ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 4: Sufficient Statistics

Consider a random variable X whose distribution p is parametrized by 6 € © where 6 is a scalar or a
vector. Denote this distribution as px (z|6) or p(z|f), for short. In many signal processing applications we
need to make some decision about 6 from observations of X, where the density of X can be one of many in
a family of distributions, {p(x|0)}sco, indexed by different choices of the parameter 6.

More generally, suppose we make n independent observations of X: X1, Xo, ..., X,, where p(z; ...2,|0) =
[T:-, p(z;]0). These observations can be used to infer or estimate the correct value for §. This problem can
be posed as follows. Let © = 21,2, ...,2,] be a vector containing the n observations.

Question: Is there a lower dimensional function of x, say ¢(x), that alone carries all the relevant information
about 67 For example, if € is a scalar parameter, then one might suppose that all relevant information in
the observations can be summarized in a scalar statistic.

Goal: Given a family of distributions {p(x]6)}sco and one or more observations from a particular dis-
tribution p(z|0*) in this family, find a data compression strategy that preserves all information pertaining
to 6*. The function identified by such strategyis called a sufficient statistic.

1 Sufficient Statistics

Example 1 (Binary Source) Suppose X is a 0/1 - valued variable with P(X =1) = 0 and P(X =0) =
1—0. That is X ~ p(z|0) = 0°(1 — 0)1=2 (z € [0,1]).

We observe n independent realizations of X: x1,...,xn with p(x1,...,2,10) = [[1, 6% (1 — )}~ =
0k(1—0)"F; k=" | x; (number of 1’s).
Note that K =Y | X; is a random variable with values in {0,1...,n}

|
p(k|0) = (Z) 08 (1 — 0)"~*, a binomial distribution with (Z) = m
The joint probability mass function of (X1,...,X,) and K is
_f pler,wn0); ifR =)
(1, 20, KIO) = { 0;  otherwise
p(, kl|9)
k,0) = ————=
:>p(x1a 7xn| ) ) p(k|9)
B gk(l _ o)nfk _ i
(oL =)=+~ (})
= conditional prob of X1,...,X, given > x; is uniformly distributed over the (Z) sequences that have

evactly k 1’s. In other words, the condition distribution of X1,...,X, given k is independent of 6. So k
carries all relevant info about 0!

Note: k = > x; compresses {0,1}" (n bits) to {0,...,n} (logn bits).

Definition 1 Let X denote a random wvariable whose distributon is parametrized by 6 € ©. Let p(x|0)
denote the density of mass function. A statistic t(X) is sufficient for 0 if the distribution of X given t(X) is
independent of 0; i.e., p(z|t,0) = p(x|t)
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Theorem 1 (Fisher-Neyman Factorization) Let X be a random variable with density P(x|0) for some
0 € ©. The statistic t(X) is sufficient for 6 iff the density can be factorized into a function a(x) and a
function b(t,0), a function of 6 but only depending on = through the t(z); i.e.,

p(x]0) = a(x)b(t, 0)
Proof: (if/sufficiency) Assume p(z|0) = a(x)b(t|0)

p(t|0) = /.t( ):tp(x|9)dx = (/.t( - a(w)dm) b(t, )

palt, ) = 2@ 10 _ p(ld)

p(tlo)  p(t|0)
a(z)

= ————~—— independent of 6
fx:t(z):t a(a:)dx

= t(x) is a sufficient statistic

(only if/necessity) If p(z|t,0) = p(z|t) independent of 8 then p(z|0) = p(x|t, )p(t|0) = p(x|t) p(t|0)
—— ——

a(z) b(t,0)
Example 2 (Binary Sourse) p(z|0) = 0*(1 — )"~ % = (711) <Z> 08 (1 — 0)" % = k is sufficient for 6.
N
a(x) b(k,0)

Example 3 (Poisson) Let A be an average number of packets/sec sent over a network. Let X be a random
variable representing number of packets seen in 1 second. Assume P(X = z) = e *2r =: p(z|).
Given X1,..., X, ,
n AT noq T
_ A - _—n x;
p(xl,...,afnlz\)—He o —Hxie A .

