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Abstract

We introduce a new multi-armed bandit
(MAB) problem in which arms must be sam-
pled in batches, rather than one at a time.
This is motivated by applications in social
media monitoring and biological experimen-
tation where such batch constraints naturally
arise. This paper develops and analyzes al-
gorithms for batch MABs and top arm iden-
tification, for both fixed confidence and fixed
budget settings. Our main theoretical re-
sults show that the batch constraint does not
significantly a↵ect the sample complexity of
top arm identification compared to uncon-
strained MAB algorithms. Alternatively, if
one views a batch as the fundamental sam-
pling unit, then the results can be interpreted
as showing that the sample complexity of
batch MABs can be significantly less than
traditional MABs. We demonstrate the new
batch MAB algorithms with simulations and
in two interesting real-world applications: (i)
microwell array experiments for identifying
genes that are important in virus replication
and (ii) finding the most active users in Twit-
ter on a specific topic.

1 Introduction

We consider the top-k pure-exploration problem for
stochastic multi-armed bandits (MAB). Formally, we
are given n arms that produce a stochastic reward
when pulled. The reward of arm i is an i.i.d. sample
from a distribution ⌫i whose support is in [0, 1]. The
bounded-support assumption can be generalized to the
�-sub-Gaussian assumption. Denote by µi = EX⇠⌫

i

X
the expected reward of the arm i. We assume a unique
top-k set; i.e., µ

1

� µ
2

� ... � µk > µk+1

� ... � µn.

In this work, we introduce a new setting in which
arms must be pulled in batches of size b. We also
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consider the additional constraint that any one arm
can be pulled at most r  b times in a batch
(if r = b then there is no constraint). Said an-
other way, the action space is defined as A :=
{a 2 {0, 1, . . . , r}n |

Pn
i=1

ai  b}, where a 2 A indi-
cates the number of arm pulls for each arm. We
call this the (b, r)-batch MAB setting. Note that this
encompasses the standard MAB setting, which cor-
responds to b = 1, r = 1. The general (b, r)-batch
setting is fundamentally di↵erent, since sampling de-
cisions must be made one batch at a time, rather than
one sample at a time. This loss in flexibility could
hinder performance, but our main theoretical results
show that in most cases there is no significant increase
in sample complexity.

There are many real-world applications where the
batch constraint arises. For example, suppose the
arms represent Twitter users and the goal is to find
users who tweet the most about a topic of interest. Us-
ing Twitter’s free API, one can follow up to b = 5000
users at a time, which amounts to a batch of that size.
Also, a user is either observed or not, so r = 1 in
this application. The batch is the fundamental sam-
pling unit in such applications, and thus this paper
is interested in methods that aim to reduce the batch
complexity : the total number of batches, or rounds,
to correctly identify the top-k arms. As another ex-
ample, we consider the problem of using microwell ar-
ray experiments to identify the top-k genes involved
in virus replication processes. Here the arms are genes
(specifically single knockdown cell strains) and a batch
consists of b = 384 microwells per array. In this case,
we may repeat the same gene (cell strain) in every mi-
crowell, so r = 384.

Returning to the discussion of theory and algorithms,
we consider two settings: fixed confidence and fixed
budget. In the fixed confidence setting, given a target
failure rate � the goal is to identify the top-k arms
with probability at least 1�� using the fewest possible
number of batches. In the fixed budget setting, given
a budget number of batches B, the goal is to identify
the top-k arms with as high probability as possible.
For the fixed confidence (budget) setting, we propose
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the BatchRacing (BatchSAR) algorithm and prove its
theoretical guarantee in Section 3 (Section 4). Our
analysis shows that batch MABs have almost the same
sample complexity as unconstrained MABs as long as
r is not too small relative to b.

An alternative to our batch MAB algorithms is to use
standard MAB algorithms as follows. One could use
each batch to obtain a sample from a particular arm
of interest, and e↵ectively ignore the rest of the data
from each batch. This would allow one to use standard
MAB algorithms. For example, in the Twitter appli-
cation we could follow just one user at a time while we
can follow 5000 for the same cost (free). Our results
show that in most cases this (obviously naive) reduc-
tion to the standard MAB would have a batch com-
plexity b times greater than that of our batch MAB
algorithms.

In section 5, we validate the analysis of the proposed
algorithms with a toy experiment, and evaluate the al-
gorithms on real-world data from the two applications
introduced above.

2 Related Work

The pure exploration problem in MAB has a long
history dating back to the ’50s with the work of [4]
and [20]. The top-k exploration, or subset selection,
in stochastic MAB has received much attention re-
cently. In the fixed confidence setting including the
Probably Approximately Correct (PAC) setup, the
Racing algorithm for the top-1 exploration problem
was proposed by Maron and Moore [19] and by Even-
Dar et al. [6] independently. The Racing algorithm
performs uniform sampling on surviving arms while
deactivating infeasible arms based on confidence in-
tervals. Racing was generalized to top-k identifica-
tion by Heidrich-Meisner and Igel [9], and its sample
complexity was analyzed in [17]. Median Elimination
(ME) [6, 14] runs in stages where each stage eliminates
the bottom half of the surviving arms. Under the PAC
setup, the sample complexity of ME matches the lower
bound. Going beyond elimination-based algorithms,
LUCB proposed by Kalyanakrishnan et al. [15] adap-
tively chooses which arm to pull based on confidence
intervals without explicitly removing arms. Kaufmann
et al. improved both Racing and LUCB with confi-
dence intervals based on Cherno↵ information, though
restricted to exponentially distributed rewards [17].

In the fixed budget setting, Successive Accepts and
Rejects (SAR) proposed by Bubeck et al. [5] runs in
n� 1 phases. Each phase performs uniforms sampling
for a predetermined number of rounds. At the end of
each phase, SAR either accepts the empirically best
arm or rejects the worst arm. UCB-E by Audibert et
al. [3] and LUCB-E by Kaufmann et al. [17] run in a

more adaptive way with confidence intervals without
eliminations, although the problem hardness parame-
ter must be given to the algorithms, which is unreal-
istic.

