
Active Ranking in Practice: General Ranking
Functions with Sample Complexity Bounds

Kevin G. Jamieson
University of Wisconsin

Madison, WI 53706, USA
kgjamieson@wisc.edu

Robert D. Nowak
University of Wisconsin

Madison, WI 53706, USA
nowak@engr.wisc.edu

Abstract

This paper examines the problem of ranking a collection of objects using pair-
wise comparisons (rankings of two objects). In a companion paper in the regular
NIPS 2011 program [1], we showed that if each object x ∈ Rd is assigned a score
f(x) = ||x − r|| for some unknown r ∈ Rd, then our recently proposed active
ranking algorithm can recover the ranking of the scores using about d log n selec-
tively chosen pairwise comparisons. Here we show that this same model contains
all functions of the type g(x) = wTx for some unknown w ∈ Rd, thus the same
bound applies. We take advantage of this fact and use kernel methods to rep-
resent more general ranking functions. This extension includes popular ranking
methods such as RankSVM, and we derive nontrivial query complexity bounds
for active versions of such algorithms. The efficacy of the theory and method are
demonstrated by applying our kernelized adaptive algorithm to two real datasets.

1 Problem statement
Given a set of n objects Θ := {θ1, . . . , θn}, we wish to discover how an oracle ranks these objects.
The ranking, denoted by σ, can be thought of as a mapping σ : {1, . . . , n} →{ 1, . . . , n} that
prescribes an order

σ({θi}ni=1) := θσ(1) ≺ θσ(2) ≺ · · · ≺ θσ(n−1) ≺ θσ(n) (1)

where θi ≺ θj means θi precedes, or is preferred to, θj in the oracle’s ranking. The ranking can be
learned by querying the oracle for pairwise comparisons of objects. The primary objective here is
to bound the number of pairwise comparisons needed to correctly determine the ranking when the
objects (and hence rankings) satisfy certain known structural constraints.

We define a ranking function to be f : Θ → R such that

θi ≺ θj ⇐⇒ f(θi) < f(θj). (2)

We say two ranking functions f and g are equivalent if both ranking functions correspond to the
same ranking σ. In general, there are n! ways to permute n objects and we can always find an f
that obeys (2) for any desired permutation. However, we assume that the oracle’s ranking function
belongs to a certain class denoted by F , which may limit the set of possible rankings. Given a set
of objects Θ and a ranking function class F , we denote this constrained set of possible rankings by
ΣΘ,F . While F may be uncountably infinite, because of the equivalence of ranking functions, ΣΘ,F
is a subset of Sn (symmetric group over n objects) and so its cardinality |ΣΘ,F | is at most n!.

2 Main theoretical results
We proposed an active approach to learning rankings in a companion paper in the NIPS 2011 con-
ference [1]. In that paper, we show that if F := {f(θ) = ||φ(θ)− r||, r ∈ Rd} where φ : Θ → Rd

is fixed and known, then we can discover a ranking selected uniformly at random from the set ΣΘ,F

1

by requesting just O(2d log n) pairwise comparisons, in expectation. The main contributions of this
workshop paper are to extend this theoretical result to a much broader and practically relevant range
of general ranking functions and to evaluate the performance of such methods on real-world datasets.
Our first new contribution is the following lemma which relates the class of ranking functions above
to the more common class of linear ranking functions (the proof can be found in Appendix A.1). For
the remainder of this paper, assume that φ is fixed and known.
Lemma 1. Let φ : Θ → Rd. Let F = {f(θ) = ||φ(θ)− r|| , r ∈ Rd} and let
G = {g(θ) = wTφ(θ) , w ∈ Rd}. Then ΣΘ,G ⊂ ΣΘ,F .

