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Note on Graphical Models

1 Introduction

We have focused mainly on linear models for signals, in particular the subspace model x =Hθ, where H
is a n×k matrix and θ ∈ Rk is a vector of k < n parameters describing the signal x. The subspace model is
useful because it reduces the number of parameters or degrees of freedom in the model from n to k. While
applicable to many real-world problems, this is not the only way of modeling signals with a small number
of parameters.

Another widely used approach is called graphical modeling. The basic idea in a graphical model is treat
the variables in the signal vector x as random variables and explicitly represent probabilistic relationships
between the variables. More specifically, each of the n variables is represented as a vertex in a graph.
Probabilistic relationships between variables are edges in the graph. If two variables are conditionally
independent (more on this in a moment), then there will be no edge between them. In general, a graph with
n vertices can have up to O(n2) edges. Each edge can be viewed as a degree of freedom in the graphical
model. If the number of edges is limited to a smaller number, then we have a model with fewer degrees of
freedom. Graphical models are also often referred to as Bayesian Networks.

Consider the example graph shown in Figure 1 below. The graphical model represents a joint distribution
p(x1, x2, . . . , x7). Specifically, the edges indicate constraints that the joint distribution p(x1, x2, . . . , x7)
satisfies. If two variables are conditionally independent given all other variables, then this is indicated by
the absence of an edge between the two variables. For example, the graph structure tells us that x2 and x2
are conditionally independent given all other variables; i.e.,

p(x2, x3|x1, x4, x5, x6, x7) = p(x2|x1, x4, x5, x6, x7)p(x3|x1, x4, x5, x6, x7),

the conditional distribution of x2 and x3 factorizes. The graph tells us even more. Let n(i) be the vertices
connected to vertex i and let xn(i) denote the set of corresponding variables. Then xi|xn(i) is (conditionally)
independent of all other variables. For example, p(x1, x4, . . . , x7|x2, x3) = p(x1|x2, x3)p(x4, . . . , x7|x2, x3)
and x4|x2 is independent of all other variables.

Figure 1: Graphical representation of 7 interdependent random variables.

To give a bit more insight, let’s look at a number of very common graphical models, starting off with the
most basic.



1.1 Markov Chains

Suppose that x = (x1, x2, . . . , xn)
T ∈ Rn. For example, we can imagine that the xi are samples of a signal

in time. If the signal is random, then we talk about the joint probability distribution p(x1, . . . , xn). If the
xi are independent, then p(x1, . . . , xn) =

∏n
i=1 p(xi), where p(xi) is the marginal distribution for xi. A

(first-order) Markov model puts a bit more structure on the signal by assuming that the xi are dependent,
but conditionally independent in the following sense:

p(x1, . . . , xn) = p(x1)

n−1∏
i=1

p(xi+1|xi)

This sort of factorization of the joint density implies that each xi+1 depends on x1, . . . , xi, but is condi-
tionally independent of x1, . . . , xi−1 given xi. This is precisely the sort of factorization we assumed in
the Kalman and particle filtering lectures. The graph associated with this factorization is shown in Fig 2.
The edges/arrows in the graphical representation show the conditional independence relationships among
the variables. Assuming (full) independence among the variables is a degenerate case of the Markov chain.
The graph in that case would have no edges. Markov chain models are used in wireless communications,
automatic speech analysis and synthesis, and many other applications.

Figure 2: Markov chains are “linear” graphs.

1.2 Trees

Tree-structured graphical models are a simple generalization of the chain. A tree model is depicted in Fig. 3.
In a tree, the top vertex (x1 in the figure) is called the root. The the vertices at the bottom (x3, . . . , x5 in the
figure) are called leaves. The graph represents the following factorization of the joint density. Each variable
is conditionally independent of all the variables above in the tree given the variable directly above it (its
“parent”). For example, x2 is the parent of x3 and x4 in the figure. Denote the parent of xi by xp(i). Then
the joint density can be written as

p(x1, . . . , x15) = p(x1)
5∏
i=2

p(xi|xp(i))

Trees are widely-used in image processing and machine learning.

1.3 Directed Acyclic Graphs (DAGS)

DAGs are a further generalization of chains and trees. A DAG is shown in Fig. 4. Notice the red arrows
on the edges. These indicate the “direction” of the conditional independence/dependence relations. In the
chain and tree cases, the direction was implicit, but for more general graphs we need to explicitly indicate
the direction to specify the factorization. Note that this graph, without the arrows, would be a loop (or



Figure 3: Trees are simple generalizations of linear graphs.

Figure 4: Even more general than chains and trees, DAGs can represent more complex factorizations.