Our proposed (b, r)-batch setting overlaps with various
existing settings, but is, to the best of our knowledge,
never subsumed by any. One popular setting, though
studied under the regret setting, is semi-bandit feed-
back [2] where an action a 2 A ✓ {0, 1}n indicates
coordinate-wise whether or not (aj = 1 or 0) one pulls
an arm. (b,r=1)-batch is a special case of semi-bandit
feedback where the action space A is defined to be all
b-sized subsets of arms. This is called multiple plays
in [1]. A variant of the multiple plays was studied
in [18] where the player pulls b times in a round, but is
allowed to pull an arm more than once, up to b times.
However, the authors assume that pulling the same
arm more than once in a round produces the same re-
ward, whereas in our (b,r=b)-batch setting repeated
pulls produce independent rewards.

In the delayed feedback setting [23, 13], the reward
at time t is revealed after ⌧t time steps. One can re-
late this setting to our (b, r)-batch setting by assum-
ing that rewards are revealed in blocks after every b
rounds: ⌧t = b � 1 � (t � 1 mod b). If b is known to
the player, this construction is exactly the (b, r = b)-
batch setting. Nevertheless, delayed feedback has only
been considered in the regret setting to the best of our
knowledge.

Recently, Perchet et al. have proposed a generalized
notion of batch arm pulls [22] where each batch can be
of di↵erent sizes. However, the authors only consider
two-armed bandits (n = 2) and assume no limitation
on the repeated arm pulls (b = r). More importantly,
the authors only consider the regret setting. Wu et
al. [24] proposed a pure exploration MAB framework
for combinatorial action space of which (b,r=1)-batch
is an instance. However, repeated arm pulls (r > 1)
are not allowed in their framework.

3 The Fixed Confidence Setting

In the fixed confidence setting, given a target failure
rate �, one tries to find the top-k arms with probabil-
ity at least 1 � � in the fewest number of batches as
possible. An algorithm must output the correct top-k
arms w.p. � 1 � �, and its performance is measured
in the batch complexity.

Denote by max(k) F the k-th largest member of a set
F . Let Xi,j be the j-th reward of arm i. Define the
empirical mean of arm i up to ⌧ samples as bµi,⌧ =
1

⌧

P⌧
j=1

Xi,j . The key success of an algorithm in the
fixed confidence setting often relies on the confidence
bound on the true mean µi; the tighter the bounds are,
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the less arm pulls we spend. We adopt and simplify a
confidence bound proposed in [11] that resembles the
law of the iterated logarithm.

Lemma 1. (non-asymptotic law of the iterated loga-
rithm) [11]1 Let X

1

, X
2

, . . . be i.i.d. zero-mean sub-
Gaussian random variables with scale � > 0; i.e.,

Ee�Xi  e
�

2
�

2

2 . Let ! 2 (0,
p

1/6). Then,

P
 

8⌧ � 1,

�

�

�

�

�

⌧
X

s=1

Xs

�

�

�

�

�

 4�
p

⌧ log(log
2

(2⌧)/!)

!

� 1� 6!2. (1)

The proof of Lemma 1 is in the supplementary mate-
rial. Note that a bounded random variable X 2 [a, b]
is a sub-Gaussian with scale � = (b � a)/2. In our
case, � = 1

2

. Define a deviation function

D(⌧,!) :=

r

4 log(log
2

(2⌧)/!)

⌧
.

Let Ti(t) be the number of arm pulls of arm i at round
t. We define the lower confidence bound (LCB) Li(t, �)
and the upper confidence bound (UCB) Ui(t, �) of arm
i at round t as

Li(t, �) := bµi,T
i

(t) �D
⇣

Ti(t),
p

�/(6n)
⌘

and

Ui(t, �) := bµi,T
i

(t) +D
⇣

Ti(t),
p

�/(6n)
⌘

.
(2)

Now that the environment allows the (b, r)-batch arm
pull, can we propose an algorithm whose batch com-
plexity achieves b factor reduction from the sample
complexity of the state-of-the-art algorithms? Inspired
by the Racing algorithm [19, 9], we propose BatchRac-
ing algorithm for the (b, r)-batch setting; see Algo-
rithm 2. The algorithm maintains a set of surviving
arms that is initialized as S

1

= [n] before the first
round. At round t, the algorithm calls RoundRobin
(Algorithm 1) to choose b arm pulls that keeps the
pull count of each arm in the surviving set St as uni-
form as possible. Then, the algorithm checks if there
is any arm that is confidently top-k or confidently not
top-k using the LCB and UCB as follows. Let At (Rt)
be the set of accepted (rejected) arms at round t and
A

1

= R
1

= ;. Let kt = k � |At|, the remaining num-
ber of top arms to identify. Any arm i whose LCB is
greater than the UCB of |St| � kt arms is moved to
the accept set: At+1

 At [ {i}. Symmetrically, any
arm i whose UCB is smaller than the LCB of kt arms
is moved to the reject set Rt+1

 Rt [ {i}. Those
accepted or rejected arms are removed from the sur-
viving set St. The process is repeated until it accepts
k arms (|At| = k), and finally it outputs At.

We define the gap �i of arm i and denote by �(j) the
arm with j-th smallest gap as follows:

1A tighter version can be found in [11].

Algorithm 1 RoundRobin(A, {Ti}i2A, b, r)

1: Input: A: a set of arms, {Ti}i2A: arm pull counts, b:
batch size, r: repeated pull limit

2: Output: a: pull count vector
3: a 0 2 Rn

4: for ⌧ = 1 . . .min{b, |A|r} do
5: j  arg min

`2A:a
`

r
T` + a` (break ties arbitrarily)

6: aj  aj + 1
7: end for
8: Output a.

Algorithm 2 BatchRacing
1: Input: n arms, � 2 (0, 1), k: number of top arms, b:

batch size, r: repeated pull limit
2: Output: k arms.
3: t 1, S

1

 [n], R
1

 ;, A
1

 ;, Ti(0) 0, 8i
4: while St 6= ; do
5: a RoundRobin(St, {Ti(t� 1)}i2S

t

), b, r)
6: Pull by a (pull arm i ai times, 8i).
7: Ti(t) Ti(t� 1) + ai, 8i
8: kt  k � |At|
9: At+1

 At
S
{i 2 St | Li(t, �) > max(k

t

+1)

j2S
t

Uj(t, �)}
10: Rt+1

 Rt
S
{i 2 St | Ui(t, �) < max(k

t

)

j2S
t

Lj(t, �)}
11: St+1

 St \ (Rt+1

S
At+1

)
12: t t+ 1
13: end while
14: Output At.

