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Abstract—Coherent data communication over doubly-selective require relatively simple processing at the receiver aradl le
channels requires that the channel response be known at the to decoupling of the data detection module from the channel
receiver. Training-based schemes, which involve probingfahe a5ming module at the receiver, which helps to reduce the
channel with known signaling waveforms and processing of th receiver complexity even furthe} As such, despite the fact
corresponding channel output to estimate the channel parae: . P Yy : ' P .
ters, are commonly employed to learn the channel response in that tralnlng'baSEd methods are known to be Suboptlmal from
practice. Conventional training-based methods, often copris- the spectral efficiency viewpoint, they are widely prevaien
ing of linear least squares channel estimators, are known to modern communication systems [5].
be optimal under the assumption of rich multipath channels. — gne of the first analytical studies of training-based channe
Numerous measurement campaigns have shown, however, thatIearnin methods was authored by Cavers [6], who coined
physical multipath channels tend to exhibit a sparse struaire at 9 . X y ’ ’
h|gh Signa| space dimension (time_bandwidth product)’ anccan the termpl|0t Symbol aSS|Sted mOdu|atICfDr these methOdS.
be characterized with significantly fewer parameters compeed  Since then, there has been a continued interest in the design
to the maximum number dictated by the delay-Doppler spread and analysis of training-based methods for various claskes
of the channel. In this paper, it is established that traditonal channels; we refer the reader to [5] for a tutorial overvigw o

training-based channel learning techniques are ill-suitd to fully PR .
exploiting the inherent low-dimensionality of sparse chanels. related work. These works often highlight two salient aspec

In contrast, key ideas from the emerging theory of compresse Of training-based channel learning methods, namsdyising
sensing are leveraged to propose sparse channel learningtheds andestimation Sensing corresponds to the design of signaling

for both single-carrier and multicarrier probing waveform s waveforms (training signals) used to probe the channel and
that employ reconstruction algorithms based on convex/liar  their placement within the transceiver signal space. Eston
programming. In particular, it is shown that the performanc e of . . .
the proposed schemes come within a logarithmic factor of tha 'S the prob!em of processing the corresponding Channeu_tbutp
of an ideal channel estimator, leading to significant redudons in ~ at the receiver to recover the channel response. The atilay
the training energy and the loss in spectral efficiency ass@ted training-based method to accurately learn the channebressp
with conventional training-based methods. depends critically on both the design/placement of apatgr
training signals and the application of effective estimmati
methods. In particular, training waveforms and estimation
Several coherent communication techniques have been deategies that are tailored to the anticipated charatiesi
veloped in the last decade or so to maximally exploit thef the underlying channel yield better estimates than dener
effects of time- and frequency-selectivity of doubly-s¢ie procedures. Grappling with these issues is central to mfost o
channels—see, e.g., [1]-[4]. In particular, doubly-sédec the papers written on this topic.
channels can offer large joint multipath-Doppler diversit This paper presents a new approach for learning (single-
gains when perfect channel state information (CSI) is alséél antenna) doubly-selective channels through trainingthas
at the receiver [2], [3]. In many practical scenarios, hosrev methods. A number of authors have recently addressed this
the receiver has seldom access to the CSI and the charpreblem—see, e.g., [7]-[9]. The analysis carried out irs¢he
needs to be learned either implicitly or explicitly to redq@t and similarly related works, however, is often based on the
benefits of coherent demodulation and decoding. assumption of aich underlying multipath environment in the
Two classes of methods are commonly employed to leasense that the number of degrees of freedom (DoF) in the
a channel at the receiver. maining-based channel learning channel scale linearly with the signal space dimensiondjpcb
methods, the transmitter multiplexes training signalg #va of signaling duration and bandwidth) [10]. In contrast, picgl
known to the receiver with information bearing signals iné¢i wireless channels encountered in practice tend to exhibit
frequency and/or code domain and CSI is obtained at the meypulse responses dominated by a relatively small number of
ceiver from knowledge of the training and received signigs. dominant resolvable paths, especially when operatingrgela
blind channel learningnethods, CSl is acquired at the receivelbandwidths and signaling durations and/or with numbers of
by making use of the statistics of information bearing signaantenna elements [11]-[13]. These are often called “sparse
only. Although theoretically efficient, blind learning rheds channels, since majority of the DoF in the channel are either
typically require complex signal processing at the reqesrel zero or nearly zero. The primary focus of this paper is
often entail inversion of large data-dependent matricdschv on learningsparsedoubly-selective channels—channels with
also makes them highly prone to error propagation in rapidlynost of the multipath energy localized to relatively small
varying channels. Training-based methods, on the othed,haregions within the delay-Doppler spread. Sparse channdl mo
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els of this type have received considerable attentionyateterms of a linear programming based (nonlinear) estiméatar t
both from a communication-theoretic perspective [14] argbes by the name dbantzig selectof22] and last, but not
a channel learning perspective [15]-[17]. In the context d&fast, the focus is on providing a formal comparison of the
channel learning, the previous investigations [15]-[1adki MSE performance of the proposed sparse channel learning
a quantitative theoretical analysis of the performancehef ttechniques with that of more conventional strategies, Wwhic
proposed sparse channel learning methods in terms of tfeen comprise of linear least squares channel estimators.
mean squared error (MSE). In contrast, the main results ofFinally, with regards to the connections with compressed
this paper adapt recent advances from the theory of cosensing related literature, some of the analysis carriednou
pressed sensing to devise quantitative error bounds fgtesin the paper in the context of single-carrier training is rtat
carrier and multicarrier training waveforms and conveddir to the recent work of Pfander et al. [23] and Herman and
programming based estimation schemes. The bounds coBtehmer [24]. Both [23] and [24] study the problem of
within a logarithmic factor of the performance of an idealdentifying matrices that have a sparse representatiomen t
channel estimator and clearly reveal the relationship eetw dictionary of time-frequency shift matrices; [23] looksthts
the training signals and the accuracy of the channel estenatproblem in an abstract setting, while [24] studies it from a
) ] ) radar perspective. It can be seen from Section Il that tkee us
A. Relationship to Previous Work of single-carrier spread spectrum training waveformsnglo
In the channel learning context, the work in this paper igith appropriate modeling of sparse doubly-selective clets)
closely related to some of the earlier works by Cotter and Ratso reduces the channel learning problem to that of idengf
[15], Li and Preisig [16], and Taubock and Hlawatsch [17fh matrix which has a sparse representation in the dictionary
Similar to the main results of this paper, the channel lewyniof time-frequency shift matrices. The resulting time-ghih
techniques proposed in [15]-[17] have been inspired byithe lthe paper are linear, however, as opposed to the circula one
erature on sparse signal representations, more commaaly stconsidered in [23], [24]. More importantly, though, bott8]2
ied under the rubric of compressed sensing these days [M8hich makes use of a BPIC estimator for matrix identification
Both [15] and [16] limit themselves to single-carrier signg and [24], which focuses only on the noiseless setting, lack a
and propose variants of the matching pursuit algorithm [18rmal MSE analysis. Further, the emphasis in [23], [24] is
for estimation purposes. The results, however, are priynarbn finding thecoherencd?21] of the dictionary of (circular)
based on simulation and experimental implementationsasd time-frequency shift matrices, while we focus on showinag th
such, fail to provide any theoretical justifications for thee the dictionary of time-frequency shift matrices satisfibs t
of the proposed training-based methods. The channel tearniestricted isometry propertj25], which allows for improved
technique proposed in [15] also suffers from the drawbaak threcoverability results; we refer the reader to Section Htl a
it fails to take into account the Doppler sparsity and limitthe proof of Theorem 2 for further details.
itself to sparsity in the delay domain only. Notation: Throughout this paper, the following notation
In [17], Taubdck and Hlawatsch focus on the case & used. Vectors (matrices) are denoted by bold-faced lower
multicarrier signaling and propose the use of an optimirati case (upper case) letters and, unless otherwise statetieall
based estimator that goes by the naméasis pursuit with vectors are taken to be column vectors. Scalars are denoted
inequality constraint(BPIC) [20], [21]. Although some the- by light-faced letters and constants are denoted by therlett
oretical guarantees are provided for the proposed techniql:’ or some sub/superscripted version oflitand 0 are used
the paper lacks a formal MSE analysis. Also, while BPIC i® denote identity matrices and zero vectors of appropriate
nearly optimal under the adversarial noise model [20], it sizes, respectively. Superscripts, (-)’ and (-)! are used
known to be strictly suboptimal in the presence of stochasto denote complex conjugation, transposition and congugat
noise [22]. Finally, the multicarrier training waveformms[iL7] transposition, respectively. 1A is a p x ¢ matrix, then
are comprised of the elements of &completeshort-time a = veqA) is used to denote thgpg x 1 vector obtained
Fourier (STF) basis [1], also referred to as a Gabor badig stacking columns ofA. The inverse and trace oA are
or a Weyl-Heisenberg basis in the time-frequency analysienoted byA~! and t(A), respectively.|al|, is the usual
literature. Signaling using an incomplete STF basis, h@nev/, norm of the vectora, while |lal|; counts the number of
results in a loss in spectral efficiency of the communicatiatonzero entries im. Finally, ® is used to denote a Kronecker
system, which directly translates into a linear decreasen product andl[, ;(t) is the indicator function ofa, b).
overall system capacity [4]. Organization: The rest of this paper is organized as fol-
In contrast to the aforementioned references, this papér stlows. In Section 1l a modeling framework for multipath
ies both single-carrier and multicarrier signaling for chal wireless channels is reviewed and the notion of sparse goubl
sensing purposes. In particular, single-carrier traimsrgarried selective channels is formally described. Section 1l tders
out in the paper using spread spectrum waveforms multiglexidne problem of learning sparse doubly-selective usinglsing
in the code domain, whereas the multicarrier training wavearrier signaling waveforms, while Section IV studies this
forms are comprised of the elements af@npleteorthogonal problem from the multicarrier signaling perspective. Hina
STF basis, which helps to maximize the spectral efficiengpme numerical results and a discussion of the numerical and
of the system [4]. The main results of the paper are statedtheoretical results are provided in Section V.



