
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 14: Maximum Likelihood Estimation

The maximum Likelihood (ML) Estimate is given by

θ̂ = arg max
θ∈Θ

p(x|θ)

where p(x|θ) as a function of x with the parameter θ fixed is the probability density function or mass
function. And p(x|θ) as a function of θ with x fixed is called the “likelihood function”.

1 ML Estimation and Density Estimation

ML Estimation is equivalent to density estimation. Assume

xi
iid∼ q, i = 1, · · · , n, where q is an unknown probability density

The ML Estimation is equivalent to finding the density in {pθ}θ∈Θ that best fits the data. i.e., “The
generative model with the highest density/probability value at the point {xi}.” The true generating density
q may not be a member of the parametric family under consideration.

1.1 ML Estimation as Minimization

θ̂ = arg min
θ

1
p(x|θ)

= arg min
θ
− log p(x|θ)

Thus, we can view the MLE as minimizing the loss

`(q, pθ) := − log p(x|θ)

where dependence on q is embodied in x ∼ q.

Example 1.

p(x|θ) =
1

(2π)n/2|Σ|1/2
exp{−1

2
(x−Hθ)TΣ−1(x−Hθ)} , x ∈ Rn and θ ∈ Rk

The value of θ̂ is given by,

θ̂ = arg min
θ
− log p(x|θ)

= arg min
θ

(x−Hθ)TΣ−1(x−Hθ)

= (HTΣ−1H)−1HTΣ−1x

1
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2 MLE and Risk

The risk associated to the MLE is also known as a “expected loss”

RMLE(q, pθ) = E[`(q, pθ)]
= E [− log p(x|θ)]

=
∫
q(x) (− log p(x|θ)) dx

2.1 Excess Risk (“Regret”)

Let θ be any value of the parameter. Then we can compare

RMLE(q, pθ)−RMLE(q, q)

which quantifies how much larger the expected loss is when we use θ instead of θ∗. Note that

RMLE(q, pθ)−RMLE(q, q) = E [log q(x)− log p(x|θ)]

= E
[
log

q(x)
p(x|θ)

]
=

∫
q(x) log

q(x)
p(x|θ)

dx

= D (q‖pθ)
= ≥ 0

with equality if pθ = q. Thus the “optimal” value of θ is

θ∗ = arg min
θ
D (q‖pθ) .

The density pθ∗ the member of the parametric class that is closest in KL divergence to the data-generating
distribution q.

If we have multiple iid observations then

xi
iid∼ q, i = 1, · · · , n

the loss is given by

`(q, pθ) = − log

(
n∏
i=1

p(xi|θ)

)

= −
n∑
i=1

log p(xi|θ)

MLE:

θ̂ = arg min
θ
−

n∑
i=1

log p(xi|θ)

Excess Risk:

RMLE(q, pθ)−RMLE(q, q) = nD (q‖pθ)

for any θ ∈ Θ
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3 Convergence of log likelihood to KL

Assume xi
iid∼ p(x|θ∗), then by strong law of large numbers (SLLN) for any θ ∈ Θ

1
n

n∑
i=1

log
p(xi|θ∗)
p(xi|θ)

a.s.−→ D (pθ∗‖pθ)

We would like to show that the MLE

θ̂n = arg max
θ

1
n

n∑
i=1

log p(xi|θ)

converges to θ∗ in the following sense:

D
(
pθ∗‖pbθn

)
−→ 0

Note that since θ̂n maximizes
∑n
i=1 log p(xi|θ) we have

1
n

n∑
i=1

log
p(xi|θ∗)
p(xi|θ̂n)

≤ 0

Thus we have

1
n

n∑
i=1

log
p(xi|θ∗)
p(xi|θ̂n)

−D
(
pθ∗‖pbθn

)
+D

(
pθ∗‖pbθn

)
≤ 0

=⇒ D
(
pθ∗‖pbθn

)
≤

∣∣∣∣∣ 1n
n∑
i=1

log
p(xi|θ∗)
p(xi|θ̂n)

−D
(
pθ∗‖pbθn

)∣∣∣∣∣
So, D

(
pθ∗‖pbθn

)
−→ 0 if 1

n

∑n
i=1 log p(xi|θ∗)

p(xi|bθn)
−→ D

(
pθ∗‖pbθn

)
The subtle issue here is that θ̂n is a random variable, not a fixed θ ∈ Θ, so we can not just appeal to the
SLLN.

Theorem 1. Assume

xi
iid∼ p(x|θ∗) i = 1, · · · , n

Define

Ln(θ) :=
1
n

n∑
i=1

log
p(xi|θ∗)
p(xi|θ)

, ∀θ ∈ Θ

L(θ) := E [Ln(θ)] = D (pθ∗‖pθ)

Suppose the following assumptions hold

A1. sup
θ∈Θ
|Ln(θ)− L(θ)| P−→0

A2. inf
θ:‖θ−θ∗‖≥ε

L(θ) > L(θ∗), ∀ε > 0

then

θ̂n
P−→θ∗
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A1 says that the LR converges uniformly (wrt θ) to the KL divergence.
A2 says that locally θ∗ is strictly better (in KL) other θ.

Proof. Since θ̂n minimizes Ln(θ) we have

Ln(θ̂n) ≤ Ln(θ∗)

Hence,

L(θ̂n)− L(θ∗) = L(θ̂n)− Ln(θ∗) + Ln(θ∗)− L(θ∗)

≤ L(θ̂n)− Ln(θ̂n) + Ln(θ∗)− L(θ∗)
≤ sup

θ
|L(θ)− Ln(θ)|+ Ln(θ∗)− L(θ∗)

P−→ 0, by A1

It follows that for any δ > 0

P
(
L(θ̂n) > L(θ∗) + δ

)
−→ 0, as n −→∞

Now pick any ε > 0. By A2 ∃δ > 0 such that

‖θ − θ∗‖ ≥ ε ⇒ L(θ) > L(θ∗) + δ

Hence

P(‖θ̂n − θ∗‖ ≥ ε) ≤ P(L(θ̂n) > L(θ∗) + δ) −→ 0