�i :=

(

µi � µk+1

if i  k

µk � µi if i > k

��(1) = ��(2)  ��(3)  . . .  ��(n),

(3)

where ��(1) = ��(2) by definition. Let Ei(�) = {8t �
1, Li(t, �)  µi  Ui(t, �)} be the event that the LCB
and UCB of arm i defined in (2) traps the true mean
µi for all t � 1. Let ! =

p

�/(6n). Define T i := 1 +
⌅

64��2

i log((2/!) log
2

(192��2

i /!))
⇧

. Lemma 2 shows
how many arm pulls are su�cient to classify an arm
to either reject set Rt or accept set At.

Lemma 2. Assume \ni=1

Ei(�). In Algorithm 2, let
T 0(t) = mini2S

t

Ti(t) and kt = k � |At|. Then,

8t, 8i > k,
⇣

T 0(t) � T i =) Ui(t, �) <
(k

t

)

max
j2S

t

Lj(t, �)
⌘

(4)

8t, 8i  k,
⇣

T 0(t) � T i =) Li(t, �) >
(k

t

+1)

max
j2S

t

Uj(t, �)
⌘

.

(5)

Proof. We use Li(t) and Ui(t) as shorthands for
Li(t, �) and Ui(t, �) respectively. It su�ces to show
for the case where At and Rt are empty since other-
wise the problem is equivalent to removing rejected or
accepted arms from consideration and starting a new
problem with n (n� |At|� |Rt|) and k  (k� |At|)
while maintaining the samples collected so far.
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To prove (4), let i > k and bk be the arm with
k-th largest empirical mean at t-th round. We
prove the contrapositive. Assume the RHS is false:

Ui(t) � max(k)j2S
t

Lj(t). Note that using D(Ti(t),!) 
D(T 0(t),!)),

Ui(t)  bµi,T
i

(t) +D(T 0(t),!)  µi + 2D(T 0(t),!) and

Ui(t) �
(k)
max
j2S

t

Lj(t) = Lbk(t) � bµbk,Tb
k

(t) �D(T 0(t),!),

which implies µi + 2D(T 0(t),!) � bµbk,Tb
k

(t) �
D(T 0(t),!). Using bµbk,Tb

k

(t) � µk � D(T 0(t),!) that

is due to Lemma 3 (see the supplementary material),

µi + 2D(T 0(t),!) � µk � 2D(T 0(t),!)

�i  4D(T 0(t),!)

= 4
p

(4/T 0(t)) log(log
2

(2T 0(t))/!)

T 0(t)  64��2

i log(log
2

(2T 0(t))/!).

Invert this using

⌧  c log

✓

log
2

2⌧

!

◆

=) ⌧  c log

✓

2

!
log

2

✓

3c

!

◆◆

(6)

with c = 64��2

i to have T 0(t) 
64��2

i log((2/!) log
2

(192��2

i /!)). Then,
T 0(t) < 1+ b64��2

i log((2/!) log
2

(192��2

i /!))c = T i.
This completes the proof of (4). By symmetry, one
can show (5) as well.

Theorem 1 states the batch complexity of the
BatchRacing algorithm. Hereafter, all proofs can be
found in the supplementary material. Note that even
if r > bb/2c, BatchRacing pulls the same arm at most
bb/2c times in a batch. Thus, our analysis hinges on
the e↵ective repeated pull limit r0 = min{r, bb/2c} in-
stead of r.

Theorem 1. If b � 2, with probability at least 1 � �,
Algorithm 2 outputs the top-k arms {1, . . . , k} after at
most

1

r0
T �(1) +

1

b

0

@

n
X

i=bb/r0c+1

T �(i)

1

A+ log n+
n

b
+

1

r0
+ 2

= O

 

1

r0
��2

�(1) log

 

n log(��2

�(1))

�

!

+

1

b

0

@

n
X

i=bb/r0c+1

��2

�(i) log

 

n log(��2

�(i))

�

!

1

A+ log n

!

(7)

batches. In the case of b = r = 1, the al-
gorithm does so after at most

Pn
i=1

T �(i) =

O

✓

Pn
i=1

��2

�(i) log

✓

n log(�

�2
�(i)

)

�

◆◆

batches.

In the case of b=r=1, BatchRacing is exactly the Rac-
ing algorithm, and the batch complexity is equiva-
lent to the sample complexity. The sample complex-
ity of Racing stated in Theorem 1 is the best known
insofar as the exact top-k identification problem, al-
though it does not match the best known lower bound
⌦(
Pn

i=1

��2

i ) [17]. If r � bb/2c, one can verify that
the batch complexity (7) reduces to 1

b fraction of the
sample complexity of Racing except the additive log n
term. The log n term is the price to pay for performing
batch arm pulls, which limits adaptivity. Note that the
batch complexity is at least n/b since each arm must
be pulled at least once. Thus, unless b is large enough
to satisfy n/b⌧ log(n), the additive log(n) is negligi-
ble. For simplicity, we ignore the additive log n from
the discussion. If r < bb/2c, r plays an interesting
role. The r factor reduction is applied to the largest
term that involves ��2

�(1). The terms involving arm

�(2), . . . ,�(bb/rc) disappear. The rest of the terms
enjoy b factor reduction.

The contribution of r depends on the gaps {�i}.
If the smallest gap ��(1) is much smaller than

the other gaps, the term (1/r0)T �(1) becomes dom-
inant, thus making r important. On the other
hand, if the gaps are all equal, one can show that
the overall b fold reduction is achieved regardless
of r using the fact (1/r0)��2

�(1) log(n log(��2

�(1))/�) ⇡
(1/b)

Pbb/r0c
i=1

��2

�(i) log(n log(��2

�(i))/�). We empiri-
cally verify this case with toy experiments in Section 5.

