
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 4: Sufficient Statistics

Consider a random variable X whose distribution p is parametrized by θ ∈ Θ where θ is a scalar or a
vector. Denote this distribution as pX(x|θ) or p(x|θ), for short. In many signal processing applications we
need to make some decision about θ from observations of X, where the density of X can be one of many in
a family of distributions, {p(x|θ)}θ∈Θ, indexed by different choices of the parameter θ.

More generally, suppose we make n independent observations of X: X1, X2, . . . , Xn where p(x1 . . . xn|θ) =∏n
i=1 p(xi|θ). These observations can be used to infer or estimate the correct value for θ. This problem can

be posed as follows. Let x = [x1, x2, . . . , xn] be a vector containing the n observations.

Question: Is there a lower dimensional function of x, say t(x), that alone carries all the relevant information
about θ? For example, if θ is a scalar parameter, then one might suppose that all relevant information in
the observations can be summarized in a scalar statistic.

Goal: Given a family of distributions {p(x|θ)}θ∈Θ and one or more observations from a particular dis-
tribution p(x|θ∗) in this family, find a data compression strategy that preserves all information pertaining
to θ∗. The function identified by such strategyis called a sufficient statistic.

1 Sufficient Statistics

Example 1 (Binary Source) Suppose X is a 0/1 - valued variable with P(X = 1) = θ and P(X = 0) =
1− θ. That is X ∼ p(x|θ) = θx(1− θ)1−x, (x ∈ [0, 1]).

We observe n independent realizations of X: x1, . . . , xn with p(x1, . . . , xn|θ) =
∏n
i=1 θ

xi(1 − θ)1−xi =
θk(1− θ)n−k; k =

∑n
i=1 xi (number of 1’s).

Note that K =
∑n
i=1Xi is a random variable with values in {0, 1 . . . , n}

p(k|θ) =
(
n

k

)
θk(1− θ)n−k, a binomial distribution with

(
n

k

)
=

n!
(n− k)!k!

The joint probability mass function of (X1, . . . , Xn) and K is

p(x1, . . . , xn, k|θ) =
{
p(x1, . . . , xn|θ); if k =

∑
xi

0; otherwise

⇒ p(x1, . . . , xn|k, θ) =
p(x, k|θ)
p(k|θ)

=
θk(1− θ)n−k(
n
k

)
θk(1− θ)n−k

=
1(
n
k

)
⇒ conditional prob of X1, . . . , Xn given

∑
xi is uniformly distributed over the

(
n
k

)
sequences that have

exactly k 1’s. In other words, the condition distribution of X1, . . . , Xn given k is independent of θ. So k
carries all relevant info about θ!

Note: k =
∑
xi compresses {0, 1}n (n bits) to {0, . . . , n} (log n bits).

Definition 1 Let X denote a random variable whose distributon is parametrized by θ ∈ Θ. Let p(x|θ)
denote the density of mass function. A statistic t(X) is sufficient for θ if the distribution of X given t(X) is
independent of θ; i.e., p(x|t, θ) = p(x|t)

1



Lecture 4: Sufficient Statistics 2

Theorem 1 (Fisher-Neyman Factorization) Let X be a random variable with density P (x|θ) for some
θ ∈ Θ. The statistic t(X) is sufficient for θ iff the density can be factorized into a function a(x) and a
function b(t, θ), a function of θ but only depending on x through the t(x); i.e.,

p(x|θ) = a(x)b(t, θ)

Proof: (if/sufficiency) Assume p(x|θ) = a(x)b(t|θ)

p(t|θ) =
∫
x:t(x)=t

p(x|θ)dx =

(∫
x:t(x)=t

a(x)dx

)
b(t, θ)

p(x|t, θ) =
p(x, t|θ)
p(t|θ)

=
p(x|θ)
p(t|θ)

=
a(x)∫

x:t(x)=t
a(x)dx

independent of θ

⇒ t(x) is a sufficient statistic

(only if/necessity) If p(x|t, θ) = p(x|t) independent of θ then p(x|θ) = p(x|t, θ)p(t|θ) = p(x|t)︸ ︷︷ ︸
a(x)

p(t|θ)︸ ︷︷ ︸
b(t,θ)

Example 2 (Binary Sourse) p(x|θ) = θk(1− θ)n−k =
1(
n
k

)︸︷︷︸
a(x)

(
n

k

)
θk(1− θ)n−k︸ ︷︷ ︸
b(k,θ)

⇒ k is sufficient for θ.

Example 3 (Poisson) Let λ be an average number of packets/sec sent over a network. Let X be a random
variable representing number of packets seen in 1 second. Assume P(X = x) = e−λ λ

x

x! =: p(x|λ).
Given X1, . . . , Xn ,

p(x1, . . . , xn|λ) =
n∏
i=1

e−λ
λxi

xi!
=

n∏
i=1

1
xi︸ ︷︷ ︸

a(x)

e−nλλ
P
xi︸ ︷︷ ︸

b(
P
xi,λ)

.

So
∑n
i=1 xi is a sufficient statistic for λ.