One may recognize the ranking function class G to be the class considered in the popular RankSVM
model [2]. Therefore, by the above lemma, we can study the class F to bound the query complexity
of the ranking functions of the type g(θ) = wTφ(θ). Moreover, just like kernel methods are often
applied to the functions in G, we show that the same is possible for the class F . This extension allows
the known theoretical results to be applied to very complicated ranking functions. We say a kernel
κ(θ, θ′) is d-dimensional if κ(θi, θj) = φ(θi)Tφ(θj) where φ : Θ → Rd and φ(θ1), . . . ,φ(θj) are in
general position in Rd. The proof of the next lemma is nontrivial and can be found in Appendix A.2.
Lemma 2. Let φ : Θ → Rd, κ(θ, θ′) := φ(θ)Tφ(θ′) be a d-dimensional kernel, and
F ′ := {f(θ) = κ(θ, θ) +

∑n
i=1 κ(θi, θ)αi , α ∈ Rn}. Then ΣΘ,F ′ = ΣΘ,F . Moreover, if

G′ := {f(θ) =
∑n

i=1 κ(θi, θ)αi , α ∈ Rn}, then ΣΘ,G′ ⊂ ΣΘ,F .
Remark 1. For infinite dimensional kernels (e.g. a Gaussian kernel defined over Rd), the ranking
function class may not reduce the number of rankings from n! due to the flexibility of such kernels.
In such cases any algorithm must request Ω(n log n) pairwise comparisons. However, if we con-
strain the ranking function class to contain only “smooth” functions by introducing a regularizer,
then experimentally we have observed substantial sample complexity gains using the the algorithm
in Figure 1. See Appendix A.3 for a full discussion.

We now state our main result in a theorem. The bound in the theorem pertains to the active ranking
algorithm in Figure 1. The key idea of the algorithm is to sequentially pass over all possible queries
(in a randomized order), requesting a query if and only if it is ambiguous based on previous queries.
Testing for ambiguity is based on an efficient linear program, as described in [1].
Theorem 1. Assume all requested pairwise comparisons are correct and tran-
sitive with probability 1. Let κ(θ, θ′) be a d-dimensional kernel and let
F = {f(θ) = κ(θ, θ) +

∑n
i=1 κ(θi, θ)αi , α ∈ Rn}. For any ranking σ ∈ ΣΘ,F let Q(σ,A)

denote the number queries required by algorithm A to discover the ranking σ. If A is the algorithm
in Figure 1 then

E
[

1

|ΣΘ,F |
∑

σ∈ΣΘ,F

Q(σ,A)

]
≤ 2cd log n

where the expectation is with respect to the randomization of the algorithm and c is a constant.
Furthermore infA

1
|ΣΘ,F |

∑
σ∈ΣΘ,F

Q(σ,A) ≥ log2 |ΣΘ,F | = Θ(d log n) where the infimum is
taken over all query selection algorithms.

The result is stated as an average over all possible rankings ΣΘ,F because while there exist contrived
positionings of the points to force at least one ranking to require Ω(n) queries, this is necessarily
atypical (see [1] for a discussion). The above theorem can also be interpreted as a Bayesian sort of
statement: if we have a uniform prior over all possible rankings ΣΘ,F then the expected number of
pairwise comparisons necessary to determine a ranking is bounded by O(d log n).
Remark 2. In practice, it is unlikely that responses to pairwise comparisons are correct with prob-
ability 1. In [1] we considered a model that assumes pairwise comparisons are flipped i.i.d. with
probability p < 1/2 and that the errors are persistent (i.e. responses to queries do not change if
repeatedly asked). The robust procedure proceeds just like the noiseless algorithm except that when
an ambiguous query is encountered, a small set of related queries is requested and used to predict
the ambiguous query. The robust procedure can be incorporated with the methods proposed here
in a straightforward way to achieve a total sample complexity of just O(d(1 − 2p)−2 log2 n) while
making errors on only a small fraction of pairwise orderings.

The remainder of this paper proves the above results and applies the developed ideas to real datasets
where significant qualitative and quantitative gains are observed.

2

Query Selection Algorithm
input: n objects, ranking function class F
initialize: objects θ1, . . . , θn in uniformly
random order
for j=2,. . . ,n

for i=1,. . . ,j-1
if qi,j is ambiguous,

request qi,j’s label from the oracle;
else

impute qi,j’s label from previously
labeled queries.

output: ranking of n objects

Figure 1: Sequential query selection algo-
rithm1. Let qi,j = {θi ≺ θj} be a query. A
query is ambiguous if its label cannot be in-
ferred from previous responses to queries [1].

x1

x2 x3

x4

x5

Ranking with Adaptively Selected Queries

Figure 2: The d-cells (white and shaded)
correspond to the rankings induced by
F = {f(x) = ||x− r|| , r ∈ Rd} while the
unbounded, shaded d-cells are induced by
G = {g(x) = wTx , w ∈ Rd}.