4 The Fixed Budget Setting

We now consider the problem of identifying the top-
k arms with as high a probability as possible within
a given number of batches B under the (b, r)-batch
setting. An algorithm must terminate after spend-
ing no more than B batches and output k arms that
are believed to be the top-k. The guarantee is typi-
cally made on the misidentification probability P(A⇤ 6=
{1, . . . , k}) where A⇤ is the output of the algorithm.
However, it is often convenient to look at its batch
complexity that can be derived from the misidentifi-
cation probability. Let H

2

= maxi2[n] i�
�2

�(i). Bubeck
et al. showed that the Successive Accepts and Rejects
(SAR) algorithm for the top-k identification problem
under the fixed budget setting has the sample com-
plexity of O(H

2

log2 n) [5]. One might try running
SAR by supplying SAR with bB sample budget. How-
ever, such a modification breaks its theoretical guar-
antee. We propose BatchSAR that extends SAR to
allow (b, r)-batch arm pull, and prove its performance
guarantee.

The intuition behind BatchSAR is as follows. Imag-
ine the (b = n, r = 1)-batch setting where one has
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no choice but to pull every arm once at every round.
There is no room for adaptivity; eliminating an arm
does not yield more arm pulls in return. Let r̃ =
min {r, db/2e} and ñ = db/r̃e. Note ñ � 2 by defini-
tion. Similarly in the general (b, r)-batch setting, once
the surviving number of arms becomes ñ or less, elimi-
nating an arm does not help. For example, if r < db/2e
and there are ñ�1 surviving arms, the maximum num-
ber of arm pulls one can make in a batch is r(ñ�1) < b,
thus wasting b� r(ñ� 1) arm pulls.

Algorithm 3 BatchSAR
1: Input: n arms, k: the target number of top arms, b:

batch size, r: repeated pull limit, B: batch budget
2: Output: k arms.
3: Let ñ = max{db/re, 2} and c

1

= b+ñmin{r, db/2e}+n

4: Define ms =8
>><

>>:

⇠
bB�(

P
n

i=ñ+1db/ie)�c1
ñ/2+

P
n

i=ñ+1(1/i)
1

n�s+1

⇡
for s  n� ñ

⇠
bB�(

P
n

i=ñ+1db/ie)�c1
ñ/2+

P
n

i=ñ+1(1/i)
1

2

⇡
for s = n� ñ+ 1

5: t 1, S
1

 [n], A
1

 ;, Ti(0) 0, 8i 2 [n]
6: for s = 1, . . . , (n� ñ+ 1) do
7: while mini2S

s

Ti(t� 1) < ms do
8: a RoundRobin(Ss, {Ti(t� 1)}i2S

s

), b, r)
9: Pull by a (pull arm i ai times, 8i).
10: Ti(t) Ti(t� 1) + ai, 8i
11: t t+ 1
12: end while
13: Let ts = t�1, the last round in stage s, and k0 = k�

|As|, the remaining number of top arms to identify.
14: if s  n� ñ then
15: Let bµi = bµi,T

i

(t
s

)

and ⇢(i) be the arm with i-
th largest empirical mean in Ss so that bµ⇢(1) �
. . . � bµ⇢(n�s+1)

. Let b�⇢(1) = bµ⇢(1) � bµ⇢(k0
+1)

and
b�⇢(n�s+1)

= bµ⇢(k0
)

� bµ⇢(n�s+1)

.

16: js  argmaxi2{⇢(1),⇢(n�s+1)} b�i (break ties arbi-
trarily).

17: Remove arm js: Ss+1

 Ss \ {js}.
18: if js = ⇢(1) then
19: As+1

 As [ {js}
20: else
21: As+1

 As

22: end if
23: (Early exit case 1) If |Ss+1

| = k � |As+1

|, then
accept all the remaining surviving arms A⇤  
As+1

[ Ss+1

and exit the for loop.
24: (Early exit case 2) If |As+1

| = k, then set A⇤  
As+1

and exit the for loop.
25: else
26: A⇤  As [

�
arg k0 maxi2S

s

bµi,T
i

(t
s

)

�
(break ties

arbitrarily)
27: end if
28: end for
29: Output A⇤.

Therefore, we design BatchSAR to have two phases:
(i) the first n� ñ stages where an arm is eliminated af-
ter each stage just as SAR and (ii) the last stage where
uniform sampling is performed without any elimina-
tion. BatchSAR is described in Algorithm 3. The

algorithm starts with the surviving arm set S
1

= [n]
and performs (n�ñ+1) stages. In each stage s, surviv-
ing arms are pulled uniformly by calling RoundRobin
(Algorithm 1) until every arm’s pull count is at least
ms defined in the algorithm. Then, we choose an arm
js that is the safest to remove, meaning that the em-
pirical gap b�i defined in the algorithm is the largest.
Note js is either the empirically best arm or the worst.
The arm js is then removed from the surviving set and
is accepted if js is the empirically best arm. We repeat
the same until the final stage s = (n � ñ + 1) where
we choose the empirical top-k0 arms and add them to
the final accept set.

We claim that the algorithm spends no more than B
batches. Let ts be the last round in stage s. It is easy

to see that mini2S
s

Ti(ts)  ms +
l

b
n�s+1

m

� 1 due to

the batch e↵ect, and a surviving arm’s pull count is
either mini2S

s

Ti(ts) or mini2S
s

Ti(ts) + 1. Then,

8i 2 Ss, Ti(ts)  ms +

⇠

b

n� s+ 1

⇡

. (8)

We prove the claim by the fact that tn�ñ+1


l

1

b

⇣

P

i2S
n�ñ+1

Ti(tn�ñ+1

) +
Pn�ñ

s=1

Tj
s

(ts)
⌘m

, which

we bound by B using (8) and db/ñe  r̃.

Theorem 2 states the misidentification probability of
BatchSAR. Define

H<b,r>
3

=
1

b

 

ñ

2
+

n
X

i=ñ+1

1

i

!

max
i=2,ñ+1,ñ+2,...,n

i��2

�(i).

(9)

Theorem 2. Let A⇤ be the output of BatchSAR.
Given a batch budget B, the misidentification probabil-
ity of BatchSAR under the (b, r)-batch setting satisfies

P(A⇤ 6= {1, . . . , k})

 2n2 exp

 

�1

8

B �
�

Pn
i=ñ+1

db/ie
�

/b� c
1

/b

H<b,r>
3

!

.

One can derive the batch complexity of Batch-

SAR as O
⇣

H<b,r>
3

log(n) + 1

b

Pn
i=ñ+1

⌃

b
i

⌥

⌘

. The

term 1

b

Pn
i=ñ+1

⌃

b
i

⌥

= O(log(n) + n/b) is the price
to pay for performing the (b, r)-batch where the
algorithm might pull an arm more than neces-
sary. The batch complexity is upper-bounded by

O
⇣⇣

1

r̃ + logn
b

⌘

H
2

log n+ log n
⌘

, where the additive

log(n) is negligible unless n/b⌧ log(n).

