
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: C. Hall

Lecture 10: The Generalized Likelihood Ratio

1 Composite Hypothesis Tests

Recall the composite hypothesis testing problem:

H0 : X ∼ N (0, 1)

H1 : X ∼ N (µ, 1) , µ > 0 unknown

The densities look like:

Figure 1: PFA given µ > 0 , γ.

The Probability of False Alarm (PFA) is the shaded area to the right of the threshold γ. It is easy to
see that the Likelihood Ratio Test (LRT) at threshold γ is the most powerful test (by Neyman-Pearson
(NP) Lemma) for every µ > 0, for a given PFA. In otherwords, the test is Uniformly Most Powerful (UMP,
Karlin-Rubin Theorem).

2 Wald Test

Now consider:
H0 : X ∼ N (0, 1)

H1 : X ∼ N (µ, 1) , µ 6= 0
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We considered the Wald Test test which is of the form: Wald Test

|x|
H1

≷
H0

γ (1)

We can set γ for a desired PFA, but it isn’t UMP for all µ 6= 0 for example, if µ > 0 then the one-sided

threshold test x
H1

≷
H0

γ is more powerful, see Figure ??.

Figure 2: PFA given µ 6= 0 , γ (The Wald Test).

(a) Case 1: µ > 0 (b) Case 2: µ < 0

Figure 3: The Wald test is not UMP for a given PFA, because if it is found µ > 0 then the LRT is the most
powerful test

Another way to arrive at the Wald test is to use the data to estimate µ and plug the estimate, µ̂, into
the LRT. The logLRT has the form
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µx
H1

≷
H0

γ (Wald Test)

and the natural estimate for µ in H1 is µ̂ = x (if given one data point). Substituting µ̂ for µ for µ gives:

x2
H1

≷
H0

γ (which is equivalent to the Wald Test.)

3 Generalized Likelihood Ratio Test

Suppose we have the following composite hypothesis testing problem

H0 : X ∼ N (0, 1)

H1 : X ∼ N (µ, 1) µ 6= 0 , θ0, θ1 unknown

The Generalized Likelihood Ratio Test (GLRT) is:

max
θ1

p(x|H1, θ1)

max
θ0

p(x|H0, θ0)

H1

≷
H0

γ , (GLRT ) (2)

We pick the density that is the highest probability for x. (ie ˆµ = x where x ∼ N (µ, 1)).
In other words, each hypothesis is composite, meaning that x ∼ pi with

pi ∈ {p(x|Hi, θi)}θi∈Θi

and we simply select the density from this collection that places the largest possible probability on the
data x, see Figure 4.

Figure 4: Maximum Likelihood Estimate (MLE), given data choose/estimate the parameter that fits the
data best.

With a fixed observation of x we view p(x|Hi, θi) as a function of θi. This function is called the likelihood
function of θi given x. The value of p(x|Hi, θi), for a specific θi, is called the likelihood of θi given x.
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θ̂i := arg max
θi

p(x|Hi, θi)

is called the Maximum Likelihood Estimate of θi.
Log LR

logeΛ(x) := loge
p(x|H1, θ1)

p(x|H0, θ0)
(3)

Log GLRT

logeΛ̂(x) := loge
p(x|H1, θ̂1)

p(x|H0, θ̂0)
(4)

We have considered the case where the parameters are unknown and deterministic, we will ignore the
case where the parameters themselves are random variables, for which the MLE may not be ideal. If the
parameters were not deterministic, it may fit a Gaussian mixed fit better, see Figure 5 .

Figure 5: Raw data was used to estimate the Gaussian parameters for the Gaussian Fit, the data was
generated using two distinct Gaussian models, the Gaussian Mixed Fit.

3.1 Example - Signal Processing

H0 : x ∼ N (0, σ2I)

H1 : x ∼ N (Hθ, σ2I)

σ2 > 0 known , Hnxk known , θkx1 unknown

s =

k∑
i=1

θihi , H = [h1, · · · , hk]

Log LR

logeΛ(x) = − 1

2σ2
(x−Hθ)T (x−Hθ) +

1

2σ2
xTx

=
1

σ2
(θTHTx− 1

2
θTHTHθ)
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Since θ is unknown we can’t go further, instead we find θ that makes x most likely:

θ̂ = arg max
θ

p(x|H1, θ)

= arg max
θ

1

(2πσ2)
k
2

e−
1

2σ2
(x−Hθ)T (x−Hθ)

= arg max
θ
− 1

2σ2
(x−Hθ)T (x−Hθ)

= arg min
θ

(x−Hθ)T (x−Hθ)

= arg min
θ

(xTx− θTHTx+ θTHTHθ)

⇒ ∂

∂θ
(xTx− θTHTx+ θTHTHθ) = 0

⇒ 0− 2HTx+ 2HTHθ = 0

⇒ θ̂ = (HTH)−1HTx

Now we plug θ̂ into the GLRT: θ → θ̂

logeΛ̂(x) :=
1

σ2
(xTH(HTH)−1HTx− 1

2
xTH(HTH)−1HTH(HTH)−1HTx)

=
1

2σ2
xTH(HTH)−1HTx

Note: the Projection Matrix is defined as PH := H(HTH)−1HT

⇒ 1

2σ2
xTPHx (5)

=
1

2σ2
‖PHx‖22

Observe it is simply an energy detector in H, we are taking the projection of x into H and measuring the
energy, see Figure 6.