3 Related work
As we will see in the next section, the theoretical results of this paper are a straightforward, but
important extension upon our recent previous work [1]. The main goal of this paper is to emphasize
the practical importance of the theory and show how it performs in practice. We also wish to clearly
state how our work compares to the popular RankSVM of [2]. We were not the first to consider an
active strategy for collecting pairwise comparisons given structure about the objects; the potential
benefits were made plain in [3, 4] using empirical studies. This problem was also studied from a the-
oretical perspective by [5] but in the difficult arbitrary-noise setting in which the authors bounded the
query complexity by O(dn log2 n). This bound is exponentially larger than the bound of Theorem 1
but this is likely to be unavoidable due to their general treatment of noise. Our primary interest is to
characterize the query complexity of an active procedure that exploits this structure under noiseless
(or bounded noise) conditions, something that was previously unknown. We believe our results to
be much more satisfying from a practical perspective and that the analysis provides intuition that is
absent in [5].

4 Analysis
It turns out that the space of rankings generated by the ranking function class
F = {f(x) = ||x− r|| , r ∈ Rd} has a very intuitive geometric interpretation. We will start
with a very simple example to provide some intuition and then generalize the results. Suppose we
were not given the descriptions of the objects in Rd but still would like to find a ranking over the n
objects by requesting pairwise comparisons (i.e. the standard sorting problem using pairwise com-
parisons). Let us assign each of the n objects in Θ = {θ1, . . . , θn} a vector in Rn such that for each
θi we assign the vector xi ∈ Rn which has a 1 in the ith position and zeros everywhere else. Then all
n! rankings can be determine by some point r ∈ Rn such that θi ≺ θj ⇐⇒ ||xi − r|| < ||xj − r||.
To see this, ||xi − r|| − ||xj − r|| = 2rT (xj − xi) = 2(r(j) − r(i)), where r(i) is the ith element
of r, which means θi ≺ θj ⇐⇒ r(j) < r(i). Therefore, if n = 5 and we wanted the ranking
θ3 ≺ θ2 ≺ θ4 ≺ θ1 ≺ θ5, one solution for r is (2, 4, 5, 3, 1). In fact, the xi’s in Rn only need to be
in general position to guarantee the existence of such an r ∈ Rn that can determine any ranking.
However, now consider an embedding of the xi’s in a d-dimensional subspace of Rn, namely, Rd.
Does there still exist some point r ∈ Rd that can determine all n! rankings? It turns out that there
does not and for d * n, the number of possible rankings reduces to something like n2d, a drastic
reduction from n!. This discussion can be summarized in a lemma, thanks to Coombs [6].
Lemma 3. [6] Let x1, . . . , xn be a set of n points in Rd (in general position) describing the objects
Θ = {θ1, . . . , θn} where xi = φ(θi) for i = 1, . . . , n. For any rσ ∈ Rd let σr define a ranking over
the n points such that θi ≺ θj ⇐⇒ ||xi − rσ|| < ||xj − rσ||. Let ΣΘ,F = ∪r∈Rdσr denote the set
of all possible rankings of the n objects that satisfy this ranking condition. If Q(n, d) is equal to the

1Code at http://homepages.cae.wisc.edu/˜jamieson/me/Active_Ranking.html

3

number of distinct rankings (i.e., Q(n, d) = |ΣΘ,F |), then Q(n, d) satisfies the recursion

Q(n, d) = Q(n− 1, d) + (n− 1)Q(n− 1, d− 1) (3)

where Q(1, d) = 1 and Q(n, 0) = 1. Also, there exist positive real numbers k1 and k2 such that

k1
n2d

2dd!
< Q(n, d) < k2

n2d

2dd!

for n > d+ 1. If n ≤ d+ 1 then Q(n, d) = n!. For n sufficiently large, k1 = 1 and k2 = 2 suffice.

