
0 )|

≤ |f̄(A′
0) − f̂(Â′

0)| + |f̄(A′′
0 ) − f̂(Â′′

0 )|

Here the first inequality invokes definition of A1. The rest follows exactly as
above, considering cell A0 instead of A1.

�

Proof of Lemma 5: We first establish the upper bound. Consider a cell
A ∈ Aj s.t. A∩ ∂G∗

γ 6= ∅. Let A′ and A′′ denote subcells at resolution j′ within
A that have maximum and minimum average density respectively. Consider two
cases:

(i) If (
√

d2−j)α ≤ δ0/C2, then regularity holds ∀x ∈ A since |f(x) − γ| ≤
C2(

√
d2−j)α ≤ δ0. The same holds also for subcells A′ and A′′. Hence

|γ − f̄(A′)| + |γ − f̄(A′′)| ≤ 2C2(
√

d2−j)α

(ii) If (
√

d2−j)α > δ0/C2, the following trivial bound holds:

|γ − f̄(A′)| + |γ − f̄(A′′)| ≤ 2fmax

Notice that the bound for the first case 2C2(
√

d2−j)α ≤ 2C2fmax

δ0
(
√

d2−j)α since

δ0 ≤ fmax. And the bound for the second case, 2fmax ≤ 2C2fmax

δ0
(
√

d2−j)α since

(
√

d2−j)α > δ0/C2. Hence we can say for all j there exists A ∈ Aj such that

|γ − f̄(A′)| + |γ − f̄(A′′)| ≤ 2C2fmax

δ0
(
√

d2−j)α

This yields the upper bound on the vernier:

Vγ,j ≤ 2C2fmax

δ0
(
√

d2−j)α := C(
√

d2−j)α

where C ≡ C(C2, fmax, δ0).
For the lower bound, consider a cell A ∈ Aj . Note that assumption [C] on

the level set boundary dimension basically implies that the boundary does not
intersect all subcells at resolution j′ within the cell A at resolution j. And in fact
for large enough n (so that 2−j′ is small enough, recall that j′ = ⌊j + log2 sn⌋
where sn is a monotone diverging sequence), there exists at least one subcell
A′

0 ∈ A ∩ Aj′ such that ∀x ∈ A′
0,

ρ(x, ∂G∗
γ) ≥ 2−j′ .
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We establish this statement formally later on, but for now assume that it holds.
The local density regularity condition [A] now gives that for all x ∈ A′

0, |γ −
f(x)| ≥ min(δ0, C12

−j′α) ≥ min(δ0, C1)2
−j′α. So we have:

|γ − f̄(A′
0)| ≥ min(δ0, C1)2

−j′α

Let A′ and A′′ denote the subcells within A that have maximum and minimum
average density respectively. Then we have f̄(A′) ≥ f̄(A′

0) ≥ f̄(A′′). Therefore,
we get

|γ − f̄(A′)| + |γ − f̄(A′′)| ≥ max{|γ − f̄(A′)|, |γ − f̄(A′′)|}
≥ |γ − f̄(A′

0)|
≥ min(δ0, C1)2

−j′α

Since this is true for any A ∈ Aj , in particular, this is true for the cell achieving
the min defining Vγ,j. Hence, the lower bound on the vernier Vγ,j follows.

We now formally prove that assumption [C] on the level set boundary di-
mension implies that for large enough n (so that sn > 4C46

d), ∃A′
0 ∈ A ∩ Aj′

s.t. ∀x ∈ A′
0,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

Observe that it suffices to show that for large enough n, ∃A′
1 ∈ A ∩ Aj′−2 s.t.

A′
1 ∩ ∂G∗

γ = ∅. To prove this, consider two cases:

(i) A ∩ ∂G∗
γ = ∅. For sn ≥ 8, j′ − 2 ≥ j (recall definition of j′), and since A

does not intersect the boundary, clearly ∃A′
1 ∈ A∩Aj′−2 s.t. A′

1∩∂G∗
γ = ∅.

