ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 14: Maximum Likelihood Estimation

The maximum Likelihood (ML) Estimate is given by

$$
\widehat{\theta}=\arg \max _{\theta \in \Theta} p(x \mid \theta)
$$

where $p(x \mid \theta)$ as a function of x with the parameter θ fixed is the probability density function or mass function. And $p(x \mid \theta)$ as a function of θ with x fixed is called the "likelihood function".

1 ML Estimation and Density Estimation

ML Estimation is equivalent to density estimation. Assume

$$
x_{i} \stackrel{\mathrm{iid}}{\sim} q, \quad i=1, \cdots, n, \quad \text { where } q \text { is an unknown probability density }
$$

The ML Estimation is equivalent to finding the density in $\left\{p_{\theta}\right\}_{\theta \in \Theta}$ that best fits the data. i.e., "The generative model with the highest density/probability value at the point $\left\{x_{i}\right\}$." The true generating density q may not be a member of the parametric family under consideration.

1.1 ML Estimation as Minimization

$$
\begin{aligned}
\widehat{\theta} & =\arg \min _{\theta} \frac{1}{p(x \mid \theta)} \\
& =\arg \min _{\theta}-\log p(x \mid \theta)
\end{aligned}
$$

Thus, we can view the MLE as minimizing the loss

$$
\ell\left(q, p_{\theta}\right):=-\log p(x \mid \theta)
$$

where dependence on q is embodied in $x \sim q$.

Example 1.

$$
p(x \mid \theta)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-H \theta)^{T} \Sigma^{-1}(x-H \theta)\right\}, x \in \mathbb{R}^{n} \text { and } \theta \in \mathbb{R}^{k}
$$

The value of $\widehat{\theta}$ is given by,

$$
\begin{aligned}
\widehat{\theta} & =\arg \min _{\theta}-\log p(x \mid \theta) \\
& =\arg \min _{\theta}(x-H \theta)^{T} \Sigma^{-1}(x-H \theta) \\
& =\left(H^{T} \Sigma^{-1} H\right)^{-1} H^{T} \Sigma^{-1} x
\end{aligned}
$$

2 MLE and Risk

The risk associated to the MLE is also known as a "expected loss"

$$
\begin{aligned}
R_{\mathrm{MLE}}\left(q, p_{\theta}\right) & =\mathbb{E}\left[\ell\left(q, p_{\theta}\right)\right] \\
& =\mathbb{E}[-\log p(x \mid \theta)] \\
& =\int q(x)(-\log p(x \mid \theta)) d x
\end{aligned}
$$

2.1 Excess Risk ("Regret")

Let θ be any value of the parameter. Then we can compare

$$
R_{\mathrm{MLE}}\left(q, p_{\theta}\right)-R_{\mathrm{MLE}}(q, q)
$$

which quantifies how much larger the expected loss is when we use θ instead of θ^{*}. Note that

$$
\begin{aligned}
R_{\mathrm{MLE}}\left(q, p_{\theta}\right)-R_{\mathrm{MLE}}(q, q) & =\mathbb{E}[\log q(x)-\log p(x \mid \theta)] \\
& =\mathbb{E}\left[\log \frac{q(x)}{p(x \mid \theta)}\right] \\
& =\int q(x) \log \frac{q(x)}{p(x \mid \theta)} d x \\
& =D\left(q \| p_{\theta}\right) \\
& =\geq 0
\end{aligned}
$$

with equality if $p_{\theta}=q$. Thus the "optimal" value of θ is

$$
\theta^{*}=\arg \min _{\theta} D\left(q \| p_{\theta}\right)
$$

The density $p_{\theta^{*}}$ the member of the parametric class that is closest in KL divergence to the data-generating distribution q.

If we have multiple iid observations then

$$
x_{i} \stackrel{\mathrm{iid}}{\sim} q, \quad i=1, \cdots, n
$$

the loss is given by

$$
\begin{aligned}
\ell\left(q, p_{\theta}\right) & =-\log \left(\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)\right) \\
& =-\sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)
\end{aligned}
$$

MLE:

$$
\widehat{\theta}=\arg \min _{\theta}-\sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)
$$

Excess Risk:

$$
R_{\mathrm{MLE}}\left(q, p_{\theta}\right)-R_{\mathrm{MLE}}(q, q)=n D\left(q \| p_{\theta}\right)
$$

for any $\theta \in \Theta$

3 Convergence of log likelihood to KL

Assume $x_{i} \stackrel{\text { iid }}{\sim} p\left(x \mid \theta^{*}\right)$, then by strong law of large numbers (SLLN) for any $\theta \in \Theta$

$$
\frac{1}{n} \sum_{i=1}^{n} \log \frac{p\left(x_{i} \mid \theta^{*}\right)}{p\left(x_{i} \mid \theta\right)} \xrightarrow{\text { a.s. }} D\left(p_{\theta^{*}} \| p_{\theta}\right)
$$

