ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 14: Maximum Likelihood Estimation

The maximum Likelihood (ML) Estimate is given by

b= 6
arg max p(z|6)

where p(z|f) as a function of z with the parameter 6 fixed is the probability density function or mass
function. And p(z|0) as a function of 6 with x fixed is called the “likelihood function”.

1 ML Estimation and Density Estimation

ML Estimation is equivalent to density estimation. Assume

T; S q, t=1,---,n, where qis an unknown probability density

The ML Estimation is equivalent to finding the density in {pg}lgsco that best fits the data. i.e., “The
generative model with the highest density/probability value at the point {z;}.” The true generating density
q may not be a member of the parametric family under consideration.

1.1 ML Estimation as Minimization

~ 1
0 = argmeini

p(x|)
= arg mgin —log p(x|6)

Thus, we can view the MLE as minimizing the loss

| ((aps) := —log p(al0) |

where dependence on ¢ is embodied in x ~ q.

Example 1.

_ 1 1 Ty —1 n k
p(m|9)—Wexp{—§(x—H9) Y (x—HO)}, xeR" and § € R

The value of 8 is given by,

)
|

= arg main —log p(x|0)
= arg mein(x — HO)TY Y2 — HO)
(H'S'H)"'HTS 2
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2 MLE and Risk

The risk associated to the MLE is also known as a “expected loss”

Ryie(g,pe) = E[l(q, po)]
= E[-logp(z|0)]

- / 4(z) (~ log p(x]6)) dz

2.1 Excess Risk (“Regret”)
Let 6 be any value of the parameter. Then we can compare
Rymie(q,pe) — Bvie(g; q)

which quantifies how much larger the expected loss is when we use € instead of 8*. Note that

Ruie(g,pe) — Ryie(q,q) = Ellogg(z) — logp(x]6)]

- F {log p(z(xﬁ)]

= /q(x) log a(w) dx

p(x|0)
= D (qllpo)
= >0

with equality if pg = ¢q. Thus the “optimal” value of 0 is
0" = argmin D (q||po) -

The density pg+« the member of the parametric class that is closest in KL divergence to the data-generating
distribution gq.
If we have multiple iid observations then
zii/i\sl(b 7::17"'7’”

the loss is given by

l(q,po) = —log (HP(%‘W))

— > log plai[6)
=1

MLE:

0 = arg min — ; log p(x;|0)
Excess Risk:
Ryre(q,pe) — Rvie(q,9) = nD (qllpe)

for any § € ©
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3 Convergence of log likelihood to KL

Assume z; < p(x|0*), then by strong law of large numbers (SLLN) for any 6 € ©

1 <& 16%) as
LS 1og 2% 2s, .
n <= 7 p(xi|f)

We would like to show that the MLE

1)

~ 1 &
0, = arg max — Z og p(z;|0)

i=1

converges to 6* in the following sense:
D (Pe* ||pan) —0

Note that since 6, maximizes >t log p(x;]6) we have

,Zl
=1

pxzn

Thus we have

,Zl

~ D (po-llpg, ) + D (po-
pgn) : z ) o)

So, D (pg* pé\n) —0if L L5 log 7511:23 — D (pg* pé\n)

The subtle issue here is that Gn is a random variable, not a fixed § € ©, so we can not just appeal to the
SLLN.

pgﬂ) <0

—— D (pg*

Theorem 1. Assume

-HNdp(x|9*) i=1,---,n
Define
Ln(0) = 721 z|9 Vo €O
L) = E[Ln(e)] —D(Pe* Po)

Suppose the following assumptions hold

Al. sup|L,(0) — L(0)|i>0
0coe

A2. inf  L(0) > L(6*), Ve>0
0:]10—6%[|>e

then
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A1 says that the LR converges uniformly (wrt 8) to the KL divergence.
A2 says that locally 6* is strictly better (in KL) other 6.

Proof. Since 6,, minimizes L, (0) we have

Hence,
L(B,) = L") = L(Bn) — Ln(6%) + La(6%) — L(67)
< L(0n) — Ln(8,) + Ln(67) — L(6Y)
< suplL(9) — La(O)] + Ln(0") = L(0")

It follows that for any § > 0
P (L(gn) > L(6%) + 5) —0, as n—
Now pick any € > 0. By A2 3§ > 0 such that
|0 —0%|| >e = L(0)>LO)+4
Hence

(160 — 07| = €) < P(L(8n) > L(67) + ) — 0



