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instructor: R. Nowak

Lecture 18: Bias, Admissibility and Prior Information

Suppose that x ∼ p(x|θ), θ ∈ Θ. Let θ̂ be an estimator of θ and let R(θ̂, θ) denote its risk (based on a chosen
loss). That is, R(θ̂, θ) = E[`(θ̂, θ)], where ` is the loss function and expectation is with respect to x ∼ p(x|θ)
and θ̂ is a function of x.

An estimator is said to be inadmissible if there exists another estimator that dominates it; i.e. if
R(θ̃, θ) ≤ R(θ̂, θ), ∀θ ∈ Θ, with strict inequality for certain θ. An estimator is admissible otherwise.
Usually, the MVUB estimator is not admissible in terms of MSE, but in special cases it is.

Example 1 Let x1, . . . , xn ∼ N (θ, 1). The estimator θ̂ = 1
n

∑n
i=1 xi is MVUB (and also admissible). The

MSE of this estimator is MSE(θ̂) = R(θ̂, θ) = 1
n . Consider an alternative estimator, θ̃ = x1. It too is

unbiased, but MSE(θ̃) = 1 so it is clearly inadmissible.

Example 2 Let x1, . . . , xn ∼ N (θ, I), θ ∈ Rp. The estimator θ̂ = 1
n

∑n
i=1 xi is MVUB. If p = 1 or 2, then

θ̂ is admissible. If p ≥ 3 then θ̂ is inadmissible. More on that later.

1 Biased Estimators

Although MVUB estimators have desirable properties (unbiased, minimum variance), they generally are
inadmissible. Biased estimators can have lower MSE! Suppose x ∼ N (θ, σ2). The MVUB estimator is
θ̂ = x, and its MSE is σ2. Next consider the estimator θ̃ε = (1 − ε)x, for ε > 0. E[θ̃ε] = (1 − ε)θ, so it
is biased. Its MSE is MSE(θ̃ε) = bias2(θ̃ε) + var(θ̃ε) = ε2θ2 + (1 − ε)2σ2. Let’s try to find ε > 0 so that
MSE(θ̃ε) < MSE(θ̂). Note that MSE(θ̃ε) < MSE(θ̂) implies

MSE(θ̃ε) = ε2θ2 + (1− ε)2σ2 < σ2 = MSE(θ̂)

⇒ θ2 <
(1− (1− ε)2)

ε2
σ2 =

(
2− ε
ε

)
σ2

This implies that if the signal to noise ratio θ2

σ2 < 2−ε
ε , then the biased estimator θ̃ε has strictly better

MSE performance than the MVUB estimator. Also, since 2−ε
ε → ∞ as ε → 0, there exists a better biased

estimator at every SNR.

Example 3 Suppose σ2 > 0 is known and it is also known that θ ∈ [−µ,+µ]. Then θ̃ = (1 + ε)x has
MSE(θ̂) ≤ ε2µ2 + (1− ε)2σ2 which is strictly less than σ2 for all ε < 2

(µ2+σ2) .

2 The James-Stein Estimator

Suppose x ∼ N (θ, I), θ ∈ Rp. The MVUB estimator is θ̂ = x, and its MSE is E[||θ̂− θ||2] = var(x) = p. The
James-Stein estimator

θ̂JS =

(
1− p− 2
‖x‖2

)
x

1
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was proposed in 1961 by W. James and C. Stein, and it came as something of a surprise. James and Stein
showed that for p ≥ 3

E[||θ̂JS − θ||2] = p− E
[

(p− 2)2

p− 2 + 2k

]
,

where k ∼ Poisson(‖θ‖
2

2 ). Since E
[

(p−2)2

p−2+2k

]
> 0, the MSE E[||θ̂JS − θ||2] < p. In other words, for p ≥ 3, θ̂JS

has a strictly lower MSE than θ̂. Therefore θ̂ is inadmissible. Notice that the James-Stein estimator shrinks
the data towards zero, just as the estimator θ̃ε above. The James-Stein estimator uses a data-adaptive choice
ε = (p− 2)/‖x‖2, which improves on the MLE when p ≥ 3 for every SNR.

It turns out that θ̂JS is also inadmissible. Notice that
(

1− p−2
‖x‖2

)
may be negative. This suggests the

modified estimator

θ̃JS =

(
1− p− 2
‖x‖2

)
+

x ,

where the subscript + means that the argument in the parentheses to zero if it is negative. This can be
shown to have a lower MSE than θ̂JS for p ≥ 3, but it too is inadmissable since there are other estimators
that perform better for certain values of θ.

3 Statistical Inference and Prior Information

Pierre-Simon Laplace was a French mathematician who developed the some of the foundations of modern
probability and statistics. He is particularly known for his work on Bayesian interpretations of probability,
which incorporate prior knowledge about parameters to be estimated. For example, he considered the simple
problem if trying to decide whether a coin was biased, as follows. We don’t know whether it is biased towards
heads or tails. Flip the coin n times. What is the optimal decision rule for deciding whether it is biased
towards heads or tails? Suppose n=0. What is the probability of biased towards heads? We will look at this
problem in more detail in a moment.

First, let us consider various forms of prior knowledge about a parameter of interest (e.g., the bias of a
coin).

• The parameter may be known to be constrained in some sense.

• We may have a certain ignorance about the parameter, which we can express probabilistically.

• The parameter may be assumed to be drawn from a known probability distribution, based for example
on physical reasoning.

4 Bayesian Inference

Inference is an inversion process. We can view the forward model as

θ → p(X|θ)→ x ,

That is, the parameter θ generates the data x. Estimating θ involves inverting this generative model. The
likelihood function is one tool that can be used for this purpose; recall the likelihood is `(θ) = p(x|θ) with
x fixed. It is tempting to view `(θ) as a probability distribution for θ, but this is incorrect; in fact, in many
cases

∫
`(θ)dθ →∞.

There are three basic quantities Bayesian inference.

Prior Distribution p(θ)
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Likelihood p(x|θ)

Posterior Distribution p(θ|x) = p(x|θ)p(θ)R
p(x|θ)p(θ)dθ

The generative (or forward) model is

p(θ)→ θ → p(x|θ)→ x ,

which involves the prior and likelihood. We are interested in the inverse problem

x→ p(θ|x)→ θ̂ ,

which boils down to computing the posterior distribution.

Example 4 Suppose you toss a coin 10 times and every time it comes up heads. It is tempting to say that
we are 99.9% sure the coin is unfair, biased towards heads (since the probability of 10 heads in a row from
a biased coin is 2−10).

Mathematically, we can model the problem as follows. Let θ = P(Heads). The data (the number of heads
in 10 tosses) follows a binomial distribution x ∼

(
n
k

)
θk(1− θ)n−k ≡ p(x|θ). The mathematical equivalent of

the question “is the coin probably biased” is the probability P(θ > 0.5|x = 10). This conditional probability
suggests that we view θ as random!

Suppose we treat θ ∼ p(θ). Then Bayes rule (1763) shows that

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

.

To compute this conditional probability we must specify a prior distribution for θ. Suppose we assume
p(θ) = Uniform(0, 1), which is a reasonable expression of a belief that all values of θ are equally probable
before we begin to flip the coin. Note that this prior also implies that P(θ > 1

2 ) = 1
2 . Now compute

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

=
θ10∫
θ10dθ

=
θ10

1
11θ

11|10
= 11 θ10 .

Then

P
(
θ >

1
2
|x = 10

)
=
∫ 1

1
2

11θ10dθ = θ11|11
2

= 1− 2−11 = 0.9995 .

Note, however, that if we chose a different prior we would get a different answer!


