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Abstract— This paper characterizes the robustness of de-
coding under parametric channel uncertainty. We consider
discrete channel models described by probabilistic graphical
models, such as finite state channels. Using recent advances
from the field of tropical geometry, we are able to partition
the channel parameter space into cells corresponding to all
channels that identically decode a given output codeword. The
partition, based on a combinatorial object called theNewton
polytope of the graphical model, can be efficiently computed
in polynomial time (in terms of the number of parameters in
the channel model). This partitioning of the channel parameter
space provides two key results: 1) Given a nominal (vector)
channel parameter, one can easily gauge the robustness of
the decoding as a function of deviations from this nominal
parameter; 2) Rather than obtaining one decoding for a single
parametrization, one can obtain a list of decodings for a family
of channel parametrizations at the decoder.

I. I NTRODUCTION

Success of a communication system lies in how well
it can encode and decode data. While many of today’s
commonly employed channel decoding techniques are built
on the premise that the decoder has knowledge of the true
channel parameters, this is almost never the case in reality.
In this paper, we attempt to characterize the robustness of
decoding under parametric uncertainties in discrete channels
described by probabilistic graphical models. The focus of
the paper is not on modeling the uncertainties themselves,
but rather on examining the relationship between decoding
outputs and variations in the channel parametrization. Recent
advances in the field of tropical geometry [1] enable us to
partition the channel parameter space into cells consisting
of “equivalent” channels. By equivalent we mean that for
a given output codeword, all the channels described by
the parameters in a given cell will produce the identical
maximum a posteriori (MAP) decoding. This partitioning
of the channel parameter space, which is a function of the
family of graphical models and the output codeword, can
be computed in time that is polynomial in the dimension
of the channel parametrization and provides tremendous
insight into the robustness of a given decoding. For example,
suppose we have a nominal (vector) channel parameter and
find that an identical decoding results from a large ball of
channels about this nominal setting. In such a case, we may
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conclude that the decoding is robust to possible deviationsof
the true parameter from the nominal parameter. On the other
hand, if the nominal parameter is near the boundary of a
partition cell then a slight perturbation of the true parameter
could lead to a completely different decoding, indicating a
non-robust condition.

To motivate our investigation further, consider the simple
example of a binary symmetric channel (BSC) with crossover
probability p. Suppose that we employ block coding as a
means of transmitting data over this BSC. In this situation,
it is obvious that the MAP decoding rule is the nearest-
neighbor decoding (in Hamming space) forp < 1/2, and the
farthest-neighbor decoding forp > 1/2. Thus, the parameter
space of a BSC can be partitioned into the intervals[0, 1/2)
and (1/2, 1]. If our nominal setting forp is close to1/2,
then we see that we are in a very non-robust situation. While
this partitioning of the one-dimensional parameter space of a
BSC is trivial, the determination of analogous partitions for
discrete channel models with higher dimensional parameter
spaces is highly non-trivial. In the sequel, we present a
unified computational approach to solving this problem for
discrete channels described by graphical models (e.g, finite
state (Markov) channels [2]).

II. CHANNEL PARAMETER SPACE PARTITIONING

In this section, we formally define the channel parameter
space partitioning problem under consideration. Consider
a point-to-point digital communication system with finite
input codebookX and finite output codebookY. An input
codewordx ∈ X is transmitted through a discrete channel
which produces an output codewordy ∈ Y. It is further
assumed that the discrete channel is represented by a directed
acyclic graphical model and the joint probability of an input-
output codeword pair can be written as a monomial in a
d-dimensional parameterθ = (a1, ..., ad), that is,

P (x, y; θ) = a
ν1(x,y)
1 a

ν2(x,y)
2 · · · a

νd(x,y)
d , (1)

where the powersνj(x, y), j = 1, . . . , d, are integer-valued
functions of the pair(x, y), and the parameterθ is an element
of the parameter spaceΘ that defines all possible channels.
Finite state channels (FSCs) [2] are one class of channel
models having this form and, for the sake of this exposition,
we would focus exclusively on them. In particular, as a
special case of the general FSC, we will carefully investigate
a two-state (binary input, quaternary output) intersymbol
interference (ISI) channel model in Section V. Note that
in the case of an FSC, one also includes dependence on
the channel state,s, which takes value in the state space
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Fig. 1. Partitioning of the channel parameter spaceΘ for a given output
codewordy.

