
Low-Dimensional Embedding using Adaptively
Selected Ordinal Data

Kevin G. Jamieson
University of Wisconsin

Madison, WI 53706, USA
kgjamieson@wisc.edu

Robert D. Nowak
University of Wisconsin

Madison, WI 53706, USA
nowak@engr.wisc.edu

Abstract—Low-dimensional embedding based on non-metric
data (e.g., non-metric multidimensional scaling) is a problem
that arises in many applications, especially those involving
human subjects. This paper investigates the problem of learning
an embedding of n objects into d-dimensional Euclidean space
that is consistent with pairwise comparisons of the type “object
a is closer to object b than c.” While there are O(n3) such
comparisons, experimental studies suggest that relatively few
are necessary to uniquely determine the embedding up to
the constraints imposed by all possible pairwise comparisons
(i.e., the problem is typically over-constrained). This paper is
concerned with quantifying the minimum number of pairwise
comparisons necessary to uniquely determine an embedding
up to all possible comparisons. The comparison constraints
stipulate that, with respect to each object, the other objects
are ranked relative to their proximity. We prove that at least
Ω(dn logn) pairwise comparisons are needed to determine
the embedding of all n objects. The lower bounds cannot be
achieved by using randomly chosen pairwise comparisons. We
propose an algorithm that exploits the low-dimensional geom-
etry in order to accurately embed objects based on relatively
small number of sequentially selected pairwise comparisons and
demonstrate its performance with experiments.

I. INTRODUCTION

This paper studies the problem of learning a low-
dimensional embedding from ordinal data. Consider a set of
n points {x1, . . . , xn} in Rd. The locations of the points are
unknown to us, but assume we are given the set of constraints
of the form “object xk is closer to (or further from) xi than
xj” for all distinct i, j, k ∈ {1, . . . , n}. The goal is to identify
an embedding into Rd consistent with these constraints. This
is a classic problem that has been addressed using a technique
known as non-metric multidimensional scaling (non-metric
MDS).

Here we consider a new variation on this problem. Con-
straints of the form above are often collected from human
subjects. Each constraint is associated with a binary variable,
the answer to the comparison query “Is object xk closer
to xi than xj?” People are better at providing this sort of
information as opposed to giving more fine-grained numerical
judgments or distances [1]. There are on the order of n3

constraints. Collecting ordinal data of this type from people is
time-consuming and costly, and quickly becomes prohibitive
as n grows. So it is of interest to consider whether it is
necessary to obtain the complete set of data. Since the points

are assumed to exist in Rd, it is reasonable to conjecture that
if the embedding dimension is low, i.e., d � n, then there
may be a high degree of redundancy in these constraints.
If this conjecture is correct, then it should be possible to
identify a consistent embedding (i.e., consistent will all the
constraints) from a small subset of the constraints.

We lower bound the minimum number of constraints
needed to determine a consistent embedding by dn log n,
far fewer than the total number. We conjecture that this
lower bound is tight and propose a sequential procedure
for adaptively selecting comparison queries. A comparison
query is made if and only if the answer to the query (i.e.,
the corresponding constraint) is ambiguous given the answers
to all previously selected queries. Ambiguity can be tested
by solving an optimization problem that is, in general, non-
convex but is observed to be well-behaved in practice (see
Section IV-D). Analysis of the procedure and numerical ex-
periments support the conjecture that on the order of dn log n
queries/constraints determine the embedding. Furthermore,
we show that if queries are selected uniformly at random,
then almost all the queries must be requested in order to
determine an embedding consistent with all the constraints.

This paper is laid out as follows. Section II reviews related
work of non-metric multidimensional scaling and previous
advancements made in the active discovery of ordinal in-
formation under geometrical constraints. In Section III we
discuss the geometrical interpretation of our constraints and
use this insight to construct bounds for the query complexity
of this problem. In Section IV we propose two algorithms
that attempt to determine the embedding by asking as few
redundant queries as possible. Finally, in Sections V and VI
we present our numerical studies and analyze the results.

II. RELATED WORK

Non-metric multidimensional scaling (MDS) was designed
to provide researchers with a graphical or spatial represen-
tation of the human-perceived relationships between a set of
arbitrary objects [2]. In addition to the pairwise comparisons
of the form ||xi − xj || < ||xj − xk|| for all triples (i, j, k),
non-metric MDS also forces constraints of the type

||xi − xj || < ||xk − xl|| (1)

for all quadruples (i, j, k, l) ∈ {1, . . . , n}. These additional
queries make the total number of queries grow like n4

which is often prohibitively large for even small values of n.
Consequently these additional constraints are often omitted
in practice [3], [4]. Also note that because our query-
ambiguity test alluded to above is a special case of non-
metric MDS, it follows that non-metric MDS is also non-
convex and these additional queries can make the already
difficult optimization even harder. However, these issues are
not the only problems; they can also, at times, be difficult to
answer accurately because a query “is the distance between
objects i and j less than the distance between objects k
and l?” requires a comparison of the absolute scales of
the dissimilarities instead of simply asking which object is
closer to another. This difficulty is our primary reason for
considering constraints using just three objects.

While pairwise comparisons using triples of objects are
very natural and easy to answer, some research suggests that
people can find answering these kind of queries extremely
tedious and boring. Presumably, this could lead to erroneous
answers after extended sessions of querying a user [5]. Some
researchers have suggested that perhaps only a sparse subset
of these inequalities are actually required, greatly reducing
the load on the human subject [3], [6]. Early work using
just a random subset of these kinds of queries by Johnson
supports this hypothesis [7]. While researchers in the past
have proposed algorithms to find an embedding given a fixed
number of answers to queries, we are unaware of any research
that attempts to characterize the number of queries that must
necessarily be made to uniquely determine an embedding.
We provide partial answers to this question and propose an
algorithm that we conjecture to be optimal in the sense that
it asks within a constant factor of the minimum number
of necessary queries to uniquely determine an embedding
consistent with all the constraints.

Prior to this point, we have assumed that the constraints we
are querying for are consistent with an embedding of a known
dimension. However, [4] assumes that labels to queries are
the result of a consensus from a number of individuals, or a
crowd. This perspective allows one to consider the problem
from a probabilistic point of view so that one can speak of
requesting the comparison that would provide the greatest
potential information gain. While [4] presents some results
for empirical datasets, few guarantees were made about the
quality of the embedding and no guidance was given to
how many queries were “enough” or sufficient to achieve
an embedding of satisfactory quality.

In previous work we characterized the query complexity
of a very related problem that this paper extends [8]. Given
a fixed embedding x1, . . . , xk of k objects in Rd (i.e. the
locations of the k objects are known exactly) and just one
object placed in an unknown location in the same space, we
show that the ranking of the objects relative to their proximity
to this new object can be discovered with just Θ(