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Lecture 15: MLE: Asymptotics and Invariance

uppose we make n independent observations x1, . . . , xn from some distribution in the set {p(x|θ)}θ∈Θ. The
MLE of θ is

θ̂n = arg max
θ

n∏
i=1

p(xi|θ)

= arg min
θ
−

n∑
i=1

log p(xi|θ)

In the previous lecture we argued that under reasonable assumptions θ̂n converges in probability to the value
of θ that generated the observations, which we called θ∗. In this lecture we will study other properties of
the MLE, beginning with a characterization of its asymptotic distribution.

Theorem 1. (Asymptotic Distribution of MLE) Let x1, . . . , xn be iid observations from p(x|θ∗), where
θ∗ ∈ Rd. Let θ̂n = arg maxθ

∏n
i=1 p(xi|θ) = arg maxθ

∑n
i=1 log p(xi|θ), define L(θ) :=

∑n
i=1 log p(xi|θ),

and assume ∂L(θ)
∂θj

and ∂2Ln(θ)
∂θj∂θk

exist for all j,k. Then

θ̂n
asymp.∼ N (θ∗, n−1I−1(θ∗))

where I(θ∗) is the Fisher-Information Matrix (FIM), whose elements are given by

[I(θ∗)]j,k = −E
[
∂2 log p(x|θ)
∂θj∂θk

|θ=θ∗
]

Remark: The FIM is the expected value of the negative Hessian matrix of the log-likelihood function at
the point θ∗. The Hessian is the curvature of the log-likelihood surface. For example, in the case where θ is
scalar, the FIM is simply the second derivative of the log-likelihood function. Since we are maximizing the
log-likelihood, the curvature should be negative. The more negative the curvature, the more sharply defined
is the location of the maximum. Therefore, more negative curvatures lead to less variable estimates, which
is precisely what is revealed by the limiting distribution above.

Proof. We will prove the theorem for the special case when θ is scalar. The proof for multidimensional
vectors follows the same steps using multivariable calculus. By the mean value theorem,

∂L(θ)
∂θ

∣∣∣θ=bθn
=

∂L(θ)
∂θ

|θ=θ∗ +
∂2L(θ)
∂θ2

∣∣
θ=θ̃ (θ̂n − θ∗) ,

where θ̃ is some value between θ∗ and θ̂n. By definition, ∂L(θ)
∂θ |θ=bθn

= 0, so

0 =
∂L(θ)
∂θ
|θ=θ∗ +

∂2L(θ)
∂θ2

|θ=θ̃ (θ̂n − θ∗)

From equation above we have

θ̂n − θ∗ = −
∂L(θ)
∂θ |θ=θ∗

∂2L(θ)
∂θ2 |θ=θ̃
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Next consider
√
n(θ̂n− θ∗). The reason scaling the difference by

√
n is that this is the normalization needed

to stabilize the limiting distribution. For example, if x1, . . . , xn were iid observations from the distribution
N(θ∗, 1), then it is easy to see that

√
n(θ̂n − θ∗) ∼ N(0, 1). So, from above we have

√
n(θ̂n − θ∗) = −

1√
n
∂L(θ)
∂θ |θ=θ∗

1
n
∂2L(θ)
∂θ2 |θ=θ̃

. (1)

First let’s study the numerator.

1√
n

∂L(θ)
∂θ
|θ=θ∗ =

1√
n

n∑
i=1

∂ log p(xi|θ)
∂θ

|θ=θ∗

Recall the Central Limit Theorem. If z1, . . . , zn are iid random variables with E[z1] = µ and E[(z1−µ)2] = σ2,
then 1√

n

∑
i zi

D→ N (µ, σ2), meaning the the random variable defined by summation has a distribution that
tends to the Gaussian as n→∞. Therefore, by the CLT we have

1√
n

∂L(θ)
∂θ
|θ=θ∗ =

1√
n

n∑
i=1

∂ log p(xi|θ)
∂θ

|θ=θ∗
D→ N

(
E
[
∂ log p(x|θ)

∂θ
|θ=θ∗

]
, var

(
∂ log p(x|θ)

∂θ
|θ=θ∗

))
.

The mean is

E
[
∂ log p(x|θ)

∂θ
|θ=θ∗

]
=

∫
∂ log p(x|θ)

∂θ
|θ=θ∗p(x|θ∗)dx

=
∫

1
p(x|θ∗)

∂p(x|θ)
∂θ

|θ=θ∗ p(x|θ∗)dx

=
∫
∂p(x|θ)
∂θ

|θ=θ∗dx

=
∂

∂θ

[∫
p(x|θ)dx

]
|θ=θ∗ = 0 ,

since
∫
p(x|θ)dx = 1 for all θ and the derivative of a constant is 0. Since the mean is zero, the variance is

E

[(
∂ log p(x|θ)

∂θ
|θ=θ∗

)2
]
.