To see why the above lemma is true, one must understand the geometric interpretation of xi ≺ xj

in Rd. For ease of discussion, let qi,j denote the query {θi ≺ θj} and yi,j denote its label in {1, 0}
denoting whether the pairwise ordering is true or false, respectively. The pairwise comparison can
be viewed as the membership query: is θi ranked before θj in the ranking σr? The geometrical
interpretation is that qi,j requests whether the reference rσ is closer to object xi or object xj in Rd.
Consider the line connecting xi and xj in Rd. The hyperplane that bisects this line and is orthogonal
to it defines two halfspaces: one containing points closer to xi and the other the points closer to
xj . Thus, qi,j is a membership query about which halfspace rσ is in, and there is an equivalence
between each query, each pair of objects, and the corresponding bisecting hyperplane. The set of
all possible pairwise comparison queries can be represented as

(n
2

)
distinct halfspaces in Rd. The

intersections of these halfspaces partition Rd into a number of cells, and each one corresponds to a
unique ranking of Θ (see Figure 2 for an illustration of this concept). Recall from Lemma 3 that the
set of possible rankings is denoted by ΣΘ,F . The cardinality of ΣΘ,F is equal to the number of cells
in the partition. We will refer to these cells as d-cells (to indicate they are subsets in d-dimensional
space).

We now take a moment to describe the set ΣΘ,G that was introduced in Section 2. Recall from
the above discussion that each ranking in ΣΘ,F has a one-to-one correspondence to a d-cell in Rd.
Some of these d-cells are bounded (i.e. their volumes are bounded) while others are unbounded (see
Figure 2). ΣΘ,G corresponds to all those cells that are unbounded. In fact, the number of unbounded
d-cells generated by n objects follows the same recursion as in Lemma 3 with the exception that
Q(n, 0) = 0 instead of 1 [6]. It is straightforward to show that |ΣX,G | = Θ(n2(d−1)

2d−1(d−1)!).

Consider the basic sequential process of the algorithm in Figure 1. Suppose we have ranked k − 1
of the n objects. Call these objects 1 through k − 1. This places the reference rσ within a d-cell
(defined by the labels of the comparison queries between objects 1, . . . , k−1). Call this d-cell Ck−1.
Now suppose we pick another object at random and call it object k. A comparison query between
object k and one of objects 1, . . . , k − 1 can only be informative (i.e., ambiguous) if the associated
hyperplane intersects this d-cell Ck−1. If k is significantly larger than d, then it turns out that the
cell Ck−1 is probably quite small and the probability that one of the queries intersects Ck−1 is very
small; in fact the probability is on the order of d/k2 (see [1] for a complete proof).

Because the individual events of requesting each query are conditionally independent, the
expected number of queries requested by algorithm A to discover a ranking σ is just
E[Q(σ,A)] =

∑n−1
k=1

∑k
i=1 P{Request qi,k+1|labels to qs≤k,t≤k}. Using the results above, it

straightforward to prove Theorem 1.

5 Empirical results
To demonstrate the performance of the algorithm in practice, we applied it to two real datasets. The
first consists of measured quantities of 21 different styles of beer from the beer judge certification
program (BJCP) [7]. The dataset includes several features (original gravity (OG), final gravity (FG),
international bitter units (IBU), color depth (SRM), alcohol content (ABV)), but we chose to work
with just two for visualization purposes: IBU and SRM. The feature vector for each beer lives in
just R2 so this space is likely to be too simple to account for real preferences. For each pair of
beers xi, xj ∈ R2 we applied the polynomial kernel κ(xi, xj) = (1 + xT

i xj)p for p = 2. We then
ran the algorithm in Figure 1 and had the first author provide the requested pairwise comparisons.
Plotted in Figure 3 are heat maps of the first author’s preferences during two seasons. To learn
the ranking functions, 25 and 26 pairwise comparisons were requested. Note the total number of
possible comparisons is

(21
2

)
= 210 and the number of comparisons needed by conventional sorting

4

10 20 30 40 50 60

0

5

10

15

20

25

30

35

Bitterness (IBU)