II. MULTIPATH WIRELESSCHANNEL MODELING h(t, 7'5 -

= 1D Fourier Transform
One of the most salient characteristics of wireless channel
is signal propagation over multiple spatially distributeaths,
which gives rise to a large number of propagation parameters H(t, f) «—> Wﬁ U, T = 2D Fourier Transform

From a communication-theoretic perspective, however, nge al.:. L Relationshio bet e i SR ; ,

: . P . - ig. 1. Relationship between the time-varying impulse oesp, time-varying
only _mterested in _charactgrlzmg thteraction b_etween the frequency response and delay-Doppler spreading function.
physical propagation environment and the signal space of
wireless transceivers. This interaction, which occursha t
multiple dimensions of time, frequency and space, is kno

to depend only coarsely on the exact values of the physi
parameters and can be accurately described by a signiﬁcala the signaling bandwidth and duration, respectively,, i.e

smaller number of DoF [2], [26]-{28]. WTmaz > 1 and Tv,,.. > 1. We further limit ourselves

In this section, we review a virtual modeling framework fOEo underspread channels, characterizedrhy, v < 1
. . . 1 r¥max 1
doubly-selective channels that captures the interacttwden which is true of most radio channels [29], and assume that

the physmal paths and the 3'9”?" space. Physically, eang Plthere is no interpacket interference in time and/or fregyen
agation path in a doubly-selective channel can be repredeqte T
& e _ i y Tmaz ANAW > vy 0.
as a distinct point in the delay-Doppler domain. The virtual . .
channel model [2], also sometimes referred to as the caabniB- Doubly-Selective Channels: Virtual Representation
channel model [26], constructs a low-dimensional approx- Doubly-selective channels generate multiple delayed,
imation of the underlying multipath environment througlDoppler-shifted and attenuated copies of the transmittaebw
uniform sampling of the delay-Doppler domain at a resoluticdform. A discrete path model is frequently used to capture
commensurate with the signaling duration and bandwidth.the characteristics of these channels in terms of the pélysic
plays a key role in the subsequent development in this papeopagation paths. In the discrete path model, the delay-
since it captures the relationship between the clustering Doppler spreading function of the channel is expressed as

physical paths within the delay-Doppler domain and sparsit

focus of this paper is on learning doubly-selective chagnel
ich are characterized by the fact that the delay spread and
ppler spread of the channel are large relative to the saver

Npath,
of effectiveDoF in the channel and sets the stage for the Clv,7) = Z aib(v — v;)5(r — 71) )
application of compressed sensing theory and methods. P