(ii) A ∩ ∂G∗
γ 6= ∅. Let x ∈ A ∩ ∂G∗

γ . Consider ǫ =
√

d2−j (the diagonal

length of a cell), then A ⊆ B(x, ǫ). Also let δ =
√

d2−(j′−2)/2 (the choice
will be justified below). For sn ≥ 4, 0 < δ ≤ ǫ and using assumption
[C], the minimum number of δ−balls required to cover ∂G∗

γ ∩ B(x, ǫ) is

≤ C4(δ/ǫ)−(d−1). Since A ⊆ B(x, ǫ), the minimum number of δ−balls
required to cover ∂G∗

γ ∩ A is also ≤ C4(δ/ǫ)−(d−1). Consider a uniform

partition of the cell A into subcells of sidelength 2δ/
√

d = 2−(j′−2). With
the choice of δ, this implies that a subcell at resolution 2−(j′−2) is inscribed
within an aligned δ-ball. Observe that at this resolution, in d-dim, an
unaligned δ-ball can intersect up to 3d − 1 subcells (number of neighbors
of any hypercube). Therefore, the number of subcells in A ∩ Aj′−2 that
intersect the boundary can be no more than

3dC4(δ/ǫ)−(d−1) = 3dC4

(√
d2−(j′−2)

2
√

d2−j

)−(d−1)

= 3dC4

(
2−(j′−2−j)

2

)−(d−1)

=
C46

d

2
2(j′−2−j)d2−(j′−2−j) <

4C46
d

sn
2(j′−2−j)d
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where the last step uses the fact 2−j′ < 2−j+1/sn. For sn > 4C46
d, the

number of subcells within A at resolution j′ − 2 that intersect the bound-
ary is less than the total number of subcells within A at that resolution.
Therefore, ∃A′

1 ∈ A ∩Aj′−2 s.t. A′
1 ∩ ∂G∗

γ = ∅.

This in turn implies that for n large enough (so that sn > 4C46
d), ∃A′

0 ∈ A∩Aj′

such that ∀x ∈ A′
0,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

�

Proof of Lemma 6: We first present a sketch of the main ideas, and then
provide a detailed proof. Consider the γ-level set G∗

γ of a density f ∈ FSL. To
see that it satisfies [B], divide the star-shaped set G∗

γ into sectors of width ≍ ǫ so
that each sector contains at least one ǫ-ball and the inner cover Iǫ(G

∗
γ) touches

the boundary at some point(s) in each sector. Now one can argue that, in each
sector, all other points on the boundary are O(ǫ) from the inner cover since the
boundary is Lipschitz. Since this is true for each sector, we have ∀x ∈ ∂G∗

γ ,
ρ(x, Iǫ(G

∗
γ)) = O(ǫ). To see that G∗

γ satisfies [C], consider any sector of width
≍ ǫ and divide it into sub-sectors of width O(δ), 0 < δ ≤ ǫ. Since the boundary
is Lipschitz, a constant number of δ-balls can cover the boundary in each sub-
sector. Thus, the minimum number of δ-balls needed to cover the boundary
in all sub-sectors is of the order of the minimum number of sub-sectors, i.e.
O((ǫ/δ)d−1). Hence, the result follows. We now present the proof in detail.

