
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Computing the MLE and the EM Algorithm

If X ∼ p(x|θ), θ ∈ Θ, then the MLE is the solution to the equations ∂logp(x|θ)
∂θ = 0. Sometimes these

equations have a simple closed form solution, and other times they do not and we must use computational
methods to find θ̂.

Example 1 In some cases, the MLE is computed by taking a simple average. Suppose Xi
i.i.d∼ Poisson(λ).

Then the MLE is λ̂n = 1
n

∑
Xi.

Example 2 The MLE sometimes requires solving a system of linear equations. Suppose that X ∼ N(Hθ, I),
where H is n× k and known and θ is k × 1 and unknown. Then the MLE is θ̂ = (HTH)−1HTX

Example 3 The MLE can also be the solution to a nonlinear system of equations. Suppose that Xi
i.i.d∼

pN(µ0, σ
2
0) + (1− p)N(µ1, σ

2
1), i = 1, ..., n, and let θ = [p µ0 σ

2
0 µ1 σ

2
1 ]T

p(xi|θ) =
p√

2πσ2
0

e
− (xi−µ0)2

2σ2
0 +

1− p√
2πσ2

1

e
− (xi−µ1)2

2σ2
1

Figure 1: Two-dimensional Gaussian mixture density.

The likelihood is a complicated nonlinear function. Moreover, it is non-convex in θ.

p(x|θ) =
n∏
i=1

p(xi|θ), a product of sums of exponentials.

Taking the logarithm doesn’t simplify things:

log p(x|θ) = a sum of logs of a sum of exponentials.
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Also recall that the sufficient statistic in this case is the whole set of data (X1, X2, ..., Xn); i.e., there is no
small sufficient statistic that summarizes them.

What can we do in such situations? We need a computational method to maximize the liklihood fucntion.
There are two common approaches:

1. Gradient/Newton methods

θ(t+1) = θ(t) + ∆
∂

∂θ
log p(x|θ)|θ=θ(t) , where ∆ > 0 is a step size.

2. Expectation-Maximization Algorithm (EM algorithm)

Gradient ascent methods should be familiar to most readers. The EM algorithm is a specialized approach
designed for MLE problems, and it has some attractive properties, namely it doesn’t require specification
of a step size and under mild conditions it is guaranteed to converge to a local maximum of the likelihood
function. If the likelihood function is concave (i.e., negative log-likelihood is convex), then convergence to a
global maximum likelihood point is possible using gradient methods or EM. The rest of the lecture discusses
the EM algorithm.

1 The EM Algorithm

In many problems MLE based on observed data X would be greatly simplified if we had additionally observed
another piece of data Y .Y is called the hidden or latent data.

Example 4 X ∼ N (Hθ, I) can be modeled as:

Yk×1 = θ +W1

Xn×1 = Hn×kY +W2

such that HW1 +W2 ∼ N (0, I).

If we just have X, then we must solve a system of equations to obtain the MLE. If the dimension is large,
then computing the MLE is quite expensive(i.e. the inversion is at least O(max(nk2, k3))). But if we also
have Y , then the MLE can be computed with O(k) as we know θ̂ = Y .

Example 5

xi
iid∼ pN (µ0, σ

2
0) + (1− p)N (µ1, σ

2
1)

yi
iid∼ Bernoulli(p) = p1−yi(1− p)yi

xi|yi = l ∼ N (µl, σ2
l )

Given {(xi, yi)}ni=1, we have:

µ̂l =
1∑
1yi=l

∑
i:yi=l

xi

σ̂l =
1∑
1yi=l

∑
i:yi=l

(xi − µ̂l)2

p̂ =
∑

1yi=l
n

MLE’s are easy to compute here. However, if we only have {xi}ni=1, the computation of MLE is a
complicated, non-convex optimization, where we can apply EM algorithm to compute. The application of
EM algorithm in this situation is shown in Example 4.
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Main Idea

Let L(θ) = log p(x|θ) and also define the complete data log-like:

Lc(θ) = log p(x, y|θ) = log p(y|x, θ)p(x|θ) = log p(y|x, θ) + log p(x|θ) = log p(y|x, θ) + L(θ)

Suppose our current guess of θ is θ(t) and that we would like to imporve this guess. Consider

L(θ)− L(θ(t)) = Lc(θ)− Lc(θ(t)) + log
p(y|x, θ(t))
p(y|x, θ)

Now take expectation of both sides with respect to y ∼ p(y|x, θ(t)), we have:

L(θ)− L(θ(t)) = Ey[Lc(θ)]− Ey[Lc(θ(t))] +D(p(y|x, θ(t))‖p(y|x, θ))

Since D(p(y|x, θ(t))‖p(y|x, θ)) ≥ 0, we have the following inequality:

L(θ)− L(θ(t)) ≥ Ey[Lc(θ)]− Ey[Lc(θ(t))] = Q(θ, θ(t))−Q(θ(t), θ(t))

where Q(θ, θ′) := Ep(y|x,θ′)[log p(x, y|θ)] is the expectation of complete data log-likelihood. We choose θ(t+1)

as the solution of the following optimization problem:

θ(t+1) = arg max
θ
Q(θ, θ(t))

The EM algorithm is an attractive option if theQ function is easily computed and optimized. The relationship
between log p(x, θ), Q(θ, θ(t)), θt and θ(t+1) are depicted in the following figure:

Figure 2: Graphical show of EM algorithm

The process of EM algorithm is as follows:
Init: t = 0, θ(0) = 0 or random value
for t=0,1,2,. . .