A. Doubly-Selective Channels: Physical Channel Model and the transmitted and received waveforms are related by

Npath

We consider single-antenna communication channels, which B 2t
are often characterized as linear, time-varying systerg§ [2 y(t) = Z i€ ot — i) ®)
The corresponding (complex) baseband transmitted and re-, =t i )
ceived signals in the absence of noise are related as which corresponds to signal propagation aldvg.., physical
paths, wheren; € C, v; € [—Vimaz/2, Vimaz/2) @and 7; €
yt) = /Tmaz Wt 7yt — ) — /H(t, HX(f)ei2m iy [O,_rmaz] are the cqmple.x path ga_lin, the delay and _the Doppler
0 shift associated with théth physical path, respectively.
Tmaz [Vmaw/2 _ The discrete path model (2), while realistic, is difficult
Z/ Cv,m)x(t — )& ™ dvdr D to analyze and learn due to its nonlinear dependence on a
0 potentially large number of physical parametéfs;, v;, ;) }.
where z(t) and y(t) represent the transmitted and receiveHowever, because of the finite signaling duration and band-
waveforms, respectively, anli(f) is the Fourier transform of width, the discrete path model can be accurately approxi-
x(t). The channel is characterized by the time-varying impulseated by a linear (in parameters) counterpart, known as a
response,h(t,7), or the time-varying frequency responseyirtual channel model, with the aid of sampling theorems
H(t, f), or the delay-Doppler spreading functio€(v, ). and/or power series expansions—see, e.g., [2], [26]. The ke
All three channel characterizations are equivalent aratedl idea behind virtual channel modeling is to provide a low-
to each other via Fourier transforms. The exact relatignstdimensional approximation of the discrete path model by
between these channel representations is illustratedginlFi uniformly sampling the physical multipath environment lire t
The parameters;,., and v, in (1) are the two key delay-Doppler domain at a resolution commensurate With
channel parameters;,,,, the delay spread of the channelandT (At =1/W,Av =1/T). That is,
is defined as the maximum possible nonzero delay introduced -1 K
by the channel and,,... /2, the Doppler spread of the channel, y(t) ~ Z Z hg,keﬂ”%tx(t — /W) (4)
is defined as the maximum possible (one-sided) Doppler shift S —
caused by the channel. Throughout the paper, we implicitly by A in(k—Tw)
consider communication using packets of duraffoand (two- bk Z i€
sided) bandwidth/. Thus, the dimension of the transceiver
signal space isV, ~ TW, the time-bandwidth product. The

—Vmaz /2

1€S, NSy &

-sindk — Ty;)sindl — Wr;)  (5)



i’, that are larger thamAr and/or Av. Similar to the setting

in Fig. 2, not every delay-Doppler bin of sizA7T x Av

= contains a physical path in this case. In particular, since
3 a channel coefficient consists of the sum of gains of all
paths falling within its respective delay-Doppler resmatbin,

= sparse doubly-selective channels tend to have far fewer tha
] | N nonzero channel coefficients at any fixed (but large enough)

> . signaling duration and/or bandwidth. We formalize thisioot

0 DELAY (1) Tmaz X
Fig. 2. A schematic illustrating the virtual representataf a single-antenna, of deIgy-_DoppIer sparsity as follows.
doubly-selective channel. Each black dot denotes theibatin of a distinct Definition 1 (D-Sparse Channels)tet D denote the num-

phy?fical pat{h to t}he delay-Doc?pler Sr;reaolling funcgon *Jﬂr:vﬁrtua]}l channelh ber of effectiveDoF in a doubly-selective channel, that is,
coefficients {h, .} correspond to uniformly-spaced samples of a smootheg _ . B
version of the spreading function taken{dt,, o) = (¢/W, k/T)}. B = |{.(£’ k) : hey > 0}|. We say that the channel
sparse ifD <« N, whereN = L - (2K + 1) = TmazVmazNo
is the total number of resolvable delays and Doppler shifts

where sin¢a) = sin(ra)/ma, and L = [WTpae| + 1 and  (channel coefficients) within the delay-Doppler spread.
K = [TVja./2] denote the maximum number of resolvable

delays and (one-sided) Doppler shifts within the delay-@lep I1l. L EARNING SPARSEDOUBLY-SELECTIVE CHANNELS:
spreading function, respectively. The s&t, = {i : ~, € SINGLE-CARRIER SIGNALING

(/W — 1/2W,¢/W + 1/2W)} is the set of indices of all  Since the virtual representation of a doubly-selectiveneha
paths whose delays lie within the delay resolution bin dfel captures its essential characteristics in terms ofta@rmel
width A7 = 1/W centered around thé-th virtual delay, coefficients{h, s}, the channel learning problem is equivalent
7o =L/W,whileS, ), = {i:v; € [k/T—1/2T,k/T+1/2T)} to the design and placement of the training wavefar(t)
denotes the set of indices of all paths whose Doppler shiftéthin the N,-dimensional signal space and estimation of
lie within the Doppler resolution bin of widtlAvy = 1/T  hex's from the (noisy) received waveforp{t). The signaling
centered around thé-th virtual Doppler shift,7, = k/T. waveforms commonly employed for channel sensing purposes
The parameters{h,;} are termed as the virtual channefan be broadly categorized as either single-carrier oricaumt
coefficients in the delay-Doppler domain. The expressign (8er. We begin our treatment of the sensing and estimation of
states that the channel coefficignt; approximately consists sparse doubly-selective channels by focusing on the case of
of the sum of gains of all paths whose delays and Doppleingle-carrier signaling in this section.

shifts lie within the (¢, k)-th delay-Doppler resolution bin of 5 Sensing Phase

size AT x Av centered around the sampling poirt, ) = . . . . .
(¢/W,k/T) in the delay-Doppler domaF;n,gaE i(llustr];)ted in We consider binary phase-shift keying as the modulation

Fig. 2. In essence, the virtual representation (4) effebtiv scherfne and propose(;he utse ofas[[r_lgltla-carner sdpreadmgecftr

approximates a discrete path doubly-selective channering V:I:i\:weinormu(r:ocr)rseesspoghelzn?es%It?n pat:;i:r:Jir?r jvg\?;olﬁrr](g) C:ane or

of an N-dimensional parameter comprising of the virtuaﬁ) gp ri q ) 9 9

channel coefficient{h s}t where N = L - (2K + 1) = € represented as
WTma;E + 1 - 2 TVma;E 2 + 1) ~ Tmamyma;ﬂNo- N071

(I 1+0-@f /2l a(t)= Y wnlpr,) (t—nl.), 0<t<T  (6)

n=0
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C. Sparse Doubly-Selective Channels

Channel measurement results dating as far back as 1987 [WIhbreI[Och)(t) is the chip waveform?, ~ 1/W is the chip
and as recent as 2007 [13] suggest that multipath componefigation and{z,, € R} is the spreading code corresponding to
tend to arrive at the receiver in clusters. These clustepatifs the training waveform. The output of the channel correspond
physically correspond to large-scale objects in the seage ing to z(t) is given by (cf. (4))
environment (e.g., buildings and hills in an outdoor propa- -1 K
gation er_1vironment), while muIt_ipath components within a y(t) ~ Z Z h&kejQﬂ'%tx(t_é/W)
cluster arise as a result of scattering from small-scalesires
of _th(_e corresponding _Iarge-scale reflector (e.g., windofva o +2z(t), 0<t<THTmax (7)
building, trees on a hill).