To see that G∗
γ satisfies [B], fix ǫo ≤ h/3. Then for all ǫ ≤ ǫo, B(0, ǫ) ⊆ G∗

γ

(since g(φ) ≥ h > ǫo), and hence Iǫ(G
∗
γ) 6= ∅. We also need to show that

∃C3 > 0 such that for all x ∈ ∂G∗
γ , ρ(x, Iǫ(G)) ≤ C3ǫ. For this, divide G∗

γ into

Md−1 sectors indexed by m = (m1, m2, . . . , md−1) ∈ {1, . . . , M}d−1

Sm =
{

(r, φ) : 0 ≤ r ≤ g(φ),
2π(md−1 − 1)

M
≤ φd−1 <

2πmd−1

M
π(mi − 1)

M
≤ φi <

πmi

M
i = 1, . . . , d − 2

}
,

where φ = (φ1, φ2, . . . , φd−1). Let

M =

⌊
π

2 sin−1 ǫ
h−ǫo

⌋

This choice of M implies that:

(i) There exists an ǫ-ball within Sm ∩ B(0, h) for every m ∈ {1, . . . , M}d−1,
and hence within each sector Sm. This follows because the minimum
angular width of a sector with radius h required to fit an ǫ-ball within is

2 sin−1 ǫ

h − ǫ
≤ 2 sin−1 ǫ

h − ǫo
≤ π

M
.
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(ii) The angular-width of the sectors scales as O(ǫ).

π

M
<

π
π

2 sin−1 ǫ
h−ǫo

− 1
=

1
1

2 sin−1 ǫ
h−ǫo

− 1
π

≤ 3 sin−1 ǫ

h − ǫo

≤ 6
ǫ

h − ǫo
≤ 9

h
ǫ

The second inequality follows since

1

π
≤ 1

6 sin−1 ǫ
h−ǫo

since ǫ
h−ǫo

≤ ǫo

h−ǫo
≤ 1

2 by choice of ǫo ≤ h/3. The third inequality is true

since sin−1(z/2) ≤ z for 0 ≤ z ≤ π/2. The last step follows by choice of
ǫo ≤ h/3.

Now from (i) above, each sector contains at least one ǫ-ball. Consider any
m ∈ {1, . . . , M}d−1. We claim that there exists a point xm ∈ ∂G∗

γ ∩ Sm,

xm = (g(θ), θ) for some θ ∈ [0, π)d−2 × [0, 2π), such that ρ(xm, Iǫ(G
∗
γ)) =

0. Suppose not. Then one can slide the ǫ-ball within the sector towards the
periphery and never touch the boundary, implying that the set G∗

γ is unbounded.
This is a contradiction by the definition of the class FSL. So now we have,
∀y ∈ ∂G∗

γ ∩ Sm, y = (g(φ), φ)

ρ(y, Iǫ(G
∗
γ)) ≤ ρ(y, xm) = ||y − xm||

Now recall that if y = (y1, . . . , yd) ≡ (r, φ1, . . . , φd−1) = (g(φ), φ), then the
relation between the Cartesian and hypershperical coordinates is given as:

y1 = r cosφ1

y2 = r sin φ1 cosφ2

y3 = r sin φ1 sinφ2 cosφ3

...

yd−1 = r sin φ1 . . . sin φd−2 cosφd−1

yd = r sin φ1 . . . sin φd−2 sin φd−1

Now since ||y−x|| =
∑d

i=1(yi−xi)
2, using the above transformation and simple

algebra, we can show that:

||y − xm||2 = ||(g(φ), φ) − (g(θ), θ)||2
= (g(φ) − g(θ))2

+4g(φ)g(θ)

d−1∑

i=1

sin φ1 . . . sin φi−1 sin θ1 . . . sin θi−1 sin2 φi − θi

2

≤ (g(φ) − g(θ))2 + 4g(φ)g(θ)
d−1∑

i=1

sin2 φi − θi

2
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Using this, we have ∀y ∈ ∂G∗
γ ∩ Sm

ρ(y, Iǫ(G
∗
γ)) ≤

√√√√(g(φ) − g(θ))2 + 4g(φ)g(θ)

d−1∑

i=1

sin2 φi − θi

2

≤ |g(φ) − g(θ)| + 2
√

g(φ)g(θ)

d−1∑

i=1

∣∣∣∣ sin
φi − θi

2

∣∣∣∣

≤ L||φ − θ||1 +

d−1∑

i=1

|φi − θi|
2

= (L + 1/2)

d−1∑

i=1

|φi − θi|

≤ (L + 1/2)d
π

M

≤ 9d(L + 1/2)

h
ǫ := C3ǫ

where the third step follows by using the Lipschitz condition on g(·), g(·) ≤ R =
1/2 and since | sin(z)| ≤ |z|. The fifth step follows since x, y ∈ Sm and hence
|φi − θi| ≤ π/M for i = 1, . . . , d − 2 and |φd−1 − θd−1| ≤ 2π/M . The sixth step
invokes (ii) above.