“cycle”), and thus the ordering of the factorization wouldn’t be clear. With the arrows, the ordering is clear
and the graph does not have a cycle (hence it is an “acyclic” graph). The probability factorization indicated
in this figure is

p(x1, . . . , x7) = p(x1) p(x7) p(x6) p(x2|x1, x7) p(x3|x2) p(x4|x2) p(x5|x1, x6) .

DAGs are used in all sorts of applications, including modeling networks of interactions in biological systems.

1.4 Undirected Graphical Models

Graphical models need not have directed dependencies. A canonical example arises in image processing.
Consider an n× n image modeled as a random process. It is natural to suppose that the value of each pixel
depends on neighboring pixels, but not so much on far away pixels. Mathematically, this can be modeled
by assuming that each pixel is conditionally independent given the values of its neighbors (e.g., its 4 nearest
neighbors). This produces a graphical model that has a lattice structure, as shown in Fig. 5. There is no
obvious direction to the dependencies in this model (no notion of causality as there is in temporal modeling).
Moreover, the lattice graph contains many cycles. The edges in the graph represent conditional independence



relationships, but because of the cyclic nature of the graph, it is not possible to directly factorize the joint
density. This sort of graphical model is often called a Markov random field (MRF). MRFs can be used for
statistical inference, but are more difficult to work with than chains, trees, or DAGs.

The joint distribution of the variables in an MRF can be represented in terms of a factorization in terms
of potential functions, a result known as the Hammersley-Clifford theorm. The factorization isn’t as simple
or obvious as in the case of DAGs, but it has a similar flavor. To explain this factorization we first need to
define the notion of a clique. A clique is a fully-connected subgraph of a larger graph. In the MRF in Fig. 5
the cliques are all pairs of (vertically or horizontally) neighboring pixels. Let xc, c ∈ C, denote the set of

Figure 5: MRFs can model conditional independence relationships without directions. The MRF shown could be
appropriate to model the pixels in an 2× 3 image.

all cliques for a particular MRF. Then the joint density can be written as

p(x1, . . . , xn) =
1

Z

∏
c∈C

ψc(xc)

where the ψ denote the potential functions. The form of the potential functions depends on the sort of
probabilistic relationships assumed in the MRF. The quantiy Z is called the partition function. It is a
normalization function need to make the factorization a proper density function and is given by

Z =

∫
x

∏
c∈C

ψc(xc).

Herein lies the difficulty of MRFs. Computing the partition function is usually not easy, especially for large
graphs like one for an n × n image. So the factorizating isn’t immediately useful as a computational tool.
However, over the years many techniques have been developed for approximating the partition function and
these lead to reasonable algorithms in practice.

2 Bayesian Inference Based on Graphical Models

Suppose that we observe data y related to a signal of interest x through the likelihood function p(y|x).
For example, this could correspond to a linear Gaussian observation model: y = Ax +w, w ∼ N (0, I).
Suppose that we model our prior knowledge of x using a graphical model p(x). We can then compute
the posterior distribution p(x|y) ∝ p(y|x)p(x) and use it to make inferences about x (e.g., using the
MAP or posterior mean estimator). The Wiener and Kalman filters are two classic examples. The Wiener
filter prior is a Gaussian Markov Random Field and the Kalman filter prior is a Gausian Markov Chain.



Computing the Wiener and Kalman filter is relatively straight forward because of Gaussian distribution
depends only on means and covariances. However, computation with non-Gaussian graphical models can
be more complicated, but managable in certain special cases.

2.1 Computing Posteriors for Chains, Trees and DAGs

Posterior distributions with chain, tree or DAG priors can often be computed exactly with efficient algo-
rithms that exploit the simple Markovian structure of these priors. Consider a simple problem in which the
likelihood factorizes p(y|x) =

∏n
i=1 p(yi|xi). This corresponds to the situation in which each observation

yi is conditionally independent given x, akin to a simple “signal+independent noise” model. The prior for a
chain, tree or DAG also has a factorization of the form

p(x) =
n∏
i=1

p(xi|xρ(i)) ,

where ρ(i) denotes the set of parents (vertices directly preceding and directly connected to xi in the chain,
tree or DAG). For convenience, we enumerate the elements of y andx so that xi is conditionally independent
of xi+1, xi+2, . . . , xn given x1, x2, . . . , xi−1. In other words ρ(i) ⊂ {x1, x2, . . . , xi−1}.

Combining the likelihood and the prior, the posterior has the factorized form

p(x|y) ∝ p(y|x)p(x) =
n∏
i=1

p(yi|xi) p(xi|xρ(i)) .