C
ol
o
r
(S

R
M
)

 German Pilsner (Pils)

 Oktoberfest/Märzen

 Munich Dunkel
 Doppelbock

 Kölsch

 North German Altbier

 British Bitter

 Irish Red Ale

 Strong Scotch Ale

 American Pale Ale

 American Amber Ale

 American Brown Ale
 Robust Porter

 Dry Stout
 Oatmeal Stout

 American IPA

 Weizen/Weissbier

 Dunkelweizen

 Witbier
 Berliner Weisse

 Belgian Dubbel

(a) Summer

10 20 30 40 50 60

0

5

10

15

20

25

30

35

Bitterness (IBU)

C
ol
o
r
(S

R
M
)

 German Pilsner (Pils)

 Oktoberfest/Märzen

 Munich Dunkel
 Doppelbock

 Kölsch

 North German Altbier

 British Bitter

 Irish Red Ale

 Strong Scotch Ale

 American Pale Ale

 American Amber Ale

 American Brown Ale
 Robust Porter

 Dry Stout
 Oatmeal Stout

 American IPA

 Weizen/Weissbier

 Dunkelweizen

 Witbier
 Berliner Weisse

 Belgian Dubbel

(b) Winter

Figure 3: Heat maps of the learned ranking functions (after a monotonic nonlinear transformation
for visualization) of the first author’s preferences over different styles of beer in Summer and Winter,
respectively. The algorithm requested just 25 and 26 pairwise comparisons, respectively, to generate
the ranking functions. Blue, cooler colors are preferred to red, warm colors.

algorithms is at least log2 21! ≈ 65. The goal of this experiment was to show that the learned
ranking functions, attained with relatively few queries, are very interpretable and can be used to
predict preferences over objects that have yet to be observed or tasted.

In the second experiment we studied the tradeoff between the number of requested queries (which
grows with increased complexity) and the error in the output ranking (which shrinks with increased
complexity). We also study how our algorithm compares to the performance of an algorithm that
selects queries uniformly at random without replacement (i.e. passive learning with a RankSVM-
like algorithm). For this experiment we used a real dataset involving human-expert judgements of
similarity between two audio signals that are echoes off rocks or submarines [8]. The task is simple:
find the ranking of the nearest neighbors in the training set to each test signal by requesting as
few comparisons from the human expert as possible. One could conceive of a system where this
output could be fed into a larger system that classifies the test signal as either a rock or a submarine,
and if so, what kind. The data is encoded as a symmetric similarity matrix available at [9] whose
(i, j)th entry, denoted si,j , represents the human-judged similarity between audio signals θi and θj
for all i -= j ∈ {1, . . . , 100}. Note that we do not have access to the signals θi and θj , we only
have the similarity si,j . Ideally, the similarity matrix would be positive semi-definite (PSD) and
we could define κ(θi, θj) = si,j . Unfortunately, this is not the case so we modified the similarity
matrix in such a way that only the d largest eigenvalues for d = 1, . . . , 100 are used to represent the
similarity matrix. This can be thought of as finding the closest PSD matrix to the similarity matrix
(see [10] for a discussion). If we consider the kth row of the similarity matrix, we can rank the
other signals with respect to their similarity to the kth signal; we define q(k)i,j := {sk,i > sk,j} and
y(k)i,j := 1{q(k)i,j }. Because we are using a modified version of the similarity matrix for our kernel,
the pairwise comparisons we request are not necessarily consistent with our model. This means
that if the model is too simple (i.e., too few eigenvalues are used in the kernel) then the algorithm
will likely output a very poor ranking due to its greediness. To measure the distance between any
two rankings, we use a normalized version of the popular Kendell-Tau distance d(y(k), ŷ(k)) =(n
2

)−1 ∑
i<j 1{y

(k)
i,j -= ŷ(k)i,j } [11]. This metric is equal to the fraction of pairwise comparisons that

the true and estimated rankings disagree on.