S [2]. That is, the channel is characterized by the joint
probability distribution of the input and output codewords,
and the channel state as follows

P (x, y, s; θ) = a
ν1(x,y,s)
1 a

ν2(x,y,s)
2 · · · a

νd(x,y,s)
d , (2)

where again the powersνj(x, y, s), j = 1, . . . , d, are integer-
valued functions. Finally, note that the MAP decoding rule
for a fixed channel parameterθ0 is given by

x̂(θ0) = argmax
x∈X

{
max
s∈S

P (x, y, s; θ0)

}
(3)

or, alternatively, if the state of the channel is known to be
s(0) through some side information then the MAP decoding
is taken to be

x̂(θ0) = argmax
x∈X

P (x, y, s(0); θ0). (4)

Our main interest here concerns the subsetΘ0 ⊂ Θ such
that x̂(θ) = x̂(θ0) for every θ ∈ Θ0. Thus,Θ0 defines the
collection of channel parameters that are equivalent toθ0 for
the output codewordy. More generally, we are interested in
a partition ofΘ into subsets/cells corresponding to channel
parameters that produce identical MAP decodings for the
output codewordy. Partitions of this form allow us to assess
the robustness of a given decoding and simultaneously re-
cover a list decoding that is ordered relative to the proximity
of cell boundaries to a nominal parameter setting.

To illustrate this idea further, consider the partition of
a two-dimensional channel parameter space given byΘ =
{(a1, a2) : a1, a2 ≥ 0}, as shown in Fig. 1. The partition
of Θ is determined by the output codewordy (and the
underlying graphical model) and the partition cells can be
enumerated in terms of the input codewords. For example,
C(x4, y) ⊂ Θ is the set of all channel parameters that
decodey to the input codewordx4. To illustrate the notion
of decoding robustness, consider the parameterθ0. As can be
seen from the figure,θ0 is well contained within the interior
of cell C(x1, y) and hence, all channel parameters within a

sizeable ball ofθ0 will also decodey to x1. Thus, we can
say (loosely) that the decoding ofy based onθ0 is robust.
On the other hand, parameterθ1 is near the boundary of a
cell and so the decoding ofy based onθ1 is not robust. It
may be desirable in such cases to provide the decoder with
a list decoding. In this specific case, the ordered list might
be (x1, x3, x4, x2) based on the proximity of cell boundaries
to θ1, which is immediately available from the partition.

III. N EWTON POLYTOPES OFFINITE STATE CHANNELS

In this section, we introduce concepts from tropical ge-
ometry that enable the polynomial-time construction of the
partition of the channel parameter space. For channels with
joint probability distributions of the form given in (2), we
can write the (marginal) probability distribution ofy as

fy := P (y; θ)

=
∑

x∈X

∑

s∈S

P (x, y, s; θ)

=
∑

x∈X

∑

s∈S

a
ν1(x,y,s)
1 a

ν2(x,y,s)
2 · · · a

νd(x,y,s)
d . (5)

Now consider the tropicalization offy, denoted bygy,
which is obtained by replacing the operators(+,×) with
the operators(min, +) andai with − log(ai) [1], [3]. This
gives us

gy = min
x∈X

min
s∈S

d∑

i=1

(−νi(x, y, s) log(ai))

= min
x∈X

min
s∈S

〈ν(x, y, s),− log(θ)〉 , (6)

where 〈·, ·〉 is used to denote an inner product,
ν(x, y, s) = (ν1(x, y, s), . . . , νd(x, y, s)) and − log(θ) =
(− log(a1), . . . , − log(ad)). The interesting thing to
observe here is thatgy coincides with the negative-log joint
probability evaluated at the MAP values ofx ands.

The Newton polytope offy, denoted by NP(fy), is simply
the convex hull ofν(x, y, s) for all x ∈ X ands ∈ S, namely,

NP(fy) = conv{ν(x, y, s) : x ∈ X , s ∈ S} . (7)

A nice consequence of tropicalizingfy by gy is that the
function gy is piecewise linear on the cones in the normal
fan of NP(fy). Note that the normal cone to a closed, convex
setK ⊂ R

d at the pointv ∈ K is traditionally defined to be
the set NC(v, K) ⊂ R

d such that

NC(v, K) = {b ∈ R
d : 〈v − u, b〉 ≥ 0 ∀u ∈ K}. (8)

However, in this context, we define the normal cone of
a vertex v ∈ NP(fy) to be the set of (log) parameters
NC(v, fy) such thatv minimizes 〈v, b〉 for all b ∈ NC(v, fy)
and allu ∈ NP(fy), namely,