In the extreme case of b=r=1, the term 1

b

Pn
i=ñ+1

⌃

b
i

⌥

is n, which can be ignored since the batch complexity
is at least of order n when b = 1. Thus, we achieve
O(H

2

log2 n), which is equivalent to the sample com-
plexity of SAR. If r � db/2e, H<b,r>

3

log n + log n 
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1

b (2 + log n)H
2

log n + log n = O( 1bH2

log2(n) + log n)
, which achieves an overall b factor reduction from
the sample complexity of SAR except for the addi-
tive log n. In the other extreme case where b = n and
r = 1, BatchSAR reduces to uniform sampling and the
batch complexity is O(��2

�(2) log n).

Practical Considerations In general, the algo-
rithm finishes earlier than B batches. The reason is
that ms is defined to defend against the worst case.
In practice, one might want to exhaust the budget B
to minimize the error. Let log(b||a) =

Pb
i=a+1

1

i . We
propose to replace ms with

m0
s =

2

6

6

6

bB �
⇣

Ps�1

s0=1

Tj
s

0 (ts0)
⌘

�
⇣

Pn�s+1

i=ñ+1

d bi e
⌘

� c0
1

�

ñ/2 + log(n� s+ 1||ñ)
�

(n� s+ 1)

3

7

7

7

(10)

where c0
1

= b+ ñr̃ + n� s+ 1. For the last stage s =
n�ñ+1, we sample the surviving arms until the budget
B is exhausted. One can show that m0

s � ms after us-

ing (8) to verify
Ps�1

s0=1

Tj
s

0 (ts0)+
⇣

Pn�s+1

i=ñ+1

d bi e
⌘

+c0
1


�

Pn
i=ñ+1

d bi e
�

+c
1

+
(bB�(

P
n

i=ñ+1d
b

i

e)�c1)

(ñ/2)+log(n||ñ) log(n||n�s+

1). Thus, Theorem 2 still holds true with m0
s.

5 Experiments

We verify our theoretical results with simulation ex-
periments in the fixed confidence setting, then present
two important applications of the (b, r)-batch MAB
problem. For applications, we focus on the fixed bud-
get setting due to its practicality.

5.1 Toy Experiments

The batch size b and repeated pull limit r contribute
to the batch complexity in an intricate way in both
the fixed confidence and budget settings. We would
like to verify how b and r change the batch complexity
empirically and compare it to our theory. Note that
the batch complexity shown in the analysis considers
the worst case; the number of batches suggested by
the theory is often more than what is experienced in
practice. However, if such slack is independent of b
and r, we can remove it by monitoring the “speedup”,
see below.

We consider two bandit instances with n=100 arms:
(i) Bernoulli arms with expected rewards that linearly
decrease, i.e., µi = (99�i+1)/99, and (ii) sparsely dis-
tributed Bernoulli arms where the expected rewards of
10 arms are 0.5 and the rest are 0.3. We call the for-
mer Linear and the latter Sparse. Note we focus on the
fixed confidence setting here due to space constraints;
the same result can be obtained in the fixed budget
setting. We run BatchRacing 10 times with � = 0.1,

k=10, b 2 {1, 4, 16, 64} and r 2 {1, 2, 4, 8, 16, 32}. For
each pair (b0, r0), we compute the empirical speedup by
dividing the average number of batches in (b=1,r=1)
by the average number of batches in (b0, r0). Let Mb,r

be the batch complexity computed by (7). For each
pair (b0, r0), we also compute the theory-based speedup
by
�

Pn
i=1

T �(i)

�

/Mb0,r0 .

Table 1 shows the the speedup of each (b, r)-batch.
Overall, the theory-based speedup matches extremely
well with the empirical speedup. This implies that
the rather complicated contribution of b and r in the
batch complexity well explains the reality. Note that
r plays an important role in Linear; it is only after
r = b/2 that the speedup achieves b. This is because
��2

�(1) = (µk � µk+1

)�2 dominates, which boosts the

batch complexity’s reliance on the factor 1/r0. On the
other hand, in Sparse the gaps {�i} are uniformly 0.2,
and we achieved an overall b fold speedup (almost)
regardless of r as predicted in Section 3.

5.2 Application 1: Virus Replication

Experiments

Virologists are interested in identifying which genes are
important in virus replication. For instance, Hao et
al. tested 13k genes of drosophila to find which genes
promote influenza virus replication [8]. The authors
perform a sequence of batch experiments using a plate
with 384 microwells. Each well contains a single-gene
knock-down cell strain to which the fluorescing virus is
added. They measured the fluorescence levels after an
incubation period and obtained an indication of how
important the knock-down gene is in virus replication.
Since the measurements are noisy, we formulate the
problem as a top-k identification problem in MAB.
Each arm is a gene, and the reward is its knock-down
fluorescence level. The batch arm pull is performed
with b=384 wells where the repeated pull limit r is
equal to b since one can place the same gene knock-
down in multiple wells.

Dataset We simulate the microwell experiments by
assuming a Gaussian distribution on each arm, where
the mean and variance are estimated from the actual
data. Specifically, we use two measurements from each
of the n = 12, 979 2 gene knock-downs from [8]. For
the j-th measurement of arm/gene i, xi,j , we remove
the plate-specific noise by dividing it by the average
control measurement from the same plate. Then, we
take the logarithm to e↵ectively make the variance of
each fluorescence measurement similar, following [8].
We also flip the sign to call it zi,j since a low fluo-
rescence level implies that the knock-down gene pro-

2The original dataset contains 13,071 genes. We found
92 genes whose control was measured incorrectly, so we
removed them for the evaluation.



Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, Xiaojin Zhu

b r
Linear Sparse

b r
Linear Sparse

Theory Actual Theory Actual Theory Actual Theory Actual
4 1 2.71 2.74 4.00 4.00 64 1 3.16 3.21 63.97 58.28
4 2 4.00 4.00 4.00 4.00 64 2 6.32 6.41 63.97 61.88
16 1 3.14 3.18 16.00 15.83 64 4 12.55 12.74 63.97 63.25
16 2 6.08 6.16 16.00 15.95 64 8 24.31 24.65 63.97 63.73
16 4 10.84 10.96 16.00 15.99 64 16 43.37 43.83 63.97 63.87
16 8 16.00 16.00 16.00 16.00 64 32 64.00 63.99 63.97 63.90

Table 1: Toy experiment result: the speedup in the number of batches in the fixed confidence setting.

motes the replication. We set the mean of arm i as
µi = (zi,1 + zi,2)/2. We compute the unbiased es-

timate of the variance bVi of each gene and compute
the average (1/n)

Pn
i=1

bVi across all arms, which is an
unbiased estimate of the variance if all arms have an
equal variance. In the end, we simulate measurements
for arm i from N (µi, 0.1). We plot the arm distribu-
tion in Figure 1(a), where we see that relatively few
genes have large rewards (that facilitate virus replica-
tion).

Algorithm 4 Halving
1: Input: n arms, k: the target number of top arms, b:

batch size, r: repeated pull limit, B: batch budget
2: Output: k arms.
3: t 1, S

1

 [n], Ti(0) 0, 8i
4: for s = 1 to dlog

2

n
k e do

5: for i = 1 to
j

B
dlog2(n/k)e

k
do

6: a RoundRobin(Ss, {Ti(t� 1)}i2S
s

, b, r)
7: Pull by a (pull arm i ai times, 8i).
8: Ti(t) Ti(t� 1) + ai, 8i
9: t t+ 1
10: end for
11: Let Ss+1

be the set of max{d|Ss|/2e, db/re} arms in
Ss with the largest empirical average.

12: end for
13: Output S

1+dlog2(n/k)e.

Methods We use two algorithms as the baseline:
RoundRobin and Halving. RoundRobin repeatedly
pull arms according to RoundRobin (Algorithm 1)
with no eliminations until the batch budget runs out.
Halving adapts Sequential Halving algorithm [16], a
top-1 identification algorithm, to perform top-k identi-
fication under the batch setting3, though it lacks theo-
retical guarantee. We describe Halving in Algorithm 4.
Both Halving and BatchSAR could waste the budget
if run as is due to the integer operators. Thus, in Halv-
ing we randomly spread out the remaining budget over
stages, and in BatchSAR we use m0

s defined in (10) in
place of ms.

Result We run the algorithms for k 2
{100, 200, 400, 800} and B 2 {100, 200, 400, 800}.
We run each experiment 20 times and measure false
negative rate (FNR). FNR is the proportion of the

3 We change the number of stages from dlog
2

ne to
dlog

2

(n/k)e following [15] and divide stages in terms of
the number of batches rather than samples.

top-k arms that do not appear in the output of the

algorithm: |[k]\{the output of the algorithm}|
k . High

FNR was pointed out by [7] as the main issue in
adaptive experiments. The result is shown in Figure 1
(b-e). We plot the FNR vs. batch budget B for each
k, where the error bar is the 95% confidence interval.
In all experiments, BatchSAR and Halving signifi-
cantly outperform RoundRobin. RoundRobin spends
the vast majority of arm pulls on arms with small
expected rewards and fails to distinguish the top-k
arms from those near top-k. BatchSAR outperforms
Halving in most cases, especially when the budget is
large.

5.3 Application 2: Twitter User Tracking

We are interested in identifying the top-k users in
Twitter who talk about a given topic most frequently.
For example, in the study of bullying researchers are
interested in a longitudinal study on the long term ef-
fects of bullying experience [21]. Such a study in Twit-
ter requires first identifying the top-k (e.g., k=100)
users with frequent bullying experience, then observ-
ing their posts for a long time (e.g., over a year). If one
has an unlimited monitoring access to all users (e.g.,
firehose in Twitter), the first stage of identifying the
top-k users would be trivial. However, researchers are
often limited by the public API that has rate limits; for
instance, user streaming API of Twitter4 allows one to
follow at most 5000 users at a time. In MAB termi-
nology, each user is an arm, one batch pull is to follow
5000 users at a time for a fixed time interval, and the
reward is whether or not a user posted tweets about
a bullying experience. The latter is decided by a text
classifier [25]. Even though it seems that r = 1 since
we either follow a user or not, we discuss a procedure
below where r can be larger.

We observe that the tweet rate of users changes sig-
nificantly over time of day. Figure 2 (a) shows the
daily trend. We plot the number of bullying tweets
generated in each 5-minute interval where the count is
accumulated over 31 days. To get around this diurnal
issue, we define a pull of an arm to be following a user
for 5 minutes every hour in a day, totaling two hours.
Since there exist twelve 5-minute intervals in an hour,
one can follow b = 12 · 5000 = 60,000 users in a day.

4

statuses/filter API with follow parameter.
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Figure 1: Microwell experiment result. (b-e) plots the false negative rate vs. budget B.
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Algorithm Gain
BatchSAR 0.17 (±0.01)
Halving 0.21 (±0.02)

RoundRobin 0.09 (±0.01)
Oracle 0.46
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Figure 2: (a) Twitter daily pattern (b) Expected rewards of users (c) Experiment result

Note those 60,000 users need not be unique; one can
follow the same user up to 12 times, each in a di↵erent
5-minute interval. Thus, r=12. Formally, we assume
that the bullying tweet rate of a user i changes every
hour of day h, but remains the same within. Let Yi,d,h,c

indicate whether or not (1 or 0) the user i generates a
bullying tweet at day d hour h interval c 2 [12]. Yi,d,h,c

follows a Bernoulli(pi,h) distribution, where pi,h is the
tweet probability of user i during a 5-minute interval
in hour h. We define the reward of an arm i on day
d as (1/24)

P

24

h=1

Yi,d,h,c(h) where c(h) indicates which
interval to pick at each hour h. Then, the expected re-
ward µi of an arm i is the average Bernoulli probability
over a day: µi = (1/24)

P

24

h=1

pi,h.

Dataset The dataset consists of 707,776 bullying
tweets collected over 31 days in January 2013. The
number of distinct users n is 522,062. We com-
pute the average reward for each user at each hour
and take it as the true tweet probability pi,h :=
1

31

P

31

d=1

1

12

P

12

c=1

Yi,d,h,c, from which we compute the
expected reward µi as previously shown. We plot the
expected reward in Figure 2(b), where both axes are
in log

10

scale. The plot nicely follows a power law.