The (marginal) posterior distribution for xi can be computed by “integrating out” or “marginalizing over”
all other variables:

p(xi|y) ∝
∫
x1,...,xi−1,xi+1,...,xn

n∏
i=1

p(yi|xi) p(xi|xρ(i)) dx1 · · · dxi−1dxi+1 · · · dxn.

The factorization of the graphical model distribution (and the likelihood function) allows us to compute the
multidimensional integration by a simple recursion involving a sequence of one-dimensional integrations1.

The basic algorithm for computing the posterior operates in a two-pass process over the indices. Before
stating the general approach, consider the Markov chain p(x) = p(x1)

∏n
i=2 p(xi|xi−1). In this case

p(x|y) ∝ p(y1|x1) p(x1)
n∏
i=2

p(yi|xi) p(xi|xi−1) .

Let us first compute the posterior distribution of x1 by “integrating out” x2, . . . , xn (called marginalization):

p(x1|y) ∝ p(y1|x1) p(x1)
∫
x2,...,xn

n∏
i=2

p(yi|xi) p(xi|xi−1) dx2 · · · dxn

Now we can distribute the integration within the product, exploiting the factorization. Beginning with i = n

1This is true for chains, trees, and “singly connected” DAGs (i.e., undirected graph is a tree). More general DAGs require a
similar, but somewhat more complicated, method known as the junction tree algorithm.



and q(xn) = 1, for i = n, n− 1, . . . , 2 recursively define

q(xi−1) =

∫
xi

p(yi|xi) p(xi|xi−1) q(xi) dxi .

The quantity q(xi−1) is considered to be the “message” from vertex i to i− 1. Then we can write

p(x1|y) ∝ p(y1|x1) p(x1) q(x1) .

This style of computation is called “message passing” or “belief propagation.” Similar message passing
strategies can be used to compute p(xi|y) for i = 2, . . . , n. Notice that this calculation required several
1-dimensional integrations, rather than a full n-dimensional integration. This is the key computational ad-
vantage of this message passing procedure. To quantify this improvement. Suppose that the variables take
only N distinct values (i.e., they are discrete, rather than continuous, variables) or equivalently suppose
that we numerically approximate the integrals by N -term Riemann sums. Then the integrals become sums
and q(xi−1) involves N terms. We must compute this sum for each of the N values that xi−1 can take,
and so the total computational complexity required to compute the N values of q(xi−1) requires O(N2)
operations. We must repeat this recursively n − 1 times, so the total computational complexity of comput-
ing p(x1|y) is O(nN2). In contrast, the direct (and naive) n − 1 dimensional integration would require
O(Nn−1) operations.

To illustrate the idea a bit more explicitly, consider the case where n = 3.

p(x|y) ∝ p(y1|x1) p(x1) p(y2|x2) p(x2|x1) p(y3|x3) p(x3|x2) .

Let us first compute the posterior distribution of x1 by “integrating out” x2 and x3 (called marginalization):

p(x1|y) ∝
∫
x2,x3

p(y1|x1) p(x1) p(y2|x2) p(x2|x1) p(y3|x2) p(x3|x3) dx2dx3

= p(y1|x1) p(x1)
∫
x2

p(y2|x2) p(x2|x1)
(∫

x3

p(y3|x3) p(x3|x2) dx3
)
dx2

= p(y1|x1) p(x1)
∫
x2

p(y2|x2) p(x2|x1) q(x2) dx2

= p(y1|x1) p(x1) q(x1)

More generally, the process begins by marginalizing over all variables except the root x1 (i.e., compute
the marginal posterior distribution of x1).

p(x1|y) ∝
∫
x2,...,xn

n∏
i=1

p(yi|xi) p(xi|xρ(i)) dx2 · · · dxn = p(y1|x1) q(x1) ,

where

q(x1) = p(x1)

∫
x2,...,xn

n∏
i=2

p(yi|xi) p(xi|xρ(i)) dx2 · · · dxn .

Because of the factorize form of the integrand, this multidimensional integration can be computed recur-



sively, first integrating with respect to xn, then xn−2 and so on, analogous to the case of a Markov chain
above.

2.2 Cyclic Graphs and Random Fields

The distributions of cyclic graphs and random fields do not have a simple factorization. Consequently,
efficient algorithms for exactly computing posterior distributionsare not possible. There are a variety of
methods to approximate the posterior distribution. Message passing or belief propagation algorithms can be
applied iteratively, for example by cycling through the variables repeatedly until the posterior distributions
approximately converge. There are no general guarantees that this process will converge to the correct
posterior distributions, but this so-called “loopy belief propagation” often produces good results in practice.
Another common approach to approximate the posterior distribution is through Monte Carlo procedures
such as the Metropolis-Hastings algorithm or Gibbs sampling. The basic idea in these methods is to generate
random samples using a cleverly designed Markov chain that is easy to generate samples from and has a
stationary distribution that is equal to the desired posterior. In this way, the samples generated from the
Markov chain are eventually (approximately) equivalent to samples from the posterior. These samples can
then be used to estimate the posterior and/or its moments.