NC(v, fy) = {b ∈ R
d : 〈v − u, b〉 ≤ 0 ∀u ∈ NP(fy)}. (9)

The usefulness of these Newton polytopes lies in the fact
that, given the nominal channel parameterθ0, they can be
used to decode a given output codewordy to the optimal



Fig. 2. An example of a Newton polytope.

input codewordx̂ and optimal state vector̂s. To observe
this, note that

x̂(θ0), ŝ(θ0) = arg max
x∈X ,s∈S

P (x, y, s; θ0)

= arg min
x∈X ,s∈S

− log(P (x, y, s; θ0))

= arg min
x∈X ,s∈S

d∑

i=1

(−νi(x, y, s) log(ai))

= arg min
x∈X ,s∈S

〈ν(x, y, s),− log(θ0)〉 (10)

and thus, by a simple convexity argument, the point
ν(x̂(θ0), y, ŝ(θ0)) is a vertex of NP(fy); hence, the point
b0 = − log(θ0) lies in NC(ν(x̂(θ0), y, ŝ(θ0)), fy). If the
optimal channel state vector is deemed to be unimportant, we
may simply decodey to x̂(θ0) as given in (3). Additionally, if
the channel state vector is known, we may use (4) to decode
the output codewordy.

Finally, note that typically one would expect the number
of possible decodings to be on the order of|X ||S|, that
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Fig. 3. Decoding regions for example 1 in the tropical channel parameter
space.

Specifically, let V̄x be the vertices of NP(fy) that do not
correspond tox, then

δ = min
u∈V̄x

| 〈v − u, b〉 |

||v − u||
, (14)

wherev is the vertex of NP(fy) corresponding to the MAP
solution.

Example 1 (Continued): We return to the example of Sec-
tion III. Again, we assume that the channel has only one
state. With Newton polytope NP(fy) as given in Fig. 2, we
can also determine the tropical decoding regionsC̃(x, y) and
the regular decoding regionsC(x, y) for x corresponding to
the vertices of the Newton polytope. Letb1 = − log a1 and
b2 = − log a2. Then, the tropical decoding regions are given
by the normal cones of the vertices of the Newton polytope
and are described by

C̃(x1, y) = {(b1, b2) : b2 > 0, b1 + b2 > 0}

C̃(x2, y) = {(b1, b2) : b2 < 0, b1 + b2 > 0}

C̃(x3, y) = {(b1, b2) : b2 > 0, b1 + b2 < 0}

C̃(x4, y) = {(b1, b2) : b2 < 0, b1 + b2 < 0}

(15)

A plot of these tropical decoding regions is given in Fig. 3.
Similarly, the decoding regionsC(x, y) in the regular chan-
nel parameter space can be written as

C(x1, y) = {(a1, a2) : a2 < 1, a1a2 < 1}
C(x2, y) = {(a1, a2) : a2 > 1, a1a2 < 1}
C(x3, y) = {(a1, a2) : a2 < 1, a1a2 > 1}
C(x4, y) = {(a1, a2) : a2 > 1, a1a2 > 1}

(16)

The reader should be reminded thata1, a2 are not probabil-
ities and hence, they need not be contained within the unit
square. These regular decoding regions are plotted in Fig. 1.

V. A PPLICATION TO A SYMMETRIC ISI CHANNEL

An intersymbol interference (ISI) channel is a special case
of the general FSC in which the channel state vectors
depends statistically on the input codewordx [2, pp. 97-
100]. A pure ISI channel is the one in which the channel

Fig. 4. A two-state binary input, quaternary output pure intersymbol
interference channel model.

state vector dependsdeterministically on the input codeword.
In this section, we apply the channel partitioning techniques
developed so far to decode the output of a two-state binary
input, quaternary output pure ISI channel.

The channel in Fig. 4 is a simple model of such
an ISI channel. The channel has input codewordsx =
(x1, . . . , xN ) ∈ X ⊂ {0, 1}N and output codewordsy =
(y1, . . . , yN) ∈ Y = {a, b, c, d}N . Further, as can be seen
from the figure, the channel state at any time instant is
the same as the channel input at the previous time instant.
Without loss of generality, it is also assumed that the channel
starts from rest in the sense thats0 = x1. Thus, the
probability assignment on the current outputyn conditioned
on the input codewordx is simply given by

p(yn|x) = p(yn|xn−1xn) = pyn|xn−1xn
(17)

for n ∈ {2, . . . , N}, and p(yn|x) = p(yn|xn) = pyn|xnxn

for the specific case ofn = 1. Additionally, it is assumed
that we have a uniform prior over the input codebook, that is,
p(x) = 1/|X |, and that the channel outputs are statistically
independent conditioned on the input codeword, that is,

p(y|x) = py1|x1x1

N∏

n=2

pyn|xn−1xn
. (18)

Finally, we assume that the ISI channel is symmetric in the
sense that

pa|00 = pd|11, pa|01 = pd|10,
pb|00 = pc|11, pb|01 = pc|10,
pc|00 = pb|11, pc|01 = pb|10,
pd|00 = pa|11, pd|01 = pa|10.