EH0

[
‖PH‖22

]
= ITkxkIkxk = kσ2

3.1.1 Analysis of GLRT performance:

From Equation (5) we can choose a γ for the desired PFA:

1

σ2
xTPHx

H1

≷
H0

γ

What is the distributions of xTPHx under H0?

PH = UUT , where Unxk with orthonormal columns spanning columns of H.

xTPHx = xTUUTx = yT y , ykx1 = UTx

1

σ2
xTPHx =

yT y

σ2

y ∼ N (0, σ2UTU) ≡ N (0, σ2Ikxk)
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Figure 6: The projection of x onto a subspace H, a simple example.

yi
iid∼ N (0, σ2) , i = 1, · · · , k

⇒ y

σ
∼ N (0, Ikxk)

⇒ yT y

σ2
∼ χ2

k , Chi− square with k − degrees of freedom

GLRT and PFA
1

σ2
xTPHx

H1

≷
H0

γ

under H0,
1

σ2
xTPHx ∼ χ2

k , i.e., under H0 : 2logeΛ̂ ∼ χ2
k

PFA = P(χ2
k > γ)

3.1.2 χ2
k Distributions

To calculate the tails on χ2
k distributions (as in Figure 7) you can look it up in the back of a good book or

use Matlab (chi2cdf(x,k), chi2inv(γ,k), chi2cdf(x,k)). Remember the mean of a χ2
k distribution is k, so we

want to choose a γ bigger than k to produce a small PFA.

4 Wilks’ Theorem

Wilk’s Theorem was established in 1938 read his paper for the proof. [2] Consider a composite hypothesis
testing problem

H0 : x1, x2, ..., xn
iid∼ p(x|H0, θ0) for θ0 ∈ R`

H1 : x1, x2, ..., xn
iid∼ p(x|H1, θ1) for θ1 ∈ Rk k > `

Nested where p has same form for H0, H1

and θ0 is fixed for i = `+ 1, .., k
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Figure 7: The PFA of a χ2
k distribution.

θ1 ∈ Rk , k > `

Otherwise the parameters are unknown.

H1 : x1, x2, ..., xn
iid∼ p(x|H1, θ1) for θ1 ∈ Rk k > `

Then if the 1st and 2nd order derivatives of p(x|Hi, θi) with respect to θi exist and if E
[
∂logep(x|Hi,θi)

∂θi

]
= 0

(which guarantees that the MLE θ̂i → θi (true) in limit) then the GLRT

Λ̂h(x) =
max
θ1

p(x|H1, θ1)

max
θ0

p(x|H0, θ0)
(6)

with x =


x1

x2

...
xn

 is well-defined and under H0

2logeΛ̂(x)
n→∞∼ χ2

k−`

i.e. 2logeΛ̂(x)
D→ χ2

k−`

Proof: (Sketch) under the conditions of the theorem, the log GLRT tends to log GLRT in Gaussian
setting (aka the Central Limit Theorem (CLT)).

4.1 Example of a Nested Condition

H0 : xi
iid∼ N (0, 1)

H1 : xi
iid∼ N (0, σ2) , i = 1, 2, · · · , n σ2 > 0 unknown
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Figure 8: χ2
k distributions, for k > 2 they all take on the same general form.

log LR: ∑(
−1

2
logeσ

2 − x2
i

(
1

2σ2
− 1

2

))
MLE of σ2:

σ̂2 =
1

n

n∑
i=1

x2
i

log GLRT:

2

(∑
−1

2
loge

(
1

n

n∑
i=1

x2
i

)
− x2

i

2

(
1

n

n∑
i=1

x2
i − 1

))
n→∞∼ χ2

1 , under H0

4.2 Example Multiple Source Internet Tomography

Wilk’s theorem does have real world application, it was used in a computer network to determine the network
topology. It worked well in simulation as well as in practice. [1]

5 Random Parameters

H0 : x ∼ p(x|H0, θ0), θ0 ∼ p(θ0|H0)

H1 : x ∼ p(x|H1, θ1), θ1 ∼ p(θ1|H1)

LR:
p(x|H1, θ1)

p(x|H0, θ0)

Bayes Factor: ∫
p(x|H1, θ1) p(θ1|H1) dθ1∫
p(x|H0, θ0) p(θ0|H0) dθ0

=
p(x|H1)

p(x|H0)
(7)

p(x|Hi) is called the marginal likelihood of x given Hi.
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