3 Parsimonious Graphical Models

As discussed in the introduction, graphical models can provide relatively simple or low-dimensional models.
Roughly speaking, the complexity of a graphical model is related to the number of edges. This notion of
complexiy becomes completely transparent in the case of Gaussian graphical models.

First consider a Gaussian Markov chain model with x1 ∼ N (0, σ1)

xi = θixi−1 + σiεi , i = 2, . . . , n

where θi ∈ (0, 1) and εi
iid∼ N (0, 1), i = 1, . . . , n. Each θi ∈ R is a parameter of the model. This graph of

this model is exactly the one shown in Fig. 2. Each edge is associated with one parameter, and represents
the conditional probability

pi(xi+1|xi) =
1√
2π
e

1
2
(xi+1−θixi)2/σ2

i

If the θi and σi are free parameters, then the model has 2n parameters. However, it is common to assume
that the Markov chain dependence is the same for each i, so that θi = θ and σi = σ, a single global constant.
In this case the model has only two parameters.

Note that E[xi] = 0 and in the case where the θi = θ are all equal the covariance of xi and xj is
E[xixi+j ] = E[xi(θxi+j−1 + εj)] = E[xi(θ(θxi+j−2 + εj−1) + εj)] = θjE[x2i ]. Also, if we assume
σ2 = 1 − θ2, then E[x2i ] = θ2E[x2i−1] + (1 − θ2)E[ε2i ]. So if E[x21] = 1 and E[ε2i ] = 1, i > 1, we have



E[x2i ] = 1 for i > 1. In this case, the covariance matrix has a simple structure:

Σ =



1 θ θ2 . . . θn−1

θ 1 θ · · · θn−2

θ2 θ 1 · · · θn−3

...
...

...
...

...

θn−1 θn−2 θn−3 · · · 1


and x ∼ N (0,Σ). The structure of the graph is revealed by considering the inverse covariance matrix,
which has a triadiagonal form (zero everywhere except on the diagonal and first off-diagonals). This is
simply a consequence of the fact that each variable is conditionally independent given its neighbors in the
graph.

An easy way to see this structure is to re-write the graphical model in vector form as follows. Note that

x = Ax+ ε

where

A =


0 0 0 . . . 0

θ 0 0 · · · 0

0 θ 0 · · · 0

...
...

...
...

...


and ε ∼ N (0, σ2I). Re-arranging terms, we have (I − A)x = ε and x = (I − A)−1ε. Thus, we
see that x ∼ N (0, σ2(I − A)−I(I − AT )−1). This shows that the covariance of x is given by Σ :=
σ2(I −A)−1(I −AT )−1. The inverse covariance is

Σ−1 =
1

σ2
(I −AT )(I −A)

=
1

σ2
(I −A−AT +ATA)

Note that A is zero except on the first (lower) off-diagonal, AT is zero except on the first (upper) off-
diagonal, and ATA is diagonal. Therefore, the matrix I −A−AT +ATA is tridiagonal. This is simply
a consequence of the fact that each variable is conditionally independent given its neighbors in the graph.

Note that the inverse covariance takes the form Σ−1 = 1
σ2 (I − A − AT + ATA) for any model of

the form x = Ax + ε, with ε ∼ N (0, σ2I). The matrix A defines the structure of the graph and dictates
the locations of non-zeros in the inverse covariance. The structure of the graph is revealed by the sparsity
pattern of the inverse covariance.

Let’s contrast this graphical model with a subspace model. A Gaussian subspace model would assume
that x = Hθ, where H ∈ Rn×k and θ ∼ N (0, I). In this case, the covariance is Σ = HHT and it has
rank k, and thus this model requires nk parameters (which define the subspace). The rank of the covariance
of the graphical model above is n, but it is defined by only 2 parameters, θ and σ. So if our signal has a
Markovian structure, the subspace model is inappropriate. It would require O(n2) parameters to model the
same covariance.