Therefore, we have for all y ∈ ∂G∗
γ ∩ Sm ρ(y, Iǫ(G

∗
γ)) ≤ C3ǫ. And since the

result is true for any sector, condition [B] is satisfied by any level set G∗
γ with

density f ∈ FSL.

To see that G∗
γ satisfies [C], consider x ∈ ∂G∗

γ . Let x = (g(φ0), φ0). Also let

φ
(1)
i = min{φi : (g(φ), φ) ∈ B(x, ǫ)} and φ

(2)
i = max{φi : (g(φ), φ) ∈ B(x, ǫ)}.

Define the sector

Sx
ǫ =

{
(r, φ) : 0 ≤ r ≤ g(φ), φ

(1)
i ≤ φi ≤ φ

(2)
i ∀i = 1, . . . , d − 1

}

Observe that the width of Sx
ǫ in the ith coordinate, ∆φi = φ

(2)
i − φ

(1)
i ≤

2 sin−1 ǫ

g(φ0)
by construction and since g(·) ≥ h, we have ∆φi ≤ 2 sin−1 ǫ

h ≤
4ǫ/h, where the last step follows since for 0 ≤ z ≤ π/2, sin−1(z/2) ≤ z. Further
subdivide Sx

ǫ into Md−1 sub-sectors indexed by m = (m1, . . . , md−1)

Sm =
{
(r, φ) : 0 ≤ r ≤ g(φ),

φ
(1)
i +

(mi − 1)∆φi

M
≤ φi < φ

(1)
i +

mi∆φi

M
∀i = 1, . . . , d − 1

}

Pick M such that for all coordinates, the sub-sector width ∆φi

M ≤ 2δ
(d−1)(L+1/2) ,

where 0 < δ ≤ ǫ. With this choice of sub-sector width, Sm ∩ ∂G∗
γ can be
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covered by a δ-ball. To see this, consider two points in Sm ∩ ∂G∗
γ - (g(φ), φ)

and (g(θ), θ). Proceeding as before, we have:

||(g(φ), φ) − (g(θ), θ)|| ≤ (L + 1/2)

d−1∑

i=1

|φi − θi|

≤ (L + 1/2)

d−1∑

i=1

∆φi

M

≤ 2δ

Since each sub-sector can be covered by a δ-ball, the minimum number of δ-balls
needed to cover B(x, ǫ) ∩ ∂G∗

γ is equal to the minimum number of sub-sectors

needed (Md−1). This corresponds to the smallest M such that maxi
∆φi

M ≤
2δ

(d−1)(L+1/2) . Therefore, minimum number of δ-balls needed to cover B(x, ǫ) ∩
∂G∗

γ is equal to

(⌈
(d − 1)(L + 1/2)maxi ∆φi

2δ

⌉)d−1

≤
(

(d − 1)(L + 1/2)maxi ∆φi

2δ
+ 1

)d−1

≤
(

(d − 1)(2L + 1)

h

ǫ

δ
+

ǫ

δ

)d−1

≤
(

(d − 1)(2L + 1)

h
+ 1

)d−1 ( ǫ

δ

)d−1

:= C4

( ǫ

δ

)d−1

The second inequality follows since ∆φi ≤ 4 ǫ
h for all i, and since δ ≤ ǫ. There-

fore, any level set G∗
γ with density f ∈ FSL also satisfies [C].