Example 4 (Gaussian) X ∼ N (µ,Σ) is d-dimensional.
X1, . . . , Xn

iid∼ N (µ,Σ); θ = (µ,Σ)

p(x1, . . . , xn|θ) =
n∏
i=1

p(xi; θ) =
n∏
i=1

1√
2πd|Σ|

e−
1
2 (xi−µ)T Σ−1(xi−µ)

= 2π−nd/2|Σ|−n/2e− 1
2

Pn
i=1(xi−µ)T Σ−1(xi−µ)

Define sample mean

µ̂ =
1
n

n∑
i=1

xi

and sample covariance

Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T
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exp(−1
2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)) = exp(−1
2

n∑
i=1

(xi − µ̂+ µ̂− µ)TΣ−1(xi − µ̂+ µ̂− µ))

= exp(−1
2

n∑
i=1

(xi − µ̂)TΣ−1(xi − µ̂)−
n∑
i=1

(xi − µ̂)TΣ−1(µ̂− µ)− 1
2

n∑
i=1

(µ̂− µ)TΣ−1(µ̂− µ))

= exp(−1
2

n∑
i=1

(xi − µ̂)TΣ−1(xi − µ̂)) exp(−1
2

n∑
i=1

(µ̂− µ)TΣ−1(µ̂− µ))

= exp(−1
2
tr(Σ−1

n∑
i=1

(xi − µ̂)(xi − µ̂)T )) exp(−1
2

n∑
i=1

(µ̂− µ)TΣ−1(µ̂− µ))

= exp(−1
2
tr(Σ−1(nΣ̂))) exp(−1

2

n∑
i=1

(µ̂− µ)TΣ−1(µ̂− µ))

Note that the second term on the second line is zero because 1
n

∑
i xi = µ̂. For any matrix B, tr(B) is the

sum of the diagonal elements. On the fourth line above we use the trace property, tr(AB) = tr(BA).

p(x1, . . . , xn|θ) = 2π−nd/2|Σ|−n/2 exp(−1
2

n∑
i=1

(µ̂− µ)TΣ−1(µ̂− µ)) exp(−1
2
tr(Σ−1nΣ̂))︸ ︷︷ ︸

b(µ̂,Σ̂,θ)

· 1︸︷︷︸
a(x1,...,xn)

2 Minimal Sufficient Statistic

Definition 2 A sufficient statistic is minimal if the dimension of T (X) cannot be further reduced and still
be sufficient.

Example 5 X ∼ N (0, 1) and X1, . . . , Xn
iid∼ N (0, 1)

u(x1, . . . , xn) = [x1 + x2, . . . , xn−1 + xn]T u is a n/2-dimensional statistic

T (x1, . . . , xn) =
n∑
i=1

xi a 1-dimensional statistic

T is sufficient, and T =
∑n/2
i=1 ui ⇒ u is sufficient.

3 Rao-Blackwell Theroem

Theorem 2 Assume X ∼ p(x|θ), θ ∈ R, and t(X) is a sufficient statistic for θ. Let f(x) be an estimator
of θ and consider the mean square error E[(f(x)− θ)2]. Define g(t(X)) = E[f(X)|t(X)].

Then E[(g(t(X)) − θ)2] ≤ E[(f(X) − θ)2], with equality iff f(X) = g(t(X)) with probability 1; i.e., if the
function f is equal to g composed with t.

Proof: First note that because t(X) is a sufficient statistic for θ, it follows that g(t(X)) = E[f(X)|t(X)]
does not depend on θ, and so it too is a valid estimator (i.e., if t(X) were not sufficient, then g(t(X)) might
be a function of t(X) and θ and therefore not computable from the data alone).

Next recall the following basic facts about conditional expectation. Suppose X and Y are random
variables. Then

E[X|Y ] =
∫
xp(x|y)dx
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In the present context

E[f(X)|t(X)] =
∫
f(x)p(x|t)dx

where p(x|t) is conditional density of X given t(X) = t. Furthermore, for any random variables X and Y

E[E[X|Y )]] =
∫

E[X|Y = y]︸ ︷︷ ︸
h(y)

p(y)dy

=
∫ (∫

xp(x|y)dx
)
p(y)dy

=
∫
x

(∫
p(x|y)p(y)dy

)
dx

=
∫
xp(x)dx = E[X]

This is sometimes called the smoothing property.
Now consider the conditional expectation

E[f(X)− θ|t(X)] = g(t(X))− θ

Also

(E[f(X)− θ|t(X)])2 ≤ E[(f(X)− θ)2|t(X)] by Jensen’s inequality

Jensen’s inequality (see general statement below) implies that the expectation of a squared random variable
is greater or equal to than the square of its expected value. So

(g(t(X))− θ)2 ≤ E[(f(X)− θ)2|t(X)]

Take expectation of both sides (recall the smoothing property above) yields

E[(g(t(X))− θ)2] ≤ E[(f(X)− θ)2]

4 Jensen’s Inequality

Suppose that φ is a convex function; λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y).
Then

E[φ(X)] ≥ φ(E[X])
average of convex functions ≥ convex function of average

Example 6

E[X2] ≥ (E[X])2

mean2 + var ≥ mean2