Based on the interspacings between different multipatfhere z(¢) is a zero-mean, circularly symmetric, complex
clusters within the delay-Doppler domain, doubly-selecti additive white Gaussian noise (AWGN) waveform. For spread
channels can be characterized as either “rich” or “spaise”. spectrum waveforms, chip-rate samplingy6f) at the receiver
a rich multipath channel, the interspacings are smallen th¥ields an equivalent discrete-time representation
AT = 1/W in delay andArv = 1/T in Doppler. Sparse L-1 K
multipath channels, on the other hand, exhibit intersggcin =y, = Z Z hMeﬂ”NLo"xn_g

=0 k=—K

=0 k=—K

INote that the approximation gets more accurate with inangas and W,
due to higher delay-Doppler resolution. + Zn,

n=0,1,...,.N,+L—-2 (8)



where{z,} corresponds to a zero-mean, circularly symmetric, Many real-world channels of practical interest, such as

complex AWGN sequence and, ~ T is the dimension of underwater acoustic channels [16], digital televisionrzteds

the transceiver signal space. [31] and residential ultrawideband channels [12], howgver
Now let N, = N,+L—1 and define aV,-length sequence tend to be either sparse or approximately sparse, Witk

of vectors{x,, € CL'} comprising of the spreading code,,} | h|ly < N. Unfortunately, conventional LS channel estima-

as follows tors, while appropriate for rich channels, fail to capitalion

the anticipated sparsity of the aforementioned channelget

an idea of the potential MSE gains to be had by incorporating

where the notational understanding is that= 0 for i ¢ the sparsity assumption into the channel estimation gtyate

{0,1,..., N, — 1}. Further, let we compare the performance of an LS channel estimator to

that of a channel estimator that has been equipped with an

xn:[a:n Tp—1 --- xn_(L_l)]l, n:O,L...,NO—l

ho,—k ho—k1 - hox oracle The oracle does not reveal the trebut does inform
H— -k M-kt - Ik @ Us of thesparsity pattern(locations of nonzero entries) .
: : : Clearly this represents an ideal estimation strategy arel on
hip-1-k hr—1-k+1 ... ho-1k cannot expect to attain its performance level. Nevertseles

it is the benchmark that one should consider. We begin this

be theL x (2K + 1) matrix of channel coefficients. Note thatcomparison with the following lemma.

each column of the channel mat# represents the impulse Lemma 1:Given the observation model (11), the MSE of

response of the channel corresponding to sdirel Doppler an LS channel estimator is lower bounded as
shift. Finally, let{u,, € C2X+!} be anN,-length sequence of

phase vectors given by E {||ﬁL5 — h||§} > % (13)
u, = [w{\?j w](vlj—l)n w]—vfn}/ with equality if and only ifX has orthogonal columns.
Sketch of Proof: Given the observation model (11), it is
wherewy, = ¢ /% andn = 0,1,...,N, — 1. Then the €asy to see that
sequencqy, } in (8) can be written as E {HELS _ hllg} = tr(XTX)~ 1)

yn = x,Hu, + 2, = (v, ® x,,) veqH) + z,

and since the trace of a matrix is equal to the sum of
=(u,®x;,)h+2z,, n=0,1,...,N,—1 (10) its eigenvalues, an application of arithmetic-harmonianse

whereh = veqH) € CV is the vector of channel coef‘ficients,'nequ"’mty yields

and stackingy,,’s into an N,-dimensional vectoy yields the tr(XTX)"1) > N? _ N
following system of equations ~r(XtX) €
y=Xh+2z (11) with equality if and only ifXTX = EIy. ]

- _ _ _ _ ) On the other hand, lef, C {1,...,N} be the set of
where theNo x N “sensing matrix"X is comprised 0f{2n® indices of theD nonzero entries oh and suppose that an
x,,} as its rowsX = [uo ®Xg ... Uy 1 ® XNrJ - In" oracle provides us witl,. Then an ideal estimatdr* can be

the following, we shall treah as adeterministic but unknown obtained fromy by first forming arestrictedLS estimator
vector. It is further assumed that the communication system t e
hz, = (Xz* Xz,) Xz*y (14)

has a transmit energy budget &ffor training purposes, i.e,
SV El|lea|?) = €. Finally, without loss of generality, we where Xz, is a submatrix obtained by extracting the
assume that the spreading cole,} is generated from a columns of X corresponding to the indices if,, and then
Rademacher distribution, i.ex,,’s independently take valuessettingh* equal tohz, on the indices irZ, and zero on the
+v/E/N, or —/E/N, with probability 1/2 each, andz is indices inZ¢. Appealing to the proof of Lemma 1, the MSE
distributed asCJ\/(ONO, INO)- of this oracle based channel estimator obeys

. . . B D
B. Estimation Phasfe . | E[|h* - h|2] :tr((XTZ*XL) by > = (15)
The model (11) is a linear observation model with =

L - (2K + 1) unknowns and it can be shown that the sensir‘éith equality if and only if X7, has orthogonal columns.
matrix X has full column rank. In this case, and under no §omparison of the MSE lower bounds (13) and (15) shows

priori sparsity assumption, the least squares (LS) estirmt that conventional LS channel estimators may be at a signtfica

the channel vectoh disad\_/antage_ when it_ comes to i_dentifyi_ng sparse chann_els.
R While the ideal estimatoh* is impossible to construct in
h,s = (X'X)"'X'y (12) practice, we now show that it is possible to obtain a more

is known to be optimal in the sense that (i) it is also th%el'able estimate oh as a solution to the convex program

maximum likelihood estimate oh, and (ii) it achieves the h= argmin ||h||; subjectto [|[X'r|. < A (16)
Cramer-Rao lower bound [30]. hecN



where \(N,€) > 0 andr is the N,-dimensional vector of satisfies RIP of orde2D with d,p € (0,v/2 — 1), where

residualsr = y — Xh. This optimization program goes by theN, = N, + L — 1 and N = L - (2K +1). Here,ca,c3 > 0

name of Dantzig selector (DS) and is computationally tlasleta are constants that do not depend Snor N,,.

since it can be recast as a linear program [22]. We state oufThe proof of this theorem is provided in the Appendix. Note

main results in terms of the DS primarily because it providekat the main condition of the theorei, > ¢, -log N - D? is

the cleanest and most interpretable error bounds that we.kntrivially satisfied for sufficiently underspread doublylesgive

Note, however, that similar bounds also hold for the lassthannels since, by definitiol) < N = TyazVmazNo <K No.

estimator [32] which can sometimes be more computationafiyrerefore Theorem 2, along with Theorem 1, shows that

attractive because of the availability of a wide array ofcégiit the DS estimator (16) does remarkably better than the LS

software packages for solving it [33], [34]. estimator (12) in learning &-sparse doubly-selective channel:
The key to proving the efficacy of the DS estimator isising single-carrier spread spectrum training wavefortims,

in showing thatX satisfies the so-called “restricted isometry/SE improvement is roughly by a factor 61(N/D).