�

Appendix A

Here we sketch a proof of the claim that d∞(Ĝ, G∗
γ) ≤ C(E(Ĝ))1/α, where Ĝ

is the plug-in level set estimator obtained using a sup-norm consistent density
estimate f̂(x). Observe that assumption [B] implies that G∗

γ is not empty since
G∗

γ ⊇ Iǫ(G
∗
γ) 6= ∅ for ǫ ≤ ǫo. Hence, for large enough n, the plug-in level set

estimate Ĝ is also non-empty since f̂(x) is consistent in the sup-norm. Now
recall that for non-empty sets

d∞(Ĝ, G∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝ), sup
x∈Ĝ

ρ(x, G∗
γ)}.

We now derive upper bounds on the two terms that control the Hausdorff error.
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First, observe that for all incorrectly classified points x ∈ Ĝj∆G∗
γ , |f(x) −

γ| ≤ |f(x) − f̂(x)|, hence regularity condition [A] holds at x since for large

enough n, |f(x) − f̂(x)| ≤ δ0. So we have:

sup
x∈Ĝ∆G∗

γ

ρ(x, ∂G∗
γ) ≤ sup

x∈Ĝ∆G∗

γ

( |f(x) − γ|
C1

)1/α

≤
(
E(Ĝ)

C1

)1/α

:= ǫ. (11)

The last inequality follows since ∀x ∈ Ĝ∆G∗
γ , |f(x)− γ| ≤ E(Ĝ). Equation (11)

gives a bound on the second term of the Hausdorff error:

sup
x∈Ĝ

ρ(x, G∗
γ) = sup

x∈Ĝ\G∗

γ

ρ(x, ∂G∗
γ) ≤ sup

x∈Ĝ∆G∗

γ

ρ(x, ∂G∗
γ) ≤

(
E(Ĝ)

C1

)1/α

.

To bound the first term of the Hausdorff error, we proceed as follows:

sup
x∈G∗

γ

ρ(x, Ĝ) ≤ sup
x∈G∗

γ

ρ(x, Ĝ ∩ G∗
γ) = sup

x∈∂G∗

γ

ρ(x, Ĝ ∩ G∗
γ).

Now consider any x ∈ ∂G∗
γ . Then

ρ(x, Ĝ ∩ G∗
γ) ≤ ρ(x, z) + ρ(z, Ĝ ∩ G∗

γ) ∀z ∈ I2ǫ(G
∗
γ)

≤ ρ(x, z) + ǫ ∀z ∈ I2ǫ(G
∗
γ).

The first step follows using triangle inequality since ∀y ∈ Ĝj ∩ G∗
γ , ρ(x, y) ≤

ρ(x, z)+ρ(z, y), which implies infy∈Ĝj∩G∗

γ
ρ(x, y) ≤ ρ(x, z)+ infy∈Ĝj∩G∗

γ
ρ(z, y).

The second step follows since for all 2ǫ-balls in I2ǫ(G
∗
γ), all points in the interior

of the concentric ǫ-balls are greater than ǫ away from the boundary of the true
set ∂G∗

γ , and hence cannot lie in Ĝ∆G∗
γ as per Eq. (11). In fact these points

must lie in Ĝ ∩ G∗
γ since they lie in I2ǫ(G

∗
γ) ⊆ G∗

γ . So we have

ρ(x, Ĝ ∩ G∗
γ) ≤ ρ(x, I2ǫ(G

∗
γ)) + ǫ ≤ 2C3ǫ + ǫ,

where the second step invokes assumption [B]. So we have the following bound
on the first term of the Hausdorff error:

sup
x∈G∗

γ

ρ(x, Ĝ) ≤ (2C3 + 1)ǫ = (2C3 + 1)

(
E(Ĝ)

C1

)1/α

.

