
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 9: Sequential Testing

So far we have considered simple hypotheses of the form

Hi : X1, X2, . . . , Xn
iid∼ pi , i = 0, 1 .

The error probabilities decrease as n (the number of iid observations) increases, and we characterized the
minimum number n needed to achieve desired levels of error. Rather than fixing n ahead of time, it is natural
to consider a sequential approach to testing which continues to gather samples until a confident decision can
be made. This idea goes back to Wald ’45, and is usually referred to as a sequential probability ratio test
(SPRT), also called a sequential likelihood ratio test.

1 The Sequential Probability Ratio Test

The SPRT is based on considering the likelihood ratio as a function of the number of observations. Define

Λk :=

k∏
i=1

p1(Xi)

p0(Xi)
, k = 1, 2, . . .

The goal of the SPRT is to decide which hypothesis is correct as soon as possible (i.e., for the smallest value
of k). To do this the SPRT requires two thresholds, γ1 > γ0. The SPRT “stops” as soon as Λk ≥ γ1, and
we then decide H1 is correct, or when Λk ≤ γ0, and we then decide H0 is correct. The key is to set the
thresholds so that we are guaranteed a certain levels of error. Making γ1 larger and γ0 smaller yields a test
that will tend to stop later and produce more accurate decisions. We will try to set the thresholds to provide
desired probabilities of detection PD and false-alarm PFA.

We can express PD as follows. To simplify the notation, let x := (x1, . . . , xk) and write pj(x) :=∏k
i=1 pj(xi), j = 0, 1. PD can be written in terms of the decision set R1; = {x : Λk ≥ γ0} as follows

PD =

∫
R1

p1(x) dx =

∫
R1

p1(x)

p0(x)
p0(x) dx

=

∫
R1

Λk p0(x) dx ≥ γ1

∫
R1

p0(x) = γ1 PFA ,

where we use the fact that Λk ≥ γ1 on the set R1. Similarly,

1− PFA = 1−
∫
R1

p0(x) dx =

∫
R0

p0(x) dx =

∫
R0

p0(x)

p1(x)
p1(x) dx

=

∫
R0

Λ−1
k p1(x) dx ≥ γ−1

0

∫
R0

p1(x) = γ−1
0 (1− PD) .

These expressions give us bounds on the thresholds necessary to achieve PD and PFA:

γ1 ≤ PD
PFA

,

γ0 ≥ 1− PD
1− PFA

.

Let us err on the side of conservatism and set γ1 = PD

PFA
and γ0 = 1−PD

1−PFA
. These thresholds guarantee that

error probabilities of the test will be at least as small as specified by choice of PD and PFA, but they could
be too conservative. To gain insight into this issue, let us consider the expected stopping time.
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2 Expected Stopping Time of SPRT

Since Λk is a random variable, the stopping time of the SPRT is also random. Let K∗ denote the random
(integer) stopping time. We can calculate the expected value of K∗ as follows. To simplify notation, we will
let Ej denote the expectation with respect to pj , j = 0, 1. First observed that for any fixed time k

Ej [log Λk] = Ej

[
k∑
i=1

log
p1(Xi)

p0(Xi)

]
=

k∑
i=1

Ej
[
log

p1(Xi)

p0(Xi)

]
=

 kD(p1||p0) , j = 1

−kD(p0||p1) , j = 0

where D(p1||p0) and D(p0||p1) are the KL-divergences between p0 and p1. Now suppose that M is a positive
integer-valued random variable, independent of X1, X2, . . . . Then by conditioning on M we have

Ej [log ΛM ] = Ej [Ej [log ΛM |M ]] = Ej

[
M∑
i=1

Ej
[
log

p1(Xi)

p0(Xi)
|M
]]

=

 Ej [M ]D(p1||p0) , j = 1

−Ej [M ]D(p0||p1) , j = 0

The stopping time K∗ is random, but it is also a function of X1, X2, . . . so we cannot apply the simple
conditioning argument used for M above. However, a more delicate argument shows that a similar result
holds with M is replaced with K∗.

Proposition 1. (Wald’s Identity) Let Y1, Y2, . . . be independent and identically distributed random variables
with mean µ. Let K be any integer-valued random variable such that E[K] < ∞ and K = k is an event

determined by Y1, . . . , Yk and independent of Yi, i > k. Then E[
∑K
i=1 Yi] = µE[K].

Proof. Write E[
∑K
i=1 Yi] = E[

∑∞
i=1 1{K≥i}Yi] =

∑∞
i=1 E[1{K≥i}Yi], where 1{K≥i} is the indicator of the event

{K ≥ i} (the interchange of expectation and summation is justified by the monotone convergence theorem).

Note that the event {K ≥ i} = (
⋃i−1
j=1{K = j})c, where the superscript c denotes the complement. Thus,

the event is independent of Yi, Yi+1, . . . (since it is determined by Y1, . . . , Yi−1). Therefore,

∞∑
i=1

E[1K≥i}Yi] = E[Yi]

∞∑
i=1

E[1K≥i}] = µ

∞∑
i=1

P(K ≥ i) = µE[K] .