Result We use the same methods from Section 5.2.
We set k=100 and run each algorithm 10 times due
to randomness in breaking ties. We measure the gain
P

i2J µi, where J is the set of k arms output by an al-
gorithm. The gain measures the quality of the selected
arms by the magnitudes of their expected rewards.
The result is summarized in Figure 2(c). The number
in parentheses is the 95% confidence interval, and Ora-
cle is the gain on the true top-k arms (J = {1, . . . , k}),
which is the best achievable. Both Halving and Batch-
SAR significantly outperforms RoundRobin. Halv-

ing, though without theoretical guarantee, performs
slightly better than BatchSAR. We suspect that the
reason is that Halving works well in low budget situ-
ation as it was in Section 5.2. A thorough empirical
comparison is left as a future work.

6 Future Work

There are numerous opportunities for future works in
the (b, r)-batch setting. First, adapting existing pure
exploration algorithms to the batch setting and ana-
lyzing their batch complexity. Not only Halving pre-
sented in this work without guarantee but also LUCB
would be interesting to analyze since it is known to
perform best in practice [12]. Second, investigating
the lower bound on the batch complexity. Specifically,
we have observed that the contribution of the repeated
pull limit r to the batch complexity is nontrivial. It
would be interesting to see if the same form of con-
tribution happens in the lower bound as well. Finally,
we would like to extend the batch setting to accommo-
date di↵erent batch sizes as in [22], but for n > 2 arms
([22] only pertains to n = 2) and in the pure explo-
ration setting rather than the regret setting. Varying
batch size MAB problems can arise in clinical trials
and in crowdsourcing systems where the crowd size
dynamically changes over time.
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Supplementary Material

A Proof of Lemma 1

Let S⌧ =
P⌧

s=1

Xs. Note that the upper and lower bound around S⌧ is symmetric. Thus, it su�ces to show
that the upper bound on S⌧ fails with probability at most 3!2. Show that {eS⌧ } is sub-Martingale, apply
Doob’s maximal inequality to it, then use the definition of the sub-Gaussian and Markov’s inequality to have
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B Proof of Theorem 1

Lemma 3 states that the true mean of arm i can be bounded by the empirical top-i arm.

Lemma 3. Denote by bi the index of the arm whose empirical mean is i-th largest: i.e., bµb
1

� . . . � bµbn. Assume
that the empirical means of the arms are controlled by ✏: i.e., 8i, |bµi � µi|  ✏. Then,

8i, µi � ✏  bµbi  µi + ✏.

Proof. To show µi � ✏  bµbi, consider two cases: (i) empirically i-th largest arm is true top-i, i.e. bi  i, and (ii)

is not true top-i, i.e. bi > i. Case (i) implies that µbi � µi. Then,

bµbi � µbi � ✏ � µi � ✏.

Case (ii) implies that there exists an arm ` that is true top-i, but not empirical top-i, i.e. µ` � µi and bµ`  bµbi,
since otherwisebi (the empirical top-i) must have been squeezed out of the empirical top-i, which is a contradiction.
Then,

bµbi � bµ` � µ` � ✏ � µi � ✏.

One can show bµbi  µi + ✏ by symmetry.
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The key insight in proving the batch complexity of BatchRacing is that once there are only bb/rc or less surviving
arms, there is no choice but to pull each arm r times at every batch, possibly wasting some arm pulls. Before
then, the algorithm fully exploits pulling b times in a round and enjoys a full factor of b reduction.

Proof. Note a random variable X such that X 2 [0, 1] w.p. 1 is sub-Gaussian with scale � = 1/2. By Lemma 1,
P(\ni=1

Ei(!)) � 1 � �. Thus, it is safe to assume that \ni=1

Ei(!); the true mean of each arm is trapped by the
LCB and UCB.

Correctness We show that if an arm i is accepted (rejected) then i is (not) top-k. It su�ces to prove for round
t such that At and Rt are empty for the same reason stated in the proof of Lemma 2. An arm i being accepted
implies that there are (n� k) arms whose true means are smaller than µi since the LCB and UCB of each arm
trap its true mean. Thus, i is a top-k arm. Similarly, if an arm j is rejected then j is not top-k.

Batch Complexity Let T 0(t) = mini2S
t

Ti(t). When T 0(t) goes above T i for some arm i, then we know by
Lemma 2 that arm i is either accepted or rejected and is removed from St. We consider the worst case where an
arm i is removed only after satisfying T 0(t) � T i, and the order of the removal is arm �(n),�(n � 1), . . . ,�(3),
and �(2) or �(1). Any early removal of an arm and switching the order of the removal necessarily make the rest
of the problem easier: i.e., required number of arm pulls are reduced.

By Lemma 2, when T 0(t) reaches T i, arm �(i) is removed. If b = r = 1, the batch complexity can be trivially
obtained by summing up T i for i 2 [n]. Thus, we consider b � 2 for the rest of the proof. Let ti be the round
that T 0(ti) just passed T �(i): i.e., T

0(ti � 1) < T i and T 0(ti) � T �(i). Note that T 0(ti) can be greater than T �(i)

due to the “batch e↵ect” where the increment of the number of samples of an arm can be greater than 1. Such
discrepancy can be large when b is much larger than |St

i

|. It is easy to see that T 0(ti)  T i+ db/|St
i

|e�1. Then,

T�(i)(ti)  T 0(ti) + 1  T �(i) +

⇠

b

|St
i

|

⇡

= T �(i) +

⇠

b

(n� i+ 1)

⇡

. (11)

Consider the round t0 ⌘ t
(bb/r0c+1)

where arm �(bb/r0c+ 1) is just removed. The total number of samples used
up to t0 is

bt0 =
n
X

i=1

T�(i)(t
0) 

�

b

r0

⌫

(T 0(t0) + 1) +
n
X

i=bb/r0c+1

T �(i) +

⇠

b

n� i+ 1

⇡

.