Putting together the bounds for both terms in the Hausdorff error, we get:

d∞(Ĝ, G∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝ), sup
x∈Ĝ

ρ(x, G∗
γ)} ≤ (2C3 + 1)

(
E(Ĝ)

C1

)1/α

.

This concludes the proof.
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Appendix B

Adaptivity for α ≥ 0: We prove that adaptivity can be achieved, and hence
Theorem 2 holds, for the whole range α ≥ 0 using the modified vernier and
penalty proposed in Section 6.1. But before that, we establish that Theorem 1
holds for the jump case i.e. when α is known to be zero, the empirical error
minimization procedure of Eq. (3), along with choice of the resolution as 2−j ≍
sn(n/ logn)−1/d achieves the minimax rate of Hausdorff error convergence for
the class of densities given by F∗

1 (0). Notice that for Theorem 1 to hold no
change is required in the estimation procedure, however the proof technique
presented earlier does not work for the jump case (α = 0). So, here we provide
a sketch of the arguments needed to show that Theorem 1 holds for the jump
case as well.

For the jump case, Theorem 1 basically follow similar to the non-jump case
except that Lemma 3 is replaced by the following:

Lemma 7. Consider densities satisfying assumptions [A] and [B]. Let Ĝj de-

note the set at resolution j that minimizes the empirical error Êγ as per Eq. (3).
Then for all resolutions j ≡ j(n) such that 2j = O(s−1

n (n/ log n)1/d), where sn

is a diverging sequence, and n ≥ n0(fmax, d, δ0, ǫo, C1, α) with probability at least
1 − 3/n

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 1, 8

√
dǫ−1

o )
[
2
√

d2−j
]
.

The proof follows similar to the proof of Lemma 3, except that we define
ǫj = 2

√
d2−j, and we have the following result analogous to Proposition 2. The

rest of the arguments in the proof of Lemma 3 follow through.

Proposition 4. If Ĝj∆G∗
γ 6= ∅, then for resolutions satisfying 2j = O(s−1

n

(n/ logn)1/d) and n ≥ n1(fmax, d, C1) with probability at least 1 − 2/n

sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤ 2

√
d2−j =: ǫj .

Proof. Define Bj to be the collection of cells in Aj that intersect the boundary
∂G∗

γ , or have one or more adjacent cells intersecting the boundary ∂G∗
γ . Con-

sider A ∈ Bj. Then ∀x ∈ A, ρ(x, ∂G∗
γ) ≤ 2

√
d2−j (twice the diagonal length of

a cell). Consider A 6∈ Bj. Then ∀x ∈ A, ρ(x, ∂G∗
γ) ≥ 2−j (the sidelength of a

cell).
We prove that with high probability, all cells A 6∈ Bj are correctly labeled

(not erroneously included or excluded from the level set estimate Ĝj). Notice
that a cell A 6∈ Bj is included in the true level set G∗

γ if f̄(A) > γ and excluded

if f̄(A) < γ. Also recall that Ĝj includes all cells with f̂(A) > γ and excludes

all cells with f̂(A) < γ. Therefore, a cell A 6∈ Bj is correctly labeled if |f̄(A) −
f̂(A)| ≤ |γ − f̄(A)|. We show that this is indeed the case.

Using Lemma 1, maxA 6∈Bj |f̄(A) − f̂(A)| ≤ Φj with probability at least
1−1/n (with δ = 1/n). And using Lemma 2, Φj decreases with n for resolutions
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satisfying 2j = O(s−1
n (n/ logn)1/d) with probability at least 1−1/n. So for large

enough n ≥ n1(fmax, d, C1), Φj ≤ C1. Thus, with probability > 1 − 2/n,

max
A 6∈Bj

|f̄(A) − f̂(A)| ≤ Φj ≤ C1 ≤ |γ − f̄(A)|.

The last step follows since under assumption [A] for α = 0, ∀x ∈ X , |γ−f(x)| ≥
C1. For A 6∈ Bj , this implies that |γ − f̄(A)| ≥ C1.

