ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Computing the MLE and the EM Algorithm

If X ~ p(z|f), 6 € O, then the MLE is the solution to the equations %éxm = 0. Sometimes these

equations have a simple closed form solution, and other times they do not and we must use computational
methods to find 6.

Example 1 In some cases, the MLE is computed by taking a simple average. Suppose X; w4 Poisson(A).
Then the MLE is \,, = %EXl

Example 2 The MLE sometimes requires solving a system of linear equations. Suppose that X ~ N(H6,1),
where H is n x k and known and 0 is k x 1 and unknown. Then the MLE is @ = (HTH)"'HT X

Example 3 The MLE can also be the solution to a nonlinear system of equations. Suppose that X; s%d
pN (p10,02) + (1 —p)N(u1,03), i =1,....,n, and let = [p po o8 uy o3’

p _ (@i—pg)? 1—p _(mizp)?
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Figure 1: Two-dimensional Gaussian mixture density.

The likelihood is a complicated nonlinear function. Moreover, it is non-convex in 6.

p(x|8) = Hp(xi|9), a product of sums of exponentials.
i=1

Taking the logarithm doesn’t simplify things:

log p(x|0) = a sum of logs of a sum of exponentials.
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Also recall that the sufficient statistic in this case is the whole set of data (X1, Xo, ..., X,,); i.e., there is no
small sufficient statistic that summarizes them.

What can we do in such situations? We need a computational method to maximize the liklihood fucntion.
There are two common approaches:

1. Gradient/Newton methods

0
O+ — g L A 20 log p(x]0)|g—g), where A >0 is a step size.

2. Expectation-Maximization Algorithm (EM algorithm)

Gradient ascent methods should be familiar to most readers. The EM algorithm is a specialized approach
designed for MLE problems, and it has some attractive properties, namely it doesn’t require specification
of a step size and under mild conditions it is guaranteed to converge to a local maximum of the likelihood
function. If the likelihood function is concave (i.e., negative log-likelihood is convex), then convergence to a
global maximum likelihood point is possible using gradient methods or EM. The rest of the lecture discusses
the EM algorithm.

1 The EM Algorithm

In many problems MLE based on observed data X would be greatly simplified if we had additionally observed
another piece of data Y.Y is called the hidden or latent data.

Example 4 X ~ N(HO,I) can be modeled as:

Yisci = 0+W,
Xn><1 = Hvzka+W2

such that HWy + Wy ~ N(0,1).

If we just have X, then we must solve a system of equations to obtain the MLE. If the dimension is large,
then computing the MLE is quite expensive(i.e. the inversion is at least O(max(nk?, k?%))). But if we also
have Y, then the MLE can be computed with O(k) as we know 6§ =Y.

Example 5

y
i < pN(wo,08) + (1 —p)N(p,07)
1id

yi '~ Bernoulli(p) = p' ¥ (1 — p)¥i
zilyi=1 ~ N(w,of)

Given {(x;,y;)}1,, we have:

. 1
= _— :EZ-
S v D)
iy =
1

o= > ly= Z(xi—mf

Y=l
A Zlyi:l
n
MLE’s are easy to compute here. However, if we only have {z;}_;, the computation of MLE is a
complicated, non-convex optimization, where we can apply EM algorithm to compute. The application of
EM algorithm in this situation is shown in Example 4.
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Main Idea

Let L(6) = log p(x|6) and also define the complete data log-like:
Le(0) = logp(x,y|0) = log p(y|x, 0)p(x]0) = logp(ylx,0) +log p(x|0) = log p(ylx, 6) + L(6)
Suppose our current guess of 6 is () and that we would like to imporve this guess. Consider

L(O) = L(OW) = Lo(6) — Lo(0®) + log 2120

p(ylz,0)
Now take expectation of both sides with respect to y ~ p(y|z, #®), we have:

L(0) = L(0W) = Ey[Le(0)] = By [Le(0)] + D(p(ylz, 69) |yl 0))
Since D(p(y|z,0®)||p(y|z,0)) > 0, we have the following inequality:

