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Lecture 8: Signal Detection and Noise Assumption

1 Signal Detection

H0 : X = W

H1 : X = S +W

where W ∼ N(0, σ2In×n) and S = [s1, s2, . . . , sn]T is the known signal waveform.

P0(X) =
1

(2πσ2)
n
2
exp(− 1

2σ2
XTX)

P1(X) =
1

(2πσ2)
n
2
exp[− 1

2σ2
(X − S)T (X − S)]

The second equation holds because under hypothesis H0, W = X − S.

The Log Likelihood Ratio test is

log Λ(x) = log
PW (X)

PW (X − S)
= − 1

2σ2
[(X − S)T (X − S)−XTX] = − 1

2σ2
[−2XT + STS]

H1

≷
H0

γ′

After simplifying it, we can get

XTS
H1

≷
H0

σ2γ′ +
STS

2
= γ

In this case, XTS is the sufficient statistics t(x) for the parameter θ = 0, 1. Note that STS = ‖S‖22 is
the signal energy. The LR detector ”filters” data by projecting them onto signal subspace.

1.1 Example 1

Suppose we want to control the probability of false alarm. For example, choose γ so that P(XTS > γ |
H0) ≤ 0.05.

The test statistic XTS is usually called ”matched filter”.

In particular, projection onto subspace spanned by S is

PS =
SST

STS
=

S

‖S‖
· S

T

‖S‖

PSX =
SST

‖S‖2
X = (XTS)

S

‖S‖2

1
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Figure 1: Projection of X onto subspace S

where XTS
‖S‖2 is just a number.

Geometrically, suppose the horizontal line is the subspace S and X is some other vector. The projection
of vector X into subspace S can be expressed in the figure 1.

1.2 Example 2

Suppose the signal value Sk is sinusoid.

Sk = cos(2πf0k + θ), k = 1, . . . , n

The match filter in this case is to compute the value in the specific frequency. So PS in this example is
a bandpass filter.

1.3 Performance Analysis

Next problem what we want to know is what’s the probability density of XTS, which is the sufficient statis-
tics of this test.

H0 : X ∼ N(0, σ2I)
H1 : X ∼ N(S, σ2I)

XTS =
∑n
k=1XkSk is also Gaussian distributed. Recall if X ∼ N(µ,Σ), then Y = AX ∼ N(Aµ,AΣAT ),

where A is a matrix.

Since Y = XTS = STX, Y is a scalar. So we can get

H0 : XTS ∼ N(0TS, STσ2IS) = N(0, σ2‖S‖2)
H1 : XTS ∼ N(STS, STσ2IS) = N(‖S‖2, σ2‖S‖2)

The probability of false alarm is PFA = Q( γ−0
σ‖S‖ ), and the probability of detection is PD = Q(γ−‖S‖

2

σ‖S‖ ) =

Q( γ
σ‖S‖−

‖S‖
σ ). Since Q function is invertible, we can get γ

σ‖S‖ = Q−1(PFA). Therefore, PD = Q(Q−1(PFA)−
‖S‖
σ ). In the equation, ‖S‖σ is the square root of Signal Noise Ratio(

√
SNR).

2 AWGN Assumption

Is real-world noise really additive, white and Gaussian? Well, here are a few observations. Noise in many
applications (e.g. communication and radar) arose from several independent sources, all adding together



Lecture 8: Signal Detection and Noise Assumption 3

Figure 2: Distribution of P0 and P1

Figure 3: Relation between probability of detection and false alarm

at sensors and combining additively to the measurement. AWGN is gaussian distributed as the following
formula.

W ∼ N(0, σ2I)

CLT(Central Limit Theorem): If x1, . . . , xn are independent random variables with means µi and
variances σ2

i <∞ ,then Zn = 1√
n

∑n
i=1

xi−µi

σi
→ N(0, 1) in distribution quite quickly.

Thus, it is quite reasonable to model noise as additive and Gaussian list in many applications. However,
whiteness is not always a good assumption.

2.1 Example 3

Suppose W = S1 + S2 + · · ·+ Sk, where S1, S2, . . . Sk are inteferencing signals that are not of interest. But
each of them is structured/correlated in time. Therefore, we need a more generalized form of noise, which is
”Colored Gaussian Noise”.

3 Colored Gaussian Noise

W ∼ N(0,Σ) is called correlated or ”colored” noise, where Σ is a structured covariance matrix.
Consider the binary hypothesis test in this case.
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Figure 4: Relation between probability of detection and SNR

H0 : X = S0 +W

H1 : X = S1 +W

where W ∼ N(0,Σ) and S0 and S1 are know signal waveforms. So we can rewrite the hypothesis as

H0 : X ∼ N(S0,Σ)
H1 : X ∼ N(S1,Σ)

The probability density of each hypothesis is

Pi(X) =
1

(2π)
2
n (Σ)

1
2
exp[−1

2
(X − Si)TΣ−1(X − Si)], i = 0, 1

The log likelihood ratio is

log(
P1(X)
P2(X)

) = −1
2

[(X−S1)TΣ(X−S1)−(X−S0)TΣ−1(X−S0)] = XTΣ−1(S1−S0)−1
2
ST1 Σ−1S1+

1
2
ST0 Σ−1S0

H1

≷
H0

γ′

(S1 − S0)Σ−1X
H1

≷
H0

γ′ +
ST1 Σ−1S1

2
− ST0 Σ−1S0

2
= γ

Let t(X) = (S1 − S0)Σ−1X, we can get

H0 : t ∼ N((S1 − S0)Σ−1S0, (S1 − S0)TΣ−1(S1 − S0))
H1 : t ∼ N((S1 − S0)Σ−1S1, (S1 − S0)TΣ−1(S1 − S0))

The probability of false alarm is

PFA = Q(
γ − (S1 − S0)TΣ−1S0

[(S1 − S0)TΣ−1(S1 − S0)]
1
2

)

In this case it is natural to define

SNR = (S1 − S0)TΣ−1(S1 − S0)
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3.1 Example 4

S1 = [ 12 ,
1
2 ], S0 = [− 1

2 ,−
1
2 ], Σ =

[
1 ρ
ρ 1

]
, Σ−1 = 1

1−ρ2

[
1 −ρ
−ρ 1

]
.

The test statistics is

y = (S1 − S0)Σ−1X = [1, 1]
1

1− ρ2

[
1 −ρ
−ρ 1

] [
x1

x2

]
=

1
1 + ρ

(x1 + x2)

H0 : y ∼ N(− 1
1 + ρ

,
2

1 + ρ
)

H1 : y ∼ N(+
1

1 + ρ
,

2
1 + ρ

)

The probability of false alarm is

PFA = Q(
γ + 1

1+ρ√
2

1+ρ

)

The probability of detection is

PD = Q(
γ − 1

1+ρ√
2

1+ρ

)

Figure 5: ROC curve at different ρ