In the scatterplot of Figure 4 (note the log scale), each filled circle represents an average over 10 runs
of the algorithm of Figure 1 for dimensions d = 1, 5, 9, . . . , 45. Each run picks one of the signals
uniformly at random from the total 100 and attempts to rank the other signals, as discussed above.
Some of the filled circles have a number next to them indicating the dimension d used for that set
of runs. Note how the number of queries is roughly proportional to the dimension, as predicted by
Theorem 1. Also in Figure 4 we have plotted the results of a passive version of the algorithm with
open circles that selected pairwise comparisons uniformly at random without replacement. Each

5

100 200 300 400 500 600 700 800 900 1000

10−2

10−1

5
9 13

17
21

25

29

33

Number of requested queries

N
or
m
a
li
ze

d
er
ro

r
d
(σ

,σ̂
)

37

41

45

Figure 4: Each filled circle represents a randomly selected object that determines the ranking over the
other objects for a certain dimension d = {1, 5, . . . , 45}. As d increases, the model becomes more
complex meaning that more queries are requested but the error decreases. Each open circle indicates
the probability of error for the passive algorithm with the given number of pairwise comparisons
with d = 70, the dimension that worked best. With n = 99, binary sort would require about
log2 n! ≈ 518 pairwise comparisons.

open circle represents the average over 100 runs using the plotted number of pairwise comparisons
and d = 70, which is what we found to perform the best over a large range of d’s. It is interesting to
note that there are about 70 positive eigenvalues for the similarity matrix. We observe that if d is too
small, the model does not fit the data well and the algorithm outputs a poor ranking compared to the
passive strategy because of its greediness (see [12] for a discussion of this phenomenon). However,
when we increase d, the complexity of the ranking function class increases and the active algorithm
begins to outperform the passive algorithm by a significant amount. In fact, when d = 41 for the
active algorithm, the passive algorithm needs more than twice the amount of pairwise comparisons
to match the error rate of the active algorithm. When d = 45, the passive algorithm needs more than
3 times as many pairwise comparisons.

A Appendix
A.1 Proof of Lemma 1.

Proof. First note that without loss of generality, we can take ||w|| ≤ 1 because it is only the direction
that matters on the finite set of objects (i.e. the size of the margin is irrelevant). To simplify notation,
let xi = φ(θi) for i = 1, . . . , n. Observe that ||xi − r|| − ||xj − r|| < 0 ⇐⇒ ||r||−1(xT

i xi −
xT
j xj)−2||r||−1rT (xi−xj) < 0, so by making ||r|| sufficiently large, we can make the contribution

of ||r||−1(xT
i xi − xT

j xj) as small as we’d like. This means we are trying to find a w = −||r||−1rT

such that 2wT (xi − xj) < 0 for all for all pairs (i, j) with θi ≺ θj with ||w|| ≤ 1. But this
is equivalent to the objective function of RankSVM of [2] so if such a w exists, then the induced
ranking is also in ΣΘ,F . This proves ΣΘ,G ⊂ ΣΘ,F .

A.2 Proof of Lemma 2.

Proof. For each θi ∈ Θ let xi = φ(θi) and κ(θi, θj) = xT
i xj . Suppose we knew the true ori-

entation of the pairwise comparisons for all
(n
2

)
pairs of objects and the ranking is in ΣΘ,F where

F = {f(x) = ||x− r|| , r ∈ Rd}. Observe that for each f ∈ F , f(xi)−f(xj) = ||xi−r||− ||xj−
r|| = xT

i xi−xT
j xj −2rT (xi−xj). For any r ∈ Rd satisfying f(xi)−f(xj) < 0 for all pairs (i, j)

with θi ≺ θj , we may assume without loss of generality that r ∈ span{(xi − xj), 1 ≤ i < j ≤ n}.
In general, span{(xi − xj), 1 ≤ i < j ≤ n} ⊂ span{xi, 1 ≤ i ≤ n} so we define

B =
{
β ∈ Rn :

n∑

k=1

βkxk ∈ span{(xi − xj), 1 ≤ i < j ≤ n}
}
.