L(0) = L) = Ey[Le(6)] — By[Le(6)] = Q(6,6) — Q(6©),61)

where Q(0,0') := Ep,(y|2,01) [log p(, y|0)] is the expectation of complete data log-likelihood. We choose ft+1)
as the solution of the following optimization problem:

plt+1) — arg mé‘iX Q(aa e(t))

The EM algorithm is an attractive option if the @) function is easily computed and optimized. The relationship
between log p(x, ), Q(0,0®)), 8 and §1*1) are depicted in the following figure:

Q(0,0) logp(x[f)

O gt plt+1) 0

Figure 2: Graphical show of EM algorithm

The process of EM algorithm is as follows:
Init: t = 0, (9 = 0 or random value
for t=0,1,2,...
E step:
Q(0,0") = E, (000 log p(z,y|0)]
M step:
0+ = arg max Q(6,0W)

The E-step and M-step repeat until convergence. The two key properties of the EM algorithm are:
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1. logp(z]6®) <logp(z|d™M) < ...
2. It converges to stationary point(e.g. local max)

Now let’s look at a few applications of the EM algorithm. The EM algorithm is especially attractive in cases
where the @ function is easy to compute and optimize. There is a bit of art involved in the choice of the
hiddent or latent data Y, and this needs to be worked out on a case-by-case basis.

Example 6 Original model X = HO + W :
Complete model:

Y = 04+W1 Wi ~N(0,0%Txk)
X HpxiY +Wo Wo~ N(0, Lnxn, — o*HHT)

Then we construct the complete log-likelihood:

logp(z,y|0) = logp(xly|d) + logp(y|0)
— 0|2
= constant — %
1
= E(ZGTy — 070 — y"'y) + constant
1
= @(ZGTy —070) + constant

As the part left after taking away the constant is proportional toy, so we only need to calculate Ky, 4100 [y].
Introduce Z1 =Y, Zo = X — HY, then we have the joint distribution of Z1, Zs as:

Zl _ % OéQIk-Xk 0
=) T en)

X _ H Inxn Zl
As we know {Y] = l:[kxk 0 ] [Z2

X HO| [Lnw olH
() [ L)

Make a linear transformation, we have:

}, we know:

X ~ N Ho Loxn 0 )
Y —a?2HTX 0—a2HTHO|’| 0 I, —a*HTH

So we have:

Epyatoon [yl = *H @ + 6" — o> HT HI® = y®
As Q(0,01)) = 515 (20Ty™ — 079) + constant, set % =0, we have:

Pl — ()

=Y
It is easy to calculate the stationary point in this iteration, let 1) = 01 we have:
estationary = (HTH)ilHTli

which is the answer we are familiar with.
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Example 7 Suppose:

iid “
XI;X27"'7X7L ~ g ij(MJ,O'JZ)
=1

We have: .
_(@i—ny)
x,y|d) 295 1,
p(z,yl0) = 1L 1ij /727r yi=j
Thus,
n o m (mi_ﬂj)z
logp(x,yld) = log e 277 My,=;
n.m (wifﬂj)z
202
B, (y1afoy log p(z, y19)] = D > log( 7 ) Epyziom) Lyi=;]
i=1 j=1 \/%UJ

Ti—Hj 2
@i—ny) (lt)N(x“uit)’( (t)) )

= Z Z log( 20}

DA t t
i=1 j=1 2770 Zz 1p() (xzv,ufl()a(al()) )

(t>N(ZE1 (f)’( (t)) )
S PN e (o)

) = Z SO (i = ) log(P N (@i 15, 02))

i=1 j=1

Denote p(t)(yi =j)= , we have the expression of Q(6, Q(t)).'

- Z Zp(t) (i = J) IOg(N(Iz,Mp j)) + constant

i=1 j=1
Set % =0, we have:
P > iy POy = g)ws
! >ie1 PO (yi = j)
n t+1 .
P O 1 C V)
) =

i POy = J)