Therefore, for resolutions satisfying 2j = O(s−1
n (n/ logn)1/d) and n ≥ n1

(fmax, d, C1), with probability at least 1 − 2/n, all cells A 6∈ Bj are correctly

labeled. Hence, G∗
γ∆Ĝj ⊆ Bj. It follows that:

sup
x∈G∗

γ∆Ĝj

ρ(x, ∂G∗
γ) ≤ sup

x∈Bj

ρ(x, ∂G∗
γ) ≤ 2

√
d2−j , (12)

where the last step follows from the definition of Bj since 2
√

d2−j is twice the
diagonal length of a cell.

Now, to establish adaptivity to the whole range α ≥ 0, we re-sketch the
proof of Theorem 2. First, notice that Lemma 4 still holds for the modified
vernier and modified penalty since Vγ,j, V̂γ,j as well as Ψj′ are all scaled by the

same factor of 2−j′/2. And we have the following analogue of Lemma 5 using
the modified vernier:

Lemma 8. Consider densities satisfying assumption [A] for α ≥ 0 and as-
sumption [C]. Recall that j′ = ⌊j + log2 sn⌋, where sn is a diverging sequence.
Then for all resolutions j

min(δ0, C1)2
−j′α2−j′/2 ≤ Vγ,j ≤ C(

√
d2−j)α2−j′/2

holds for n large enough such that sn > 4C46
d. Here C ≡ C(C2, fmax, δ0)> 0.

Following the proof of Theorem 2, we derive upper bounds on Vγ,ĵ and
Ψĵ′ using the oracle inequality. Since both the modified vernier and penalty are
scaled by the same factor, the two terms in the oracle inequality are still balanced

for the same optimal resolution j∗ given by 2−j∗ ≍ s
d

d+2α
n (n/ logn)−

1
d+2α . Hence

we get:

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ ≤ C2−j∗
′

/22−j∗α

≤ Cs−1/2
n s

d(α+1/2)
d+2α

n

(
n

log n

)− (α+1/2)
d+2α

.

Using this upper bound on Vγ,ĵ and Ψĵ′ , we derive upper and lower bounds on

the chosen resolution ĵ as in the proof of Theorem 2. Using Lemma 8, we have
the following upper bound on the sidelength: For sn > 4C46

d,

2−ĵ ≤ sn

( Vγ,ĵ

min(δ0, C1)

)1/(α+1/2)

≤ c2s
2α

2α+1
n s

d
d+2α
n

(
n

log n

)− 1
d+2α

≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

.

37



And using Lemma 2 for the modified penalty, we have:

c32
−j′/2

√
2j′d

log n

n
≤ Ψj′

This provides a lower bound on the sidelength:

2−ĵ >
sn

2

(
Ψ2

ĵ′

4c2
3

n

log n

)− 1
(d−1)

≥ c1sn



s−1
n s

2d(α+1/2)
d+2α

n

(
n

log n

)− 2(α+1/2)
d+2α n

log n




− 1

(d−1)

= c1sns
1

(d−1)
n s

−2d(α+1/2)
(d−1)(d+2α)
n

(
n

log n

) −1
d+2α

= c1s
d

d+2α
n

(
n

log n

) −1
d+2α

.

So as before we have for sn > 4C46
d, with probability at least 1 − 5/n,

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

where c1 ≡ c1(C2, fmax, δ0, d, α) > 0 and c2 ≡ c2(C1, C2, fmax, δ0, d, α) > 0.
Hence the automatically chosen resolution behaves as desired for α ≥ 0.

To arrive at the result of Theorem 2, follow the same arguments as before
but using Lemma 3 to bound the Hausdorff error for α > 0 and Lemma 7 to
bound the Hausdorff error for α = 0. Thus, Theorem 2 holds and the proposed
method is adaptive for all α ≥ 0 (including the jump case), using the modified
vernier and penalty.
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