The variance can be related to the curvature of the log-likelihood function as follows. First observe that

∂2 log p(x|θ)
∂θ2

=
∂

∂θ

(
1

p(x|θ)
∂p(x|θ)
∂θ

)
= − 1

p2(x|θ)

(
∂p(x|θ)
∂θ

)2

+
1

p(x|θ)
∂2p(x|θ)
∂θ2

Now let’s take the expectation

E
[
∂2 log p(x|θ)

∂θ2
|θ=θ∗

]
= −

∫ (
1

p(x|θ∗)
∂p(x|θ)
∂θ

|θ=θ∗
)2

p(x|θ∗) dx +
∫

1
p(x|θ∗)

∂2p(x|θ)
∂θ2

|θ=θ∗ p(x|θ∗) dx

= −
∫ (

∂ log p(x|θ)
∂θ

|θ=θ∗
)2

p(x|θ∗) dx +
∫
∂2p(x|θ)
∂θ2

|θ=θ∗ dx

= −E

[(
∂ log p(x|θ)

∂θ
|θ=θ∗

)2
]

+
∂2

∂θ2

(∫
p(x|θ) dx

)
|θ=θ∗ .
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Since
∫
p(x|θ) dx = 1 the second term is 0. Therefore, the variance is equal to the negative expected

curvature:

E

[(
∂ log p(x|θ)

∂θ
|θ=θ∗

)2
]

= −E
[
∂2 log p(x|θ)

∂θ2
|θ=θ∗

]
= I(θ∗) .

Now consider the denominator of (1). By the Strong Law of Large Numbers (SLLN), this average converges
to its mean value, the negative Fisher Information, almost surely:

1
n

∂2L(θ)
∂θ2

|θ=θ̃ =
1
n

n∑
i=1

∂2 log p(xi|θ)
∂θ2

|θ=θ∗
a.s.→ E

[
∂2 log p(xi|θ)

∂θ2
|θ=θ∗

]
= −I(θ∗) .

To summarize, the numerator of (1) converges in distribution to a Gaussian

1√
n

∂L(θ)
∂θ
|θ=θ∗

D→ N (0, I(θ∗)) ,

and the denominator 1
n
∂2L(θ)
∂θ2 |θ=θ̃

a.s.→ −I(θ∗). So for large n, the numerator behaves like a Gaussian random
variable and the denominator is almost constant. The ratio therefore converges in distribution to a Gaussian
rescaled by the limiting constant of the denominator

√
n(θ̂n − θ∗)

D→ 1
I(θ∗)

N (0, I(θ∗)) ≡ N (0, I−1(θ∗)) .

This type of convergence is rigorously proved by Slutsky’s Theorem (for more information see
http://en.wikipedia.org/wiki/Slutsky’s_theorem).

1 Invariance of the MLE

Theorem 2. Let x1, . . . , xn be i.i.d. observations of a random variable with distribution p(x|θ∗), and let
τ = g(θ), for some function g. The MLE of τ is

τ̂ = arg max
τ

(
max

θ∈g−1(τ)

n∑
i=1

log p(xi|θ)

)
.

It follows that τ̂ = g(θ̂) is an MLE, where θ̂ is the MLE of θ.

Proof. Note that maxτ
(
maxθ∈g−1(τ)

∑n
i=1 log p(xi|θ)

)
≡ maxθ

∑n
i=1 log p(xi|θ); i.e., the maximizing values

must be the same. Proceed by contradiction. Suppose that θ̂ 6∈ g−1(τ̂) and that maxθ∈g−1(bτ)

∑n
i=1 log p(xi|θ) <

maxθ
∑n
i=1 log p(xi|θ). This contradicts the fact above, and so g(θ̂) must maximize the likelihood.

Example 1. Xi
i.i.d∼ Poisson(λ) , i = 1,...,n

Find the MLE of probability that x ∼ Poisson(λ) is greater than λ. Define

ρ = g(λ) = P (X > λ)

=
∞∑

k=bλ+1c

e−λ
λk

k!

= 1−
bλc∑
k=0

e−λ
λk

k!
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The MLE of ρ is

ρ̂n = 1−
bλ̂nc∑
k=0

e−λ̂n
λ̂n

k

k!

where

λ̂ =
1
n

n∑
i=1

xi