We would like to show that the MLE

$$
\widehat{\theta}_{n}=\arg \max _{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)
$$

converges to θ^{*} in the following sense:

$$
D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right) \longrightarrow 0
$$

Note that since $\widehat{\theta}_{n}$ maximizes $\sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)$ we have

$$
\frac{1}{n} \sum_{i=1}^{n} \log \frac{p\left(x_{i} \mid \theta^{*}\right)}{p\left(x_{i} \mid \widehat{\theta}_{n}\right)} \leq 0
$$

Thus we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \log \frac{p\left(x_{i} \mid \theta^{*}\right)}{p\left(x_{i} \mid \widehat{\theta}_{n}\right)}-D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right)+D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right) \leq 0 \\
\Longrightarrow & D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right) \leq\left|\frac{1}{n} \sum_{i=1}^{n} \log \frac{p\left(x_{i} \mid \theta^{*}\right)}{p\left(x_{i} \mid \widehat{\theta}_{n}\right)}-D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right)\right|
\end{aligned}
$$

So, $D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right) \longrightarrow 0$ if $\frac{1}{n} \sum_{i=1}^{n} \log \frac{p\left(x_{i} \mid \theta^{*}\right)}{p\left(x_{i} \mid \widehat{\theta}_{n}\right)} \longrightarrow D\left(p_{\theta^{*}} \| p_{\widehat{\theta}_{n}}\right)$
The subtle issue here is that $\widehat{\theta}_{n}$ is a random variable, not a fixed $\theta \in \Theta$, so we can not just appeal to the SLLN.

Theorem 1. Assume

$$
x_{i} \stackrel{\mathrm{iid}}{\sim} p\left(x \mid \theta^{*}\right) \quad i=1, \cdots, n
$$

Define

$$
\begin{aligned}
L_{n}(\theta) & :=\frac{1}{n} \sum_{i=1}^{n} \log \frac{p\left(x_{i} \mid \theta^{*}\right)}{p\left(x_{i} \mid \theta\right)}, \quad \forall \theta \in \Theta \\
L(\theta) & :=\mathbb{E}\left[L_{n}(\theta)\right]=D\left(p_{\theta^{*}} \| p_{\theta}\right)
\end{aligned}
$$

Suppose the following assumptions hold
A1. $\sup _{\theta \in \Theta}\left|L_{n}(\theta)-L(\theta)\right| \xrightarrow{\mathrm{P}} 0$
A2. $\inf _{\theta:\left\|\theta-\theta^{*}\right\| \geq \epsilon} L(\theta)>L\left(\theta^{*}\right), \quad \forall \epsilon>0$
then

$$
\widehat{\theta}_{n} \xrightarrow{\mathrm{P}} \theta^{*}
$$

A1 says that the LR converges uniformly (wrt θ) to the KL divergence.
A2 says that locally θ^{*} is strictly better (in KL) other θ.

Proof. Since $\widehat{\theta}_{n}$ minimizes $L_{n}(\theta)$ we have

$$
L_{n}\left(\widehat{\theta}_{n}\right) \leq L_{n}\left(\theta^{*}\right)
$$

Hence,

$$
\begin{aligned}
L\left(\widehat{\theta}_{n}\right)-L\left(\theta^{*}\right) & =L\left(\widehat{\theta}_{n}\right)-L_{n}\left(\theta^{*}\right)+L_{n}\left(\theta^{*}\right)-L\left(\theta^{*}\right) \\
& \leq L\left(\widehat{\theta}_{n}\right)-L_{n}\left(\widehat{\theta}_{n}\right)+L_{n}\left(\theta^{*}\right)-L\left(\theta^{*}\right) \\
& \leq \sup _{\theta}\left|L(\theta)-L_{n}(\theta)\right|+L_{n}\left(\theta^{*}\right)-L\left(\theta^{*}\right) \\
& \xrightarrow{\mathrm{P}} 0, \quad \text { by A1 }
\end{aligned}
$$

It follows that for any $\delta>0$

$$
\mathbb{P}\left(L\left(\widehat{\theta}_{n}\right)>L\left(\theta^{*}\right)+\delta\right) \longrightarrow 0, \quad \text { as } n \longrightarrow \infty
$$

Now pick any $\epsilon>0$. By A2 $\exists \delta>0$ such that

$$
\left\|\theta-\theta^{*}\right\| \geq \epsilon \quad \Rightarrow \quad L(\theta)>L\left(\theta^{*}\right)+\delta
$$

Hence

$$
\mathbb{P}\left(\left\|\widehat{\theta}_{n}-\theta^{*}\right\| \geq \epsilon\right) \leq \mathbb{P}\left(L\left(\widehat{\theta}_{n}\right)>L\left(\theta^{*}\right)+\delta\right) \longrightarrow 0
$$