EZ (T
a(x)

So Y% | x; is a sufficient statistic for \.

Example 4 (Gaussian) X ~ N (p, X) is d-dimensional.
iid
Xiyeo s X SN, 2); 0 = (1, 3)

n

s 1
Z.I;[l 1 V2|3

27T—"d/2‘2|—"/26—% i (@i—w) TS (@i—p)

e s(@i—m e (@i—p)

Define sample mean

1 n
M:E;m

and sample covariance
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(=5 (o= )" ) = el Z( = )T i )
— expl(—2 Z( TS (s — ) - <x TS )~ ;im — )T - )
— exp(-1 Z( TS (o — ) exp(— ilm — TS (- )
— exp(—atr(s! §_j<x — )= )T exp(— im TS )
= exp(—5tr(S7 (n5))) exp( _zn;m )T - )

Note that the second term on the second line is zero because = >, x; = fi. For any matriz B, tr(B) is the

sum of the diagonal elements. On the fourth line above we use the trace property, tr(AB) = tr(BA).

n

- - 1 - —1n 1 _
p(x1,...,2,|0) = 20~ "4/2|p|7/2 exp(—§ Z(M‘M)Tz 1(M—u))exp(—§tr(2 n¥))- 1
i=1

a(z1,...,Tn)

b(i2,%,0)

2 Minimal Sufficient Statistic

Definition 2 A sufficient statistic is minimal if the dimension of T(X) cannot be further reduced and still
be sufficient.

Example 5 X ~N(0,1) and X1,...,X, 4 N(0,1)
w(z1,. .. xn) = [21 + T2, ..., Tyt + 20]T w is a n/2-dimensional statistic
T(x1,...,2n) = in a 1-dimensional statistic
i=1

. . 2 . .
T is sufficient, and T = 27:/1 w; = u is sufficient.

3 Rao-Blackwell Theroem

Theorem 2 Assume X ~ p(z|6), 0 € R, and t(X) is a sufficient statistic for 0. Let f(x) be an estimator
of 0 and consider the mean square error E[(f(z) — 0)?]. Define g(t(X)) = E[f(X)[t(X)].

Then E[(g(t(X)) — 0)2] < E[(f(X) — 0)?], with equality iff f(X) = g(t(X)) with probability 1; i.e., if the
function f is equal to g composed with t.

Proof: First note that because ¢(X) is a sufficient statistic for 6, it follows that g(¢t(X)) = E[f(X)|¢(X)]
does not depend on 6, and so it too is a valid estimator (i.e., if ¢(X) were not sufficient, then g(¢(X)) might
be a function of ¢(X) and 6 and therefore not computable from the data alone).

Next recall the following basic facts about conditional expectation. Suppose X and Y are random
variables. Then

E[X[Y] = / zp(aly)de
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In the present context
BIFCO0) = [ F@plalt)da

where p(z|t) is conditional density of X given ¢(X) = t. Furthermore, for any random variables X and YV’

This is sometimes called the smoothing property.
Now consider the conditional expectation

E[f(X) — 0]t(X)] = g(t(X)) — 0

Also
(E[f(X) —0|t(X)])? <E[(f(X) — 0)2|t(X)] by Jensen’s inequality

Jensen’s inequality (see general statement below) implies that the expectation of a squared random variable

is greater or equal to than the square of its expected value. So
(9(t(X)) — 0)* <E[(f(X) — 0)*[¢(X)]
Take expectation of both sides (recall the smoothing property above) yields

El(9(t(X)) - 0)*] <E[(f(X) - 0)?]

4 Jensen’s Inequality

Suppose that ¢ is a convex function; Ag(x) + (1 — Ao (y) > ¢(Az + (1 — N)y).
Then
E[p(X)] > ¢(E[X])
average of convex functions > convex function of average

Example 6

E[X?] > (E[X])”

mean? + var > mean>