At round t0 + 1, there are only bb/r0c surviving arms. The algorithm then has no choice but to pull every
surviving arm r0 times in each round until we remove the hardest two arms �(1) and �(2) during which arm
�(3), . . . ,�(db/r0e) are removed as a byproduct. The extra number of batches that must be performed until
termination is then d 1

r0 (T �(2) � T 0(t0))e. Therefore, the total number of batches is

t0 +

⇠

1

r0
(T �(2) � T 0(t0))

⇡

 1

r0
T �(2) +

1

b

n
X

i=bb/r0c+1

✓

T �(i) +

⇠

b

n� i+ 1

⇡◆

+
1

r0
+ 1

 1

r0
T �(2) +

1

b

0

@

n
X

i=bb/r0c+1

T �(i)

1

A+ 1 + log n+
n

b
+

1

r0
+ 1

= O

0

@

1

r0
T �(2) +

1

b

n
X

i=bb/r0c+1

T �(i) + log n

1

A .

C Proof of Theorem 2

We define an event ⇠s where every arm’s empirical mean is controlled as follows:

⇠s =

8

<

:

n

8i 2 [n],
�

�

bµi,T
i

(t
s

)

� µi

�

�  �

�(n�s+1)

4

o

if s  n� ñ
n

8i 2 [n],
�

�

bµi,T
n�ñ+1(tn�ñ+1)

� µi

�

�  �

�(2)

4

o

if s = n� ñ+ 1
.
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The proof consists of two parts. We first upper bound the probability that the empirical means are not controlled,
which is P([n�ñ+1

s=1

⇠s). Next, we show that when the empirical means are controlled, i.e. \n�ñ+1

s=1

⇠s, Algorithm 3
terminates with the correct top-k arms.

Upperbound the Probability P([n�ñ+1

s=1

⇠s) Define Z = ñ/2 +
Pn

i=ñ+1

1/i. By Hoe↵ding’s bound [10], for
s  n� ñ,

P(⇠s) 
n
X

i=1

2 exp

 

�2Ti(ts)
�2

�(n�s+1)

16

!

 2n exp

 

�2ms

�2

�(n�s+1)

16

!

 2n exp

 

�1

8
Z�1

bB �
�

Pn
i=ñ+1

db/ie
�

� c
1

(n� s+ 1)��2

�(n�s+1)

!

,

and similarly P(⇠n�ñ+1

)  2n exp

✓

� 1

8

Z�1

bB�(
P

n

i=ñ+1db/ie)�c1

2�

�2
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◆

. By union bound, P([n�ñ+1

s=1

⇠s)  (n � ñ +

1)2n exp
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� 1
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Correctness of the first stage We show that at every stage s the algorithm makes a correct decision given
that ⇠s is true: the selected arm js is accepted if it is top-k and not accepted if it is not top-k. We prove it by
induction. We first show that the decision at the first stage is correct. Then, assuming that the decision at the
round s is correct, we show that the stage s+ 1 is also correct.

Consider the first stage. Assume that ⇠s is true. Suppose the decision on the selected arm j
1

at the first stage
is incorrect. There are two cases: (a) j

1

is not top-k but is accepted and (b) j
1

is top-k but not accepted.

We here prove that (a) leads to a contradiction; one can show the same for (b) symmetrically. Define the
empirical gap

b�⇢(i) =

(

bµ⇢(i),T
⇢(i)(ts) � bµ⇢(k+1),T

⇢(k+1)(ts) if i  k

bµ⇢(k),T
⇢(k)(ts) � bµ⇢(i),T

⇢(i)(ts) if i > k
.

Since j
1

is not top-k, i.e., j
1

> k, and satisfies (a), j
1

has the largest empirical gap and the largest empirical
mean:

b�j1 � b�`, 8` 2 S
1

. (12)

bµj1 = bµ⇢(1). (13)

Note that ��(n) is either µ1

� µk+1

or µk � µn.

Case (a1): ��(n) = µ
1

� µk+1

. By (13) and Lemma 3,

µj1 +��(n)/4 � bµj1 = bµ⇢(1) � µ
1

���(n)/4
=) µk+1

� µj1 � µ
1

���(n)/2 = (µ
1

+ µk+1

)/2
=) µk+1

� µ
1

,

which contradicts µ
1

� µk > µk+1

.

Case (a2): ��(n) = µk � µn

By (12),

bµj1 � bµ⇢(k+1)

� bµ⇢(k) � bµ⇢(n)

� µk ���(n)/4� (µn +��(n)/4) = ��(n)/2

Note that arm 1, . . . , k have the following lower bound: 8i  k, bµi � µi ���(n)/4 � µk ���(n)/4. Using (13),
bµj1 = bµ⇢(1) � µ

1

� ��(n)/4 � µk � ��(n)/4. Thus, there are k + 1 arms whose empirical mean is at least
µk ���(n)/4. This gives us a lower bound for the (k + 1)-th largest empirical mean: bµ⇢(k+1)

� µk ���(n)/4.
Then,

bµj1 � bµ⇢(k+1)

� ��(n)/2
µj1 +��(n)/4� (µk ���(n)/4) �

=) µj1 � µk,
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which contradicts j
1

> k.

Correctness of the s-th stage (s  n� ñ) First, consider s = 2. After the first round, the arm j
1

is removed
from the surviving set S

2

. Let k0 = k � |A
2

|, the remaining number of top arms to identify at the second
stage. The problem we are facing at the second stage is exactly the first stage with [n] \ {�(n)} as the surviving
set S

1

and k replaced with k0. If the arm j
1

was �(n), the event ⇠
2

where the empirical mean of each arm is
controlled by ��(n�1)

/4 implies that the decision at the end of the second stage is correct. What happens if
the arm j

1

was not �(n)? Denote by �0(i) the arm with i-th smallest gap in S
2

and define the gap accordingly:
�0

�0
(1)

 . . .  �0
�0

(n�1)

. Assuming that the decision at the first stage was correct, it is easy to verify that the

largest gap �0
�0

(n�1)

in S
2

is no less than ��(n�1)

. Therefore, the event ⇠
2

implies that the empirical means of

arms are controlled by �0
�0

(n�1)

/4, which ensures that the decision at the second stage must be correct, too. In

other words, removing arm �(n) at the first stage is the worst case; removing other arms can only make the gaps
larger and make the problem “easier”.

Correctness of the final stage It is easy to show that if arms are controlled by ��(2)/4 then the empirical
means of the top-k0 will be greater than any non-top-k0 in the surviving arms Sn�ñ+1

. Thus, the output k0 arms
at the last stage is correct.