property” (RIP) with sufficiently small value dfD-restricted

isometry constant. IV. LEARNING SPARSEDOUBLY-SELECTIVE CHANNELS:
Definition 2 (Restricted Isometry Constanffhe 2D re- MULTICARRIER SIGNALING

stricted isometry constant oX, denoted byd,p, is defined  |n this section, we consider multicarrier signaling for sen

as the smallest value such that ing and estimation of sparse doubly-selective channels. In

particular, owing to the fact that orthogonal short-timeifter
(STF) basis functions serve as approximate eigenfuncfams
holds for all2D-sparse vectora € CV. The matrixX is said underspread doubly-selective channels [1], [4], we ingese
to satisfy RIP of orde@D if dop € [0,1). the use of training waveforms that consist of the elements of
Note that if any two columns aX happened to be linearly complete orthogonal STF basis whose time-frequency stippor
dependent thed,p, > 1. Loosely speaking, RIP of orderis matched to the channel characteristics.
2D essentially requires that mutual coherence between the
columns of X is sufficiently small so thaX /€ (approxi-
mately) behaves like an isometry on the spac@&Btsparse A complete orthogonal STF basis for thé,-dimensional
vectors. The following theorem asserts that the DS solutionsignal space is generated via time and frequency shifts of
highly accurate in this case. a fixed prototype pulsg(t): vox(t) = g(t — €T,)el? kWot,
Theorem 1:Suppose thatX satisfies RIP of orderD ({,k) € S ={0,1,...,N; —1} x{0,1,..., Ny — 1}, where
with dop < v/2 — 1. Choose\(N, ) = 1/26(1 +a)logN N; =T/T, andN; = W/W,. The prototype pulse is assumed

E(1 - dop)|IBII3 < |XR|Z < E(1+p)[RIZ  (17)

Sensing Phase

for any @ > 0. Then, with probability exceeding — to have unit energy, |g(t)|?dt = 1, and completeness of
2(y/7(1+a)log N - N*)~1, the DS estimatoh obeys {7e.} stems from the underlying assumption tigtVv, = 1,
which results in a total ofN,\N; = TW/T,W, = N,
||ﬁ_h|‘§ <2 logN - (2) (18) basis elements. Therefore, as opposed to signaling over an
€ incomplete STF basis [1] (corresponding TQW, > 1),

signaling using a complete STF basis [4] does not lead to
an inherent loss in spectral efficienty.

. : : ; We propose the use of a training waveform that randomly
in [22],2 states that the DS estimator cpotentially achieve . ) )
[22] R y dedicatesV,. of the N, STF basis elements as “pilot tones”.

squared error within a factor &g IV of the oracle based MSE hat i
lower bound ofD/E£. However, it remains to be seen whethel "2t 1S:
the sensing matriXX satisfies RIP withi,p < v2 — 1. We £
z(t) =1/ —
N, (

where the constant; = 4,/2(1+a)/ (1 — (vV2+1)d2p).

Theorem 1, which is a slight variation on Theorem 1

ST qum), 0<t<T  (20)

n,m)eS,

now state the key result of this section which shows that this
is indeed the case.

Theorem 2:Let {z,,},," be a sequence of independenfhere the set of indices of pilot tones,, consists ofN,
and identica”y distributed Rademacher variables takmg% elements rand0m|y selected fro% and £ is the transmit
+V S/Nz or —/&/No V\;'g‘ le)robabilityl/_2 each. Further, let energy budget available for training purposes. At the rergi
{xn € C*} and{u, € C***'} be as defined in Section Ill-A assuming that the basis paramet&ssand IV, are matched to
and suppose that the signal space dimensipr> ¢ -log N'-  the channel parameters, , and vmq, SO thaty.,’s serve
D?. Then, with probability exceeding— exp(—c3 - N,), the as approximate eigenfunctions for sufficiently undersprea

N, x N matrix X given by channels [4], projecting the (noisy) received signgit) onto

li
X = [uo ©®Xo WX ... Uy ;O XNo—l} (19) SNote that signaling over a complete orthogonal STF basisbeathought

of as block orthogonal frequency division multiplexing (@¥) signaling

2The variation is primarily due to the presence of complelea noise as with OFDM symbol durationZ, and block lengthN; = T'/T.
opposed to the real-valued noise in [22, Th. 1.1] and ndithe fact that 4Two necessary matching conditions are: 7)oz < To < 1/Vmas and
O0p,2p < V265 p; we refer the reader to [22] for further details. (i) vmaz < Wo < 1/Tmaa; we refer the reader to [4] for further details.



the STF basis waveforms yields

[ £
Yn,m = <y17n,m> ~ FHn,m + Zn,m, (nam) € ST (21)

This is especially important from the system efficiency view
point since one extra dimension allocated for training psgs
is one less dimension available for data transmission.

The main thesis of this section is that it is in fact possible

where(y, Yn.m) = fy(t)%T(t)dt, {#n.m} corresponds to an to come within a logarithmic factor of the performance of an
AWGN sequence and the STF channel coefficients are gii§al estimator, both in terms of the MSE and the minimum

by Hym ~ H(t, f)]
Now recall from
responseH (¢, f) = [[ C(v,7)el*™te=72""I dudr. The vir-

g,,f):(nTo,mWo) [4]
e

tual representation of a doubly-selective channel theeefo

implies that H (¢, f) ~ S0y S hegel® Tt i2mw ],
Consequently, the STF channel coefficieffs,, ,,,} can be
written as

L—

Hn,m = Z

(=0 k=
= (ug,n ® ulj",m)veC(H) = (ug,n ® uljm)h

[u

K
ion ko —j2r<Em
E h&kej ™~ e N = u/f,mHut-ﬂ
k=—K

(22)

where H is the L x (2K + 1) matrix of channel co-
efficients defined earlier in (99h = veqH) € CV,

/
(Lfl)m} e CL and W, =

Us,m W,
/
K (K=T)n —Kn 2K+1 |t ;
wn wy, Wy, eC . Itis worth noting

at this point that under

Ny > 2K + 1 and Ny > L. Finally, stacking the received
training symbols{y, »} into an N,.-dimensional vectory

yields the following system of equations
y=Uh+z (23)

where the N, x N sensing matrixU is comprised of
{VE/Np(uy, ®.u},m) : (n,m) € S,} as its rows and the
AWGN vectorz is distributed a V' (0, , I, ).

B. Estimation Phase

Similar to (11), the model (23) is a linear observation mod
with N = L-(2K +1) unknowns. To obtain reasonable channelqtimator (24)

estimates in this multicarrier setting, conventional areln

estimators based on the LS criterion rely on the assumptigﬂd the MSE by a factor of

that the number of pilot toned’, > N [30], [35]. It can
be shown in this case thdf has full column rank and the
resulting LS channel estimator is of the form

h.s = (UMU)~U'y. (24)

As noted earlier, however, a LS channel estimator (while

ction Il that the time-varying frequenc

the assumption of STF basis para
eters being matched to the channel parameters (speci,ficaII%/

iy

T, < 1/Vmaz andW, < 1/7,42), ONE can easily ensure tha

number of pilots needed. The proposed estimator is onca agai

)given as the solution to the Dantzig selector (DS)

h = argmin ||h|j; subjectto |Utr|. <A
heCN

where A\(N,€&) = /26(1 4 a)log N for somea > 0 and

r is the N,-dimensional vector of residuals: = y — Uh.

