
Note on Generalized Linear Models
Consider the following model for data y ∈ Rn:

y = Xβ + w ,

where X ∈ Rn×p is a known matrix, β ∈ Rp is an unknown parameter vector, and w ∼ N (0, I). In other
words, y ∼ N (Xβ, I). In signal processing terms, the data y are generated by an unknown signal Xβ
(i.e., belonging to the subspace spanned by the columns of X) plus Gaussian noise w. Assuming that X
has full rank p, the maximum likelihood estimate (also MVUB estimator) is

β̂ = argmin
β
‖y −Xβ‖22 = (XTX)−1XTy .

It is possible to consider other noise models. For example, suppose that w is a vector with each entry
i.i.d. p(w) = 1

2e
−|w], for w ∈ R. This is a double exponential distribution. The resulting log likelihood

function of y is proportional to
∑n

i=1 |yi − xTi β|, where xTi is the i-th row of X . Note that
∑n

i=1 |yi −
xTi β| = ‖y −Xβ‖1, so using the double-exponential distribution to model the noise leads to the estimator

β̂ = argmin
β
‖y −Xβ‖1 .

There is no closed-form linear algebraic solution to this optimization, but it is a convex optimization that
is easy to solve numerically. The `1 minimization is less sensitive to large differences between y and Xβ
compared to the least squares solution. This is not surprising, since the double exponential noise model has
heavier-than-Gaussian tails and thus probably generates more extremely large errors. The `2 minimization
of least squares could be dominated by large errors, whereas the `1 minimization is less influenced by these
errors (i.e., doesn’t overfit to these large errors).

The Gaussian and double exponential cases above are both examples of an additive noise model. This
sort of model isn’t always the most appropriate way to model randomness present in our data. For example,
if the data are counts or binary-valued, then Poisson and Binomial models are more natural than additive
noise models. Generalized linear models are a well developed framework that extend this linear modeling
approach to other probability distributions and noise/error models. The basic idea is to consider other
probability models (e.g., Poisson, Exponential, Binomial, etc.) and parameterize the mean in terms of a
linear model like Xβ. Specifically, we will consider models of the form y ∼

∏n
i=1 p(yi|θi) and each

parameter θi = g(xTi β), where xTi is the i-th row of X and g is a known scalar function that is suited to
the particular form of the distribution (more on this later in the note). The Gaussian model above fits this
framework with g(xTi β) = x

T
i β, the identity.

1 The Exponential Family of Distributions

The Exponential Family is a class of distributions with the following form:

p(y|θ) = b(y) exp(θTT (y)− a(θ)) .

The parameter θ is called the natural parameter of the distribution and T (y) is the sufficient statistic. In
many cases, T (y) = y and then the distribution is said to be in canonical form and θ is called the canonical
parameter. The quantity e−a(θ) is a normalization constant, ensuring that p(y|θ) sums or integrates to



1. The factor b(y) is the non-negative base measure, and in many cases it is equal to 1. Many familiar
distributions belong to the exponential family (e.g., Gaussian, exponential, log-normal, gamma, chi-squared,
beta, Dirichlet, Bernoulli, Poisson, geometric).

In general, the parameter θ is not the mean of the distribution. We can view θ as a function of the mean
µ = Ey, and write θ(µ). To illustrate this idea, let us consider the following examples.

Example 1. The Bernoulli distribution is written in terms of its mean 0 ≤ µ ≤ 1 as

p(y|µ) = µy(1− µ)1−y

= exp(y logµ+ (1− y) log(1− µ))

= exp

(
log

(
µ

1− µ

)
y + log(1− µ)

)
.

Thus, the natural parameter is θ = log
(

µ
1−µ

)
. Conversely, we can write µ in terms of θ as µ = 1

1+e−θ
.

Example 2. The Gaussian distribution is

p(y|µ) =
1√
2π

exp

(
(y − µ)2

2

)
=

1√
2π

exp

(
y2

2

)
exp

(
µy − µ2

2

)
.

