Consider the Iris flower dataset \textit{iris.mat}. The dataset contains features for three different classes of flowers:

\begin{itemize}
 \item 0 \text{ – Iris Setosa}
 \item 1 \text{ – Iris Versicolour}
 \item 2 \text{ – Iris Virginica}
\end{itemize}

There are 50 examples for each class in the dataset. Each example has a four dimensional feature vector:

\begin{itemize}
 \item 1 \text{ – sepal length in cm}
 \item 2 \text{ – sepal width in cm}
 \item 3 \text{ – petal length in cm}
 \item 4 \text{ – petal width in cm}
\end{itemize}

These data are organized in the file \textit{iris.mat} in the following format. Each row corresponds to an example. Columns 1,2,3 4 are features for each example, and column 5 is the corresponding class label 0,1,2.

1. Split the training data for each class into two subsets of sizes \(n = 25 \) and \(m = 25 \). Use the first \(n = 25 \) examples to maximum likelihood estimates of the mean vector and covariance vector for each class. Then use the corresponding multivariate Gaussian densities with these MLEs to classify the remaining \(3m = 75 \) examples. Report the sample means and covariances for each class and the error performance of the trained classifier. Specifically, construct a \(3 \times 3 \) table of the outcomes of the classifier with entry \((i,j)\) corresponding to the number of times a feature with true label \(j \) was classified as \(i \).

2. How does the classifier perform as the number of training data \(n \) is varied? Specifically, construct a classifier using \(n = 15, 20, 25, 30, 35, 40 \) and test it on the remaining \(3m \) examples in each case. Plot the total probability of error as a function of \(n \).

3. Consider a simple dimensional reduction based on discarding one of the four features. Which feature would you discard and why? Repeat the error analysis above in 2 in this reduced feature space. Plot the total error as a function of \(n \) again, and compare to the previous results using all four features.