Theorem 1, withX replaced byU, is still applicable in this

setting, which implies that the DS estimator obeys

£)

(25)

3 (26)

with high probability as long a¥J satisfies RIP of orde2D

with d,p < /2 — 1. The goal, then, is to determine the
number of pilot tonesV,. for which (if any) U satisfies the
aforementioned RIP condition. The key result of this sextio
which helps address this question, is stated in terms of the
fpllowing theorem.

Theorem 3:LetS = {0,1,...,

IR h|Z < logN - (

Ni—1}x{0,1,...,N;—1}

d S, be a random set ofV, ordered pairs sampled uni-
formly at random fromS. Further, let{u;,, € CF} and
{u;,, € C?5+1} pe as defined in Section IV-A and suppose
that N,, > c4 - log5 N, - D. Then, with probability exceeding
1—c5N; “°, the N, x N matrix U comprising of the vectors
{VE/Nr(uy,, @0} ,,) : (n,m) € S} as its rows satisfies
RIP of order2D with 6op € (0,+/2 — 1). Here,cy, c5 andcg
are strictly positive constants that do not depend\oor N,

The proof of this theorem, which leverages some key ideas
from [36], [37], is provided in the Appendix. Theorems 1 and
3 show that, even in the multicarrier setting, the DS estimat

25) comes remarkably close to matching the performance
If an ideal estimator. And as for a comparison with the LS
ignoring théog factors, the DS estimator
roughly results in a decrease in the number of pilot tones
(N/D). Finally, note that
while Theorem 3 requires the number of pilot tones to satisfy
N, > c4 - 1og5 N, - D, it is conjectured that the true lower
bound onN,. is along the lines ofV,. > ¢7 -log N, - D for
some constant; > 0; see, e.g., [37].

V. NUMERICAL RESULTS AND DISCUSSION

known to be optimal for nonsparse channels) is ill-suited fo We begin this section by numerically comparing the MSE
the purposes of estimating a sparse channel. To see thes, mpErformance of the sparse channel learning techniques pro-
that the MSE of the LS estimator (24) is lower bounded byosed in Sections Ill and IV with that of conventional strate
N/E (cf. Lemma 1). On the other hand, using argumengges comprising of linear LS channel estimators. The simula
similar to the ones made in Section IlI-B, an ideal channdbn parameters are chosen to be depictive of a communicatio
estimator having access to an oracle can be shown to haystem with (i) Channel Parametersr,,,, = 250 us and

the MSE lower bound oD/£. Equally importantly, the ideal
estimator also does not requifé. > N pilot tones and can
provide reasonable estimates as longNgs> D (cf. (14)).

Vmaz = 350 Hz (corresponding to, e.g., a carrier frequency
of 1.89 GHz and maximum speed ofo0 km/h), and (ii)
Signaling ParametersT’ = 45 ms andW = 45 kHz, which



"""""""""""" that the gap between the MSEs of the lasso estimate and the
ideal estimate corresponding to spread spectrum trairsng i
much smaller than the one corresponding to STF trainings Thi
observation is attributable to the fact that the probabitit

*y  the sensing matriXX (corresponding to the spread spectrum
training waveform) not satisfying the RIP condition goes to

MSE (log Scale)
i
S

MSE (log Scale)
J
15

3|/ = = =S Soln. (135 Pilots)
== LS Soln. (675 Pilots)
m—|_asso Soln. (135 Pilots)

= = =LS Solution
=== | asso Solution

ooty | el comesnimEes | zero exponentially inV,, whereas for the sensing matritx
SNR (in dB) SNR (in dB) (corresponding to the STF training waveform) it goes to zero
(a) (b) only polynomially in N, (cf. Theorems 2 and 3). However,

Fig. 3. Numerical results comparing the performance of adasstimator @S t0 the question of which of the two training waveforms is
with that of a LS estimator. The MSEs of the channel estimatesplotted pest suited for channel sensing purposes, the answer d'epend
on alog scale against the SNR in dB corresponding to (a) Spread Spect o hoyy the channel learning module integrates with the data
Training Waveforms, and (b) STF Training Waveforms. L. - . . L
transmission module, a detailed discussion of which is bdyo
the scope of this exposition.
resultinN, = TW = 2025 andN = L-(2K +1) = 221. For Secondly, recall thaV' & Ty,azVmazNo. Therefore, assum-
the case of multicarrier signaling, the STF basis paramet& ing that D ~ N for somep; € [0,1), the training-based
chosen to bd, = 1 ms andW, = 1 kHz, which correspond schemes proposed in this paper yield estimates for which the
to Ny = Ny = 45. MSE per channel coefficient scales B§h — h|3]/N ~
The simulations are carried out under the assumption thet-1+#1 /€. Hence, as long as the training eneggy- N, #2
only 10% of the channel coefficients are nonzero, il8.= 22.  for someus € (0,1 — u1), both the MSE per channel coeffi-
The simulation setup corresponds to realizing the chanmgént and the training energy would go to zero asymptogcall
matrix H given in (9) by first randomly selecting the locationsn N,. This shows that sublinearly sparse doubly-selective
of 22 nonzero channel coefficients and then generating thehiannels are asymptotically coherent—an observatiomthst
values from independent realizationsdo¥/ (0, 1/22). The out- made earlier in [14], albeit under the restrictive assuorptif
put of the channel is observed at different values of sigmal- known channel sparsity pattern (the oracle setting).
noise ratio (SNR), and LS and lasso estimates are obtained by astly, note that the appeal of the training-based methods
pseudo-inverting the sensing matrices and executing SpaRg§roposed in this paper goes beyond the identification of trul
[34], respectively. Same (randomly generated) spreading codgparse doubly-selective channels. Indeed, certain petioag
is used for both LS and lasso estimates in the case é@fvironments might yield channels that are ompyproximately
single-carrier training. Multicarrier training is cardeout by sparse. One such class of channels could be, for example, tha
randomly designatingV, of the N, STF basis functions as the magnitudes of the ordered channel coefficients exhibit a
pilot tones in the case of lasso estimate, and by using a comgwer law decay in the sense that th¢h absolutely largest
type pilot arrangement in the case of LS estimate. That itry inh = veo(H) satisfieg ;)| < aj~1/s for somea > 0
2rs(t) = VE/Nr Y myep Tnm(t), P = {(n,m) : n = ands < 1. Then, redefining the sparsity paramefgas D =
0,1,....,Ny =1, m = 0,N¢/p,...,(p — 1)Ny¢/p}, where it |{j: |h;| > E-1/2}|, itis easy to show that employing either
is assumed thaWV,, = pN; for somep that is a factor ofNs. spread spectrum training waveforms with > ¢, -log N - D?
This is because of the fact that comb-type pilot arrangesneat STF training waveforms withV,. > ¢, - log® N, - D and
are known to be optimal for LS channel estimators [35]. making use of the DS estimator yield channel estimates that
The MSEs of the channel estimates, corresponding to aehieve, with high probability, the minimax error rate otis
eraging overl000 independent trials, are plotted against thelass of approximately sparse channels—see [22, Th. 1.3].
SNR in Fig. 3. As expected, the lasso estimator substan-
tially outperforms the LS estimator and comes very close to APPENDIX
matching the performance of the oracle based ideal chanReI
estimator. In particular, the gap between the MSEs of thée
LS and lasso estimates corresponding to the spread spectrue begin by noting that it is sufficient to prove the theorem
training waveform is on the order af dB at low SNR and with £ = 1, since the general case would follow from a simple
10 dB at high SNR—see Fig. 3(a). As for the case of STFescaling argument. Therefore, we assufne- 1 from now
training, the LS estimator fails to yield a consistent eatien on. For ease of notation, defide= d>p € (0,+/2 — 1) and
when N, = 135 < N = 221, and severely underperforms theS = 2D. Proving the RIP condition in the theorem requires
lasso estimator with35 pilots even when it itself utilize§75  showing that, for all subsets C {1,2,..., N} which satisfy
pilots; the loss in spectral efficiency is abaudB and the gap |Z| = S, the eigenvalues of the Gram mat&(Z) = XTIXZ
between the MSEs is on the order4f dB at low SNR and lie in the interval [1 — 0,1 + §]. Here, Xz denotes the
7 dB at high SNR—see Fig. 3(b). N, x S submatrix obtained by retaining the columns %f
A few concluding remarks are in order now. Firstly, notic€orresponding to the indices ih
The above condition can be established fdixadZ using
5As noted earlier, lasso is expected to perform as well as ®d3D]. the eigenvalue perturbation theory. In particular, Gerg

