
ECE 732
Project 3

Wavelets, Compression, and Denoising

Due: 5pm, 20 December 2003

This project investigates the discrete wavelet transform (DWT) and its application to signal
and image compression and denoising. First we will investigate the 1-d DWT, then move on to
multiscale image analysis using the 2-d DWT.

The 1-D DWT and Signal Denoising

1. Consider three length-4 scaling filters parameterized by α = 0.1π, π/3, 0.9π (see class notes
for the filter expression in terms of α).

a. Verify that all three filters satisfy the sufficient conditions of Cohen’s theorem.

b. Using the method of successive approximations, plot the scaling function associated with
each filter. Describe the behavior of each function and assess the potential of each.

c. Propose your own length-4 scaling filter that meets the requirements in Cohen’s theorem,
and compare it to the other three.

d. The basic recursive scaling equation allows us to express the wavelet function in terms of
the scaling function and the filter h1(n) = (−1)(1−n)h(1−n). Using this relationship and
the approximate scaling functions obtained above, plot the wavelet function associated
with each scaling function.

2. Compare the performance of the four scaling filters for 1-d signal denoising.

a. Generate the test signal ’Doppler’ (x) using makesig.m.

b. Generate a white Gaussian noise sequence w of standard deviation σ = 0.05 using built-in
Matlab function randn.m.

c. Add noise sequence to test signal sequence, y = x + w.

d. For each scaling filter, compute the DWT of the noisy signal using Matlab’s Wavelet
Toolbox or using mdwt.m from the Rice Wavelet Toolbox.

d. Threshold the wavelet coefficients of y; set coefficient’s whose magnitude is less than 3σ
to zero, leave other coefficients unaltered.

e. Compute inverse DWT of thresholded wavelet coefficients using Matlab’s Wavelet Toolbox
or midwt.m from the Rice Wavelet Toolbox to obtain a signal estimate x̂.

(continued on next page)



The 2-D DWT and Multiscale Image Analysis

3. Develop a Matlab function for computing the J-level, J = 1, 2, . . . , log2 N , Haar wavelet trans-
form of an N ×N image (assume N is a power of 2). Your function can repeatedly call the
function haar.m that I wrote (downloadable from the course website) or you can start from
scratch. Your function should take two arguments: an input image and the number of levels
J you wish to compute. Your function should output an array of N ×N wavelet coefficients
(in the arrangement discussed in class).

4. Develop a Matlab function for computing the inverse J-level, J = 1, 2, . . . , log2 N , Haar wavelet
transform of an N × N array of Haar wavelet coefficients. Your function could repeatedly
call the function ihaar.m which reverses the process of haar.m, for example. Your function
should take two arguments: an input array of Haar wavelet coefficients and the number of
levels J in that array. Your function should output an image reconstructed from the input
coefficients.

5. Test your forward and inverse Haar transform code by applying it to the camera image (down-
loadable from the course website). You can test it with other (grayscale) images if you want,
too.

(continued on next page)



Experiments with the 2-D DWT in Compression, Denoising and Deconvolution

6. Image Compression: Compare the compression performance of the Haar wavelet transform with
the Fourier transform using the test image(s). Compute the transforms, set all coefficients
to zero except for the largest (in magnitude) 25%, 10%, 5%, and 1% and reconstruct an
approximation to the original image by applying the corresponding inverse transform. This
simulates the process of compressing by factors of 1/4, 1/10, 1/20, and 1/100. Display the
resulting images and comment on the relative quality of wavelet vs. Fourier results.

7. Image Denoising: Compare the denoising performance of the Haar wavelet transform with the
Fourier transform (fft2) using the test image(s). Add a small amount of Gaussian white
noise (with variance σ2) to each image, compute the transforms, set all coefficients to zero
except those whose magnitude is larger than 3σ (you can also try factors other than 3), and
reconstruct an estimate of the original image by applying the corresponding inverse transform.
Note that we have defined the Haar wavelet transform to be orthonormal, so the noise variance
in the wavelet coefficients is σ2 (the same as in each pixel). However, Matlab’s fft2 is not
normalized, and you should verify the proper normalization level (I think you should use a
threshold of 3Nσ to account for the lack of normalization). Display results and comment on
the difference between the wavelet and Fourier methods.

8. Denoising vs. Wiener Filtering: Construct a fft2 based Wiener filter and compare its perfor-
mance to the Haar wavelet and fft2 denoising schemes investigated above. Display results
and comment on the difference between the denoising and Wiener methods.

9. Wavelet-based Image Restoration: Develop a wavelet-based approach to image restoration using
a two-step procedure: First, deconvolve the image using an “aggressive” Wiener filter (this
should result in a sharp, but very noisy, image); second, devise an appropriate wavelet de-
noising operation to reduce the noise that was amplified by Wiener filtering. Note that the
noise will be colored (non-white) after the first Wiener filtering step. Wavelet coefficients at
fine scales will contain a larger level of noise than those at coarse scales. The precise amount
of noise in each wavelet subband depends on the Wiener filter’s frequency response and the
frequency support of each wavelet. Derive an exact expression for the noise variance in each
wavelet subband (assuming the original blurred image was contaminated with Gaussian white
noise with variance σ2), and propose an appropriate threshold level for the coefficients in each
subband based on the noise variance (e.g., three times the standard deviation of the noise in
each coefficient). Test your method on the deblurring problem studied in Part (e) of Home-
work 4, and compare your wavelet-based approach to Wiener filtering alone. Experiment
with different noise levels, different blurring functions, and different images.