So, by Wald’s Identity we have

Ej [log ΛK∗ ] =

 Ej [K∗]D(p1||p0) , j = 1

−Ej [K∗]D(p0||p1) , j = 0

Now to obtain an expression for Ej [K∗] we will derive another formula for Ej [log ΛK∗ ]. Let us assume the
value of the likelihood ratio is approximately equal to a threshold level when the SPRT terminates. The
value of the likelihood ratio will typically be just slightly greater/lower than the upper/lower threshold level.
Using this approximation we can write

E0[log ΛK∗ ] ≈ PFA log (γ1) + (1− PFA) log (γ0) ,

= PFA log

(
PD
PFA

)
+ (1− PFA) log

(
1− PD
1− PFA

)
,

E1[log ΛK∗ ] ≈ PD log

(
PD
PFA

)
+ (1− PD) log

(
1− PD
1− PFA

)
.
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With these approximations we obtain expressions for Ej [K∗]:

E0[K∗] ≈
PFA log

(
PD

PFA

)
+ (1− PFA) log

(
1−PD

1−PFA

)
−D(p0||p1)

,

=
(1− PFA) log

(
1−PFA

1−PD

)
− PFA log

(
PD

PFA

)
D(p0||p1)

E1[K∗] ≈
PD log

(
PD

PFA

)
+ (1− PD) log

(
1−PD

1−PFA

)
D(p1||p0)

,

=
PD log

(
PD

PFA

)
− (1− PD) log

(
1−PFA

1−PD

)
D(p1||p0)

.

Since we are only interested in cases where PD > 1/2 and PFA < 1/2, the final expressions are non-negative
in both cases. Note that the expected stopping times increase as the KL divergences decreases (as the two
densities become less distinguishable). Increasing PD or decreasing PFA also increases the expected stopping
time.

3 Optimality of SPRT

The expected stopping time of the SPRT that we determined above is optimal. No other test can achieve
the same PD and PFA with a smaller expected number of samples, under either hypothesis, as the following
result shows.

Lemma 1. Lower bound on expected stopping time of any testing procedure (Wald, 1948). Let PFA and
PD be given and consider any test with probabilities P ′FA ≤ PFA and P ′D ≥ PD. Then the expected stopping
times for the test are bounded as follows:

E0[K∗] ≥
(1− PFA) log 1−PFA

1−PD
− (PFA) log PD

PFA

D(p0||p1)
,

E1[K∗] ≥
PD log PD

PFA
+ (1− PD) log 1−PD

1−PFA

D(p1||p0)
.

The lemma shows that if no other test can have error levels as small or smaller than the SPRT and have
expected stopping times less than the values computed above for the SPRT.

Proof. We can bound E1 [log ΛK∗ |ΛK∗ ≥ γ1] (the expected value of the log-liklihood ratio when the procedure
stops, given that it stops on or above the upper threshold) as follows. By Jensen’s inequality

E1 [log ΛK∗ |ΛK∗ ≥ γ1] ≥ − log
(
E1

[
Λ−1
K∗

∣∣ΛK∗ ≥ γ1

])
= − log

(
E1

[
I{ΛK∗≥γ1}Λ

−1
K∗

]
/P1(ΛK∗ ≥ γ1)

)
= − log

(
E0

[
I{ΛK∗≥γ1}

]
/PD

)
= log

(
PD
PFA

)
.

In the same manner,

E1 [log ΛK∗ |ΛK∗ ≤ γ0] ≥ log

(
1− PD
1− PFA

)
.
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Of course we have

E1 [log ΛK∗ ] = PD E1 [log ΛK∗ |ΛK∗ ≥ γ1] + (1− PD) E1 [log ΛK∗ |ΛK∗ ≤ γ0]

≥ PD log

(
PD
PFA

)
+ (1− PD) log

(
1− PD
1− PFA

)
.

Almost there. As we showed for any test with random stopping time, by Wald’s identity:

E1[log ΛK∗ ] = E1[K∗]D(p1||p0).

Combining the two, gives the lower bound

E1[K∗] ≥
PD log PD

PFA
+ (1− PD) log 1−PD

1−PFA

D(p1||p0)

Following the same argument, we can derive a lower bound for the expected number of measurements under
hypothesis 0:

E0[K∗] ≥
(1− PFA) log 1−PFA

1−PD
− (PFA) log PD

PFA

D(p0||p1)

4 Example: Sequential Testing in Gaussian Case

Consider the simple binary testing problem

H0 : X1, X2, . . .
iid∼ N (0, 1)

H1 : X1, X2, . . .
iid∼ N (µ, 1) , µ > 0 known.

For simplicity, let us specify equal probabilities of error; i.e., PFA = 1−PD < 1/2. The non-sequential LRT
based on k samples yields

PFA = Q

(√
k µ

2

)
and so the number of samples required for a specified PFA is

k =
2
(
Q−1(PFA)

)2
µ

.

The expected stopping time of the SPRT in this case is

E0[K∗] = E1[K∗] =
2(1− 2PFA)

µ
log

(
1− PFA
PFA

)
The sample requirement for the non-sequential LRT and the SPRT are compared below.