Proof of Theorem 2



disc theorem states that every eigenvalue of the Hermitiaa two sums having mutually independent terms. To establish

matrix G(Z) lies in the union ofS intervals given by this claim, rearrange the summands in (27) as follows
S No—1—A—n
Ay | Nezighon |
(1) = {2 €R: |z - g,4(T)] Z 1905(T)| g o) = 5 Y Tngia Tnrerna
i n=0 i=0
(r—r")(n+iA+p'—1)
That is, {eigenvalues olG(Z)} C U, R;(Z) [38]. Notice " Wi, . (28)

thatg; i(Z) = 1 for every subsef. Therefore, to establish thatnotice that (i) each term in an inner sum is only dependent
the eigenvalues ofx(Z) lie in [1—4,1+ 4], it is sufficient to  with jts adjacent terms in the sum, and (i) the inner sums
show thatlg; ; (Z)| < 6/5 Vi, j,i # j, since this would imply  gre mutually independent. Consequently, indexing thesénm
that R;(Z)  [1 — 4,1+ ] for all i. ~ (28)from1to N,—A, itis easy to see that all the odd-indexed
Next, to guarantee that the eigenvalues ®fZ) lie in  terms are mutually independent, as are all the even-indexed
[1 — 6,1+ 4] for everyZ, consider the fullN x N Gram gnes, Finally, partitioning the above sum into odd- and even

matrix of X, G = XTX. Since theS x S Gram matrixG(Z) indexed terms and appropriately reindexing the terms yield
corresponding to any is a submatrix ofG, showing that

every off-diagonal entry ofG is bounded above by/S in [Fer2] _ [Fe=] _
absolute value is sufficient to guarantee the boundedness ofr,p, Xrp) = Z al, e+ Z el (29)
the off-diagonals ofG(Z), |g; ;| < 6/S V i,5,i # j = ni=1 na=1

19i.(D) < 0/SV 1,74, j, i # j, which in tum would imply where {a;, }, {a],} consist of mutually independent
that the eigenvalues of allg) Gram matricesG(Z) lie in  Rademacher variables that are distributed 485/, with

[1—4,1+4]. probability 1/2 each, and¢,, }, {¢,,} are the deterministic

We proceed with our goal of showing thay;;| < phase factors.
0/S ¥ i,j,i # j by writing the sensing matidX = To proceed further, write (x,,,%,,/) in (29) as
[wo®x0 ... ug_,®@xy, ] in the form of a block (x,, x,/,) = S, +S,,, whereq, = [ YoxB7 gy = [NazA |
matrix and note that

X=[Xx ... Xo ... Xgl. Pr(| (7, 10} > 6/5)

Here, eachN, x L block X, is of the formX, = W, T, (a)
WhereWr _ diaqw&ng&gl’ o ’w;[;‘(No—l)) c (CNO><ND < 2max{Pf(|Sq1| > 5/25), Pr(|5q2| > 5/25)}
andT € RN-*L is a Toeplitz matrix havingzy  0._1] as its ® ) A —§2N? A —62N?
first row and[zo ... xn,—1 0z-1] as its first column. - maX{ P <1652q1> » BORP (1652q2> }
Since eacly; ; is simply the inner product between th¢h and () —62N,
j-th column of X, we can alternatively bounfx,.,, X, )| < 8exp ( 332 > (30)

corresponding to-K < r,r' < K, 1 < p,p/ < L, p =
P < r #1, where(a,b) = a'b andx,, denotes the-th Here,(a) follows from a simple union bounding argumetit)
column ofX,.. Note that Sinceé(x, ,, X,/ )| = |(X,1p7, Xpp), follows from an application of Hoe_ffding’s inequality (goted
there are mainly two cases that need to be considered hépePounded complex random variables), gngi follows from

(i) p = p’ (possible only when # '), and (i) p < p'. the fact thatV, /2 > ¢1 > go for any A > 1.
For case (i), we havéx, ,,, x,,) = ZN°51 w};}mgf’” =0 We have now established that the probability that;| >
b ¥ n= 0 0 2 o e . B .
(sincer # r'). For case (ii), define\ = p’ — p and write §/S does not exceel exp (=35) V i,j,i # j. To satisfy
Noo1-A the RIP condition, however, we need to upper bound the

s Xt ) = Z PPN w](\'rf‘fr/)(ner,*l). (27) Probability thatmax; ; i |gi ;| = maxi;|gi;| > 6/5. To
=0 ° this end, we apply another union bounding argument to yield