6

This allows us to write r =
∑n

k=1 βkxk for some β ∈ B and F = {f(x) = κ(x, x) +∑n
k=1 βkκ(xk, x), β ∈ B}. Define H := {f(x) = κ(x, x) +

∑n
k=1 αkκ(xk, x) , α ∈ Rn}. Be-

cause, in general, B ⊂ Rn, it follows that F ⊂ H and ΣΘ,F ⊂ ΣΘ,H. However, we next show that,
perhaps surprisingly, ΣΘ,F = ΣΘ,H. In fact, we show that for all h ∈ H, there exists an f ∈ F
such that f(xi) < f(xj) ⇐⇒ h(xi) < h(xj) for all i -= j ∈ {1, . . . , n}.

Observing that B is a subspace of Rn, define B⊥ to be the orthogonal complement of B such that
Rn = B ∪ B⊥. This implies that for any β ∈ B⊥, we have

∑n
k=1 βkxT

k

(
xi − xj

)
= 0 for all

i -= j ∈ {1, . . . , n}. Fix an h ∈ H such that h(xi) < h(xj) for every pair (i, j) with θi ≺ θj (recall
F ⊂ H so such an h always exists). Let α be the vector in Rn associated with the particular h and
let α = αB + αB⊥ be a decomposition of α such that αB ∈ B and αB⊥ ∈ B⊥. Then

h(xi)− h(xj) = κ(xi, xi)− κ(xj , xj) +
n∑

k=1

αk

(
κ(xk, xi)− κ(xk, xj)

)

= κ(xi, xi)− κ(xj , xj) +
n∑

k=1

αk x
T
k

(
xi − xj

)

= κ(xi, xi)− κ(xj , xj) +
n∑

k=1

αB,k x
T
k

(
xi − xj

)
+

n∑

k=1

αB⊥,k x
T
k

(
xi − xj

)

= κ(xi, xi)− κ(xj , xj) +
n∑

k=1

αB,k x
T
k

(
xi − xj

)

= f(xi)− f(xj)

for the f ∈ F with f(x) = κ(x, x)+
∑n

k=1 αB,kκ(xk, x) since, by definition, αB ∈ B. This shows
that ΣΘ,H ⊂ ΣΘ,F , which completes the proof that ΣΘ,H = ΣΘ,F .

The second statement of the lemma follows immediately from the first statement and Lemma 1.

A.3 A note on infinite dimensional kernels

While finite dimensional kernels offer flexibility (for example, the polynomial kernel in the empirical
results) it is not uncommon to employ infinite dimensional kernels in practice, such as the popular
RBF kernel κ(xi, xj) = exp{− ||xi−xj ||2

2σ2 } for X = {x1, . . . , xn} ⊂ Rd and σ > 0. In this case,
and any other kernel that satisfies κ(x, x) = 1 for all x ∈ Rd, we can express the ranking function
class as F = {f(x) =

∑n
k=1 αkκ(xk, x) , α ∈ Rn}. For the remainder of this discussion we will

assume κ(x, x) = 1, which is standard property of many common infinite dimensional kernels.
If x = (x1, . . . , xn)T then for every f ∈ F there exists an α ∈ Rd (and visa versa) such that
f(x) = Kα where Ki,j = κ(xi, xj) for all i, j ∈ {1, . . . , n}. Thus, in practice the function class
is linear in n-dimensional space and not the infinite dimensional space implied by the kernel. Also
note that, with the exception of trivial cases, K is full rank. Therefore for any z := f(x) ∈ Rn we
can find an α ∈ Rn such that z = Kα, which implies |ΣX,F | = n!. This means that to discover
a ranking in ΣX,F , we must request at least Ω(n log n) queries from the oracle, on average. While
at first glance infinite dimensional kernels seem hopeless, we show next that regularization may
drastically reduce the number of rankings while maintaining a rich space of ranking functions.

If Ki,· denotes the ith row of the kernel matrix K, then specifying a particular ranking in
ΣX,F is equivalent to finding an α ∈ Rn such that (Ki,· − Kj,·)α ≤ 0 for all pairs (i, j) with
xi ≺ xj in the ranking. That is, each query is associated with the hyperplane (Ki,· − Kj,·)
and these

(n
2

)
hyperplanes partition Rn into n! n-cells, each corresponding to a unique rank-

ing. Notice that all the n-cells of ΣX,F are unbounded. This implies that if we define
F ′ = {f(x) =

∑n
k=1 αkκ(xk, x) , α ∈ Rn s.t. |

∑n
k=1

(
κ(xk, xi)− κ(xk, xj)

)
αk| ≥ 1, ∀(i, j)},

then ΣX,F ′ = ΣX,F because ||α|| can be arbitrarily large. In fact, the n-cells of ΣX,F ′ are simply
shrunken, or eroded, versions of the n-cells of ΣX,F . Now consider a slightly different function

7

class defined as

F(s) = {f(x) =
n∑

k=1

κ(xk, x)αk, α ∈ Rn s.t.