Thus, the natural parameter is θ = µ.

The function that maps the mean µ to θ is denoted by g and is called the link function. Its inverse is
called the response function. In other words, θ = g(µ) and µ = g−1(θ).

2 Generalized Linear Modeling

Assume that y ∼
∏n
i=1 p(yi|θi), where p(yi|θi) is in the Exponential Family and θi is the natural parameter

of the distribution. Let θ = [θ1 θ2 . . . θn]
T . The key idea of the Generalized Linear Model (GLM) is

to assume that the canonical parameters are described by the linear model θ = Xβ, where X is a known
n×p matrix and β ∈ Rp is unknown. In other words, θi = xTi β. This model represents linear relationships
between the elements of θ.

Now assume that the distribution is in canonical form; i.e., T (yi) = yi. Then note that the log likelihood
is

log
n∏
i=1

p(yi|θi) =
n∑
i=1

(
βTxiyi − a(βTxi)

)
+ log b(yi) .

Thus, just as in the Gaussian linear model we started with at the beginning of the note, the sufficient statistic
XTy summarizes all our information about β. This is the reason for the name GLM. The mean parameters
can be obtained using the response function: µi = g−1(xTi β).

Example 3. Consider the GLM for independent Bernoulli observations yi ∼ Bernoulli(µi), i = 1, . . . , n.
Recall that the natural parameter is θ = log

(
µ

1−µ

)
. Conversely, we can write mean µ in terms of θ as

µ = 1
1+e−θ

. In other words, the response function g−1(θ) = 1
1+e−θ

, which is usually called the logistic



function. Note that this function maps the real line smoothly into the interval [0, 1]. It has an“S” shaped
sigmoid curve. The log likelihood is

L(θ) =
∑
i=1

θiyi + log

(
e−θi

1 + e−θi

)
.

Now we can substitute the linear model θi = βtxi to express the likelihood as a function of β:

L(θ) =
∑
i=1

βTxiyi + log

(
e−β

Txi

1 + e−βTxi

)

= βTXTy +
∑
i=1

log

(
e−β

Txi

1 + e−βTxi

)
.

So we see that the statistic XTy is sufficent for β, just as it is for the Gaussian linear model we looked at
first in this note. Alternatively, the log likelihood can be written in terms of the mean µi = 1

1+e−θi
:

L(θ) =
∑
i=1

θiyi + log

(
e−θi

1 + e−θi

)
=

∑
i=1

yi logµi + (1− yi) log(1− µi) .

Thus, if yi = 1, then the corresponding term is given by log
(

1
1+e−θi

)
. If yi = 0, then term becomes

log
(

1
1+eθi

)
. So, we can write the log likelihood as

L(β) =
∑
i=1

log

(
1

1 + e−θizi

)
,

where zi = 2yi − 1. Now we can substitute the linear model θi = βTxi to express the likelihood as a
function of β:

L(θ) =
∑
i=1

log

(
1

1 + e−βTxizi

)
,

Maximizing this function (or equivalently minimizing its negation) with respect to β is called logistic re-
gression. The function − log

(
1

1+e−β
T xizi

)
= log(1 + e−β

Txizi) is called the logistic loss. The solution to
this optimization does not have a simple linear algebraic form, but is easy to compute numerically.

Example 4. Consider the GLM for independent Gaussian observations yi ∼ N (µi, 1), i = 1, . . . , n. Recall



that the natural parameter is θi = µi = x
T
i β. The log likelihood is

L(β) =
∑
i=1

(
βTxiy −

(βTxi)
2

2
+
y2i
2
− 1

2
log(2π)

)

= βTXTy − β
TXTXβ

2
+

n∑
i=1

y2i
2
− n

2
log(2π) .

Maximizing this function with respect to β is called linear regression. This optimization is easy to solve
by simply setting ∂L(β)

∂β = 0, which yields the equation XTy = XTXβ, resulting in the least squares

estimator β̂ = (XTX)−1XTy that opened our discussion at the beginning of the note.
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