Observe that(x, ,,%,,)| cannot be bounded through the —62N,
use of standtgrd goncé)n>t|ration inequalities since the témms Pr( nax 1951 > 5/5) <AN(N - 1)eXp< 332 )
the above sum are not mutually independent. For example, _62N,
consider the case gf = 1,p’ = 2,7 =/ =0, and N, = 5. <exp ( ggz T 2log 2N> (31)
Then <X071,X072> = 2ox1 + T122 + X213 + 2324, @Nd the first )
two terms are dependent (due 49), as are the second andwhich completes the proof of the theorem.
third terms (due taz,), etc. Notice, however, that the first and Remark 1:Itis worth noting at this point that (i) if< = 0
third terms and the second and fourth terms are independéf@responding to a purely frequency-selective chanteij t
which suggests that the entire sum can be written as two suffteorem 2 reduces to [39, Th. 2], and (ii) if the blocks of
of mutually independent terms. X were to have a circulant structure (along with, = N)

We now prove that this is true in general. That isheén we could have used [23, Th. 5.1] to upper bound the
(Xr.p» Xp) fOr anyr,r’ andp < p’ can always be written Probability thatmax; ji; |gi ;| > /5.
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B. Proof of Theorem 3 [9] A. Kannu and P. Schniter, “Design and analysis of MMSEbpdided
L . cyclic-prefixed block transmissions for doubly selectitamenels,"|IEEE
Similar to the proof of Theorem 2, we defide= d,p and Trans. Signal Processingp. 1148—1160, Mar. 2008.
S = 2D, and assume thaf = 1. Further, without loss of [10] A. Sayeed, “Sparse multipath wireless channels: Modeand implica-
generality, we assume thaf; is odd and defineV, = &=L, tions,” in Proc. ASAP 2006

2 “ - . .
. : . . [11] A. Saleh and R. Valenzuela, “A statistical model for @ed multipath
Next, defineU" and U/ to be theN;- ande—pomt discrete propagation,”"IEEE J. Select. Areas Commupp. 128-137, Feb. 1987.

Fourier transform (DFT) matrices, respectively, with égr [12] A. Molisch, “Ultrawideband propagation channels-Bhe measure-
ment, and modeling,TEEE Trans. Veh. Technolpp. 1528-1545, Sep.

Ni—j+1)(i—1 ..
Uit':wgvtt AN )7 1,] 6{1721"'aNt} 2005'. . . .
I V(i1 [13] N. Czink, X. Yin, H. Ozcelik, M. Herdin, E. Bonek, and B.letry,
Ui{j = w%; )i ), i, ] € {1, 2,..., Nf} “Cluster characteristics in a MIMO indoor propagation eomiment,”

IEEE Trans. Wireless Commuymp. 1465-1475, Apr. 2007.
and letut/ = U? ® U/’ be theN, x N, Kronecker product [14] V. Raghavan, G. Hariharan, and A. Sayeed, “Capacitypafrse multi-

. ath channels in the ultra-wideband regiméEEE J. Select. Topics
of the two DFT matrices (recall thaV; Ny = N,). The key gignal Processingpp. 357-371, Oct. 2007. i

thing to note here is that since the Kronecker product @fs] S. Cotter and B. Rao, “The adaptive matching pursuib@aigm for

two orthogonal matrices is orthogon&JI,t=f is an orthogonal estimatipn and equaliz_ation of sparse time-varying chiatine Proc.
. trtrTef 34th Asilomar Conf. Signals, Systems and Comput2080.
matrix (U "U") = N,Iy,). [16] W. Li and J. Preisig, “Estimation of rapidly time-vang sparse chan-
To proceed further, defin® C {1,2,...,N,} as follows: nels,” IEEE J. Oceanic Engpp. 927-939, Oct. 2007.
[17] G. Taubdck and F. Hlawatsch, “A compressed sensingnigoe for
R={i:i=nN;+m+1, (n,m) €S} OFDM channel estimation in mobile environments: Explatichannel

) ] ) sparsity for reducing pilots,” iflProc. ICASSP 2008
Notice that, by constructiorR is a random set (due to the[18] IEEE Signal Processing Mag., Special Issue on Compressinglig
i vol. 25, no. 2, Mar. 2008.
fact thatS, consists ofN, elements randomly selecte_d fr_o”hg] S. Mallat and Z. Zhang, “Matching pursuits with timexfjuency dictio-
{0,1,..., N;—1}x{0,1,..., Ny—1}). Further, the cardinality naries,”IEEE Trans. Signal Processingp. 3397-3415, Dec. 1993.

of this set is|R| = N, and it is equivalent in distribution [20] E. Candés, J. Romberg, and T. Tao, “Stable signal egoirom
to a random set ofV, points sampled uniformly at random incomplete and inaccurate measuremern@gimmun. Pure Appl. Math.

x Tt f . pp. 1207-1223, Mar. 2006.
from {1,2,..., N,}. Therefore, the mam)Um obtained by [21] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery sparse

retaining therows of utf corresponding to the indices iR overcomplete representations in the presence of nol&&EE Trans.

. . . S . . Inform. Theory pp. 6-18, Jan. 2006.
is equivalent in distribution to a matrix obtained by randpm [22] E. Candeés and T. Tao, “The Dantzig selector: Statisstimation when

samplingN,. rows of U%/. Consequently, from [37, Th. 3.3] p is much larger tham,” Ann. Statist. pp. 2313-2351, Dec. 2007.
(see also [36, Lem. 4.3]) and under the assumption tHa3] G. Pfander, H. Rauhut, and J. Tanner, “Identificationmaitrices having

/. 5 . L t,f o a sparse representationEEE Trans. Signal Processingn press.
Ny 2 €4 log” N, - 5, we have tha\/NTU\R satisfies RIP of [24] M. Herman and T. Strohmer, “High resolution radar viangpressed

order S corresponding to any € (0, /2 — 1) with probability sensing,"IEEE Trans. Signal Processingubmitted.
. J—A [25] E. Candes, “The restricted isometry property and fitplications for
exceed'ngl_ - C5N0 : o ) compressed sensinge. R. Acad. Sci., Paris, Ser. pp. 589-592, 2008.
Finally, it can be seen from the definition of RIP that if26] P. Bello, “Characterization of randomly time-variaimear channels,”
—A=U];} satisfies RIP of ordesS for somed then all of IEEE Trans, Communpp. 360-393, Dec. 1963.

VN, R . . 27] A. Sayeed, “Deconstructing multiantenna fading ct@sihIEEE Trans.
its column submatrices with number of columns S also 271 Sign;( Processingpp. 2563?_2579, Oct. 2002. 9

satisfy RIP of orderS with the samej. The sensing matrix [28] A. Sayeed and V. Veeravalli, “The essential degreesegidom in space-
U, however, is just a column submatrix ef-—U"/" (with time fading channels,” iroc. PIMRC 2002

J . N, —|R ( I{%Q] J. ProakisDigital Communications McGraw-Hill, 2001.
N > § columns) and this completes the proof of the theorerag) s kay, Fundamentals of Statistical Signal Processing: Estinmatio

Theory Prentice Hall, 1993.
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