4 Learning the Graph Structure

Many methods have been proposed for estimating graphical models from data. Here we will focus on learn-
ing Gaussian graphical models. There are extensions of the techniques discussed below to non-Gaussian
models, but we will not discuss them here. Recall the following Gaussian Markov model:

x = Ax+ ε

where ε ∼ N (0, σ2I). Above, we showed that Σ := σ2(I −A)−1(I −AT )−1 and therefore the inverse
covariance is

Σ−1 =
1

σ2
(I −AT )(I −A)

=
1

σ2
(I −AT −A+ATA)

The sparsity pattern in the matrix A defines the structure of the graph and dictates the locations of non-
zeros in the inverse covariance. The structure of the graph is revealed by the sparsity pattern of the inverse
covariance.

More generally, the edge pattern of any Gaussian graphical model is indicated by the non-zero entries
the inverse of its covariance matrix. Let x ∼ N (0,Σ) be a Gaussian graphical model. The nonzero
entries in the inverse covariance Σ−1 determine the edges in the graph. Obviosly, one way to learn the
graphical model is to estimate the covariance and/or its inverse. An accurate estimate will require a large
number of i.i.d. samples {xk}mk=1

iid∼ N (0,Σ). Since the covariance is n× n, a simple accounting suggests
that in order to estimate the O(n2) covariances will require at least O(n2) measurments. Each observation
xk ∈ Rn provides n scalar values, and so m = O(n) such observations is a bare minimum requirement to
estimate a general n× n covariance.

But what if we believe that the graphical model is sparse in the sense that there are far fewer than
O(n2) edges in the graph. That is, suppose each variable/vertex is connected to at most d � n other
variables/vertices. Then there are only O(dn) edges in the graph. Since the graphical model is determined
by the weights on these edges, in such a case we might be able to get by far fewer measurements than needed
for the case of a generic n-dimensional covariance.

It turns out that the structure of the graph can be estimated more efficiently by solving a series of
regression problems. To see this, suppose we are interested in predicting one of the variables in x, say
xi, based on all the other variables. Since the x1, . . . , xn are jointly Gaussian, we know that the optimal
predictor will be a linear function of the form x̂i =

∑
j 6=i θijxj , for some weights {θij}.

Lemma 1. The optimal weights are given by

θij = −Σ−1ij /Σ
−1
ii . (1)

This is a nice formula, since it shows very clearly that θij = 0, whenever Σ−1ij = 0. If each vari-
able/vertex is connected to at most k other vertices, then this implies that the coefficient set {θij} will be
d-sparse. Therefore, we learn the structure of the graph by performing n sparse regressions (e.g., using the
lasso).

Proof. The formula (1) can be obtained by the method of Lagrange multipliers as follows. Let ei denote
the canonical unit vector with 1 in the ith location and 0 elsewhere. The problem of predicting xi using the



other variables can be written as

min
θ

E[(xTei − xTθ)2] , subject to eTi θ = 0 .

Note that the function we are trying to minimize is

E[(xTei − xTθ)2] = eTi Σei − 2eTΣθ + θTΣθ .

We can ignore the first term since it is independent of θ. Thus, the Lagrangian for this constrained optimiza-
tion is

L(w,m) = −2eTi Σθ + θTΣθ + λeTi θ,

where λ is the Lagrange multiplier. The partial derivative of L with respect to θ is

∂L

∂θ
= −2Σei + 2Σθ + λei .

Setting this to zero we have

θ = Σ−1(Σei − λei/2) = ei − λΣ−1ei/2 .

The partial derivative of L with respect to λ is

∂L

∂λ
= eTi θ .

Setting this to zero gives us the constraint condition eTi θ = 0. Now apply this condition to the solution of θ
above

0 = eTi θ = eTi (ei − λΣ−1ei/2) = 1− λeTi Σ−1ei/2 .

This give us the solution for λ:
λ = 2/(eTi Σ−1ei) .

Plugging this back into the expression for θ we get the solution:

θ = ei −Σ−1ei/(e
T
i Σ−1ei) .

We have shown that if the degree of each vertex is at most d, then the optimal regression weights will
be d-sparse. This suggests the following approach to learning the structure of the graph. Let xi,t denote the
sample of the ith variable in the tth observation vector xt, t = 1, . . . ,m.

for i = 1, . . . , n
let θi be the solution to

min
θ : eTi θ=0

m∑
t=1

(xi − θTxt)2 + λ‖θ‖1

estimate the edge set for vertex i to be {j : j ∈ support(θi)}
end



Recall that under suitable conditions, the lasso can estimate the correct d-sparse weight vector very ac-
curately with O(d log n) samples. This shows that the algorithm proposed above may be able to recover the
correct graph structure with m = O(d log n), where m is the number of i.i.d. samples from N (0,Σ). In
contrast, the naive approach that does not exploit sparsity requires O(n2) samples.
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