αTKα ≤ s and |
n∑

k=1

(
κ(xk, xi)− κ(xk, xj)

)
αk| ≥ 1, ∀(i, j)}

for some s > 0. We observe that ΣX,F(s) contains all the rankings of ΣX,F ′ that correspond to
n-cells that have non-zero intersection with the ellipse {α ∈ Rd : αTKα ≤ s}. Clearly, as s → ∞,
ΣX,F(s) → ΣX,F and as s → 0, ΣX,F(s) reduces to an empty set. We can also interpret αTKα ≤ s
as a means of controlling the smoothness of the function f with a smaller value of s corresponding
to a smoother function. Finally, if finding an α with

∑n
k=1

(
κ(xk, xi)− κ(xk, xj)

)
αk ≤ −1 for all

xi ≺ xj is viewed as a classification problem, one can show a one-to-one correspondence between s
and the minimum acceptable margin of the linear separator

∑n
k=1 αkφ(xk) over the points

(
φ(xi)−

φ(xj)
)

in the φ space where κ(x, x′) = φ(x)Tφ(x′) [2, 13]. Using this last interpretation, we can
use VC theory to show that log |ΣX,F(s)| = O(s log n) by noticing that the margin is at least 2s−1/2

and maxi,j(φ(xi) − φ(xj))T (φ(xi) − φ(xj)) ≤ 2 [14]. While we do not claim that our proposed
algorithm will achieve a query complexity of O(s log n) for all data inputs and choices of s, we
conjecture that the typical performance is not too much worse than this estimate. Exploring the
connection between s and the query complexity is the topic of future work. It should also be noted
that this regularization technique can also be applied to finite dimensional kernels.

References
[1] K. Jamieson and R. Nowak. Active ranking using pairwise comparisons. Neural Informa-

tion Processing Systems (NIPS), http://homepages.cae.wisc.edu/˜jamieson/
activeRanking_extended.pdf, 2011.

[2] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regres-
sion. Advances in Neural Information Processing Systems, pages 115–132, 1999.

[3] R.J. Arens. Learning to rank documents with support vector machines via active learning.
2009.

[4] W. Chu and Z. Ghahramani. Extensions of gaussian processes for ranking: semi-supervised
and active learning. Learning to Rank, page 29, 2005.

[5] N. Ailon, R. Begleiter, and E. Ezra. A new active learning scheme with applications to learning
to rank from pairwise preferences. Arxiv preprint arXiv:1110.2136, 2011.

[6] C.H. Coombs. A theory of data. Psychological review, 67(3):143–159, 1960.
[7] Style Guidelines by Category. [http://www.bjcp.org/stylecenter.php]. Beer Judge Certifica-

tion Program, 2011.
[8] Scott Philips, James Pitton, and Les Atlas. Perceptual feature identification for active sonar

echoes. In OCEANS 2006, 2006.
[9] Aural Sonar. [http://idl.ee.washington.edu/SimilarityLearning/Applications/Datasets/]. Uni-

versity of Washington Information Design Lab, 2011.
[10] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti. Similarity-based

classification: Concepts and algorithms. Journal of Machine Learning Research, 10:747–776,
March 2009.

[11] J.I. Marden. Analyzing and modeling rank data. Chapman & Hall/CRC, 1995.
[12] Sanjoy Dasgupta. Two faces of active learning. Theor. Comput. Sci., 412:1767–1781, April

2011.
[13] R. Tibshirani T. Hastie and J. Friedman. The elements of statistical learning. Springer, 2009.
[14] V.N. Vapnik. Statistical learning theory. 1998.

8