Note that in this specific case of a symmetric ISI channel,
the channel parameter space is 6-dimensional – in the general
case of a non-symmetric ISI channel, however, it can be as
large as 14-dimensional.



TABLE I

COMPLEXITY OF MAP DECODINGSBASED ON NEWTON POLYTOPES

N |X | = 2N−3 # of NP(fy) Vertices
6 8 8
7 16 16
8 32 32
9 64 60
10 128 101
11 256 158
12 512 238
13 1024 352

A. Experiment 1: Complexity of Newton Polytopes

As noted earlier, a particularly exciting consequence of
using Netwon polytopes for MAP detection is that the
number of vertices of these Netwon polytopes grows only
polynomially in the number of parameters of the graphical
model [3]. In the context of this symmetric ISI channel,
therefore, it means that the number of MAP decodings can
be no larger thanO(N6), since the Newton polytope of
an output codewordy of this channel can have dimensions
no larger than six. On the other hand, since any reasonable
input codebook will have cardinality exponential inN , one
would expect the number ofpossible MAP decodings to be
exponential in the block lengthN .

In this experiment, we numerically demonstrate the poly-
nomial (or subexponential) complexity of MAP decodings
based on Newton polytopes. The input codebookX in this
experiment is given by a random codebook of cardinality
2N−3, whereN is the block length. Note that given an output
codewordy, the corresponding Newton polytope NP(fy)
can be calculated by applying (7) to (18). However, these
Newton polytopes can also be more easily calculated using
the polytope propagation algorithm described in [3].1 The
outcome of this experiment is summarized in Table 1.

B. Experiment 2: Perturbation bounds under parametric
variation

In this experiment, we consider the effect of varying
channel parameters on the perturbation boundδ as described
in Section IV. The input codebookX in this experiment is
also given by a random codebook of cardinality2N−3, where
the block length is given byN = 5.

In order to visualize the outcome of this experiment, we
reduce the dimensionality of the channel parameter space to
two by assigning the conditional probabilities as follows

pa|00 = pd|11 = α
A

, pa|01 = pd|10 = β4

B
,

pb|00 = pc|11 = α2

A
, pb|01 = pc|10 = β3

B
,

pc|00 = pb|11 = α3

A
, pc|01 = pb|10 = β2

B
,

pd|00 = pa|11 = α4

A
, pd|01 = pa|10 = β

B
,

where 0 ≤ α, β ≤ 1 are the two (variable) channel
parameters, andA and B are the normalization constants
given by A = α + α2 + α3 + α4 andB = β + β2 + β3 +

1Ch. 6 and 7 in [4] also contain a detailed description of this algorithm.
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β4, respectively. Note that these geometrically progressing
probability assignments are rather natural in the sense that,
for example, if ‘00’ was transmitted then one is more likely
to receive an ‘a’ at the receiver than a ‘b’, a ‘c’ or a ‘d’.

For the sake of this experiment, we fix the output code-
word to bey = bcacd while the input codebook is given by
X = {10101, 00101, 11101, 01111}. We varyα andβ from
10−10 to 1, and calculate the corresponding perturbation
bound δ in the tropical channel parameter space as well
as the optimal (MAP) input codeword. The results of this
experiment are plotted in Fig. 5. The sudden drop in the
perturbation boundδ in the figure is an indication of the fact
that the channel parameterθ = (α, β) is very close to the
boundary separating two decoding regions – on one side of
this boundary is the decoding region forx̂(θ) = 01111, while
on the other side is the decoding region forx̂(θ) = 10101.

VI. CONCLUSION

Based on recent advances in the field of tropical geometry,
this work provides a new methodology for partitioning the
parameter space of finite state channels into separate decod-
ing regions. The approach is based on a polynomial-time
polytope propagation algorithm [3], [4], and the partitioning
process is highly efficient and scalable. Furthermore, we have
provided a framework for characterizing the robustness of
decoding under uncertainties in the channel parameters.
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