E step:
Q(θ, θ(t)) = Ep(y|x,θ(t))[log p(x, y|θ)]

M step:
θ(t+1) = arg max

θ
Q(θ, θ(t))

The E-step and M-step repeat until convergence. The two key properties of the EM algorithm are:
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1. log p(x|θ(0)) ≤ log p(x|θ(1)) ≤ . . .

2. It converges to stationary point(e.g. local max)

Now let’s look at a few applications of the EM algorithm. The EM algorithm is especially attractive in cases
where the Q function is easy to compute and optimize. There is a bit of art involved in the choice of the
hiddent or latent data Y , and this needs to be worked out on a case-by-case basis.

Example 6 Original model X = Hθ +W :
Complete model:

Y = θ +W1 W1 ∼ N (0, α2Ik×k)
X = Hn×kY +W2 W2 ∼ N (0, In×n − α2HHT )

Then we construct the complete log-likelihood:

log p(x, y|θ) = log p(x|y|θ) + log p(y|θ)

= constant− ‖y − θ‖
2

2α2

=
1

2α2
(2θT y − θT θ − yT y) + constant

=
1

2α2
(2θT y − θT θ) + constant

As the part left after taking away the constant is proportional to y, so we only need to calculate Ep(y|x|θ(t))[y].
Introduce Z1 = Y , Z2 = X −HY , then we have the joint distribution of Z1, Z2 as:[

Z1

Z2

]
= N (

[
θ
0

]
,

[
α2Ik×k 0

0 In×n − α2HHT

]
)

As we know
[
X
Y

]
=
[
H In×n
Ik×k 0

] [
Z1

Z2

]
, we know:[

X
Y

]
∼ N (

[
Hθ
θ

]
,

[
In×n α2H
α2HT α2Ik×k

]
)

Make a linear transformation, we have:[
X

Y − α2HTX

]
∼ N (

[
Hθ

θ − α2HTHθ

]
,

[
In×n 0

0 α2Ik×k − α4HTH

]
)

So we have:
Ep(y|x|θ(t))[y] = α2HTx+ θ(t) − α2HTHθ(t) = y(t)

As Q(θ, θ(t)) = 1
2α2 (2θT y(t) − θT θ) + constant, set ∂Q

∂θ = 0, we have:

θ(t+1) = y(t)

It is easy to calculate the stationary point in this iteration, let θ(t+1) = θ(t), we have:

θstationary = (HTH)−1HTx

which is the answer we are familiar with.
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Example 7 Suppose:

X1, X2, . . . , Xn
iid∼

m∑
j=1

pjN (µj , σ2
j )

We have:

p(x, y|θ) = Πn
i=1

m∑
j=1

pj
1√

2πσj
e
−

(xi−µj)
2

2σ2
j 1yi=j

Thus,

log p(x, y|θ) =
n∑
i=1

m∑
j=1

log(
pj√
2πσj

e
−

(xi−µj)
2

2σ2
j )1yi=j

Ep(y|x|θ(t))[log p(x, y|θ)] =
n∑
i=1

m∑
j=1

log(
pj√
2πσj

e
−

(xi−µj)
2

2σ2
j )Ep(y|x|θ(t))[1yi=j ]

=
n∑
i=1

m∑
j=1

log(
pj√
2πσj

e
−

(xi−µj)
2

2σ2
j )

p
(t)
j N (xi;µ

(t)
j , (σ(t)

j )2)∑m
l=1 p

(t)
l N (xi;µ

(t)
l , (σ(t)

l )2)

Denote p(t)(yi = j) =
p
(t)
j N (xi;µ

(t)
j ,(σ

(t)
j )2)Pm

l=1 p
(t)
l N (xi;µ

(t)
l ,(σ

(t)
l )2)

, we have the expression of Q(θ, θ(t)):

Q(θ, θ(t)) =
n∑
i=1

m∑
j=1

p(t)(yi = j) log(p(t)
j N (xi;µj , σ2

j ))

=
n∑
i=1

m∑
j=1

p(t)(yi = j) log(N (xi;µj , σ2
j )) + constant

Set ∂Q
∂θ = 0, we have:

µ
(t+1)
j =

∑n
i=1 p

(t)(yi = j)xi∑n
i=1 p

(t)(yi = j)

(σ(t+1)
j )2 =

∑n
i=1(xi − µ(t+1)

j )2p(t)(yi = j)∑n
i=1 p

(t)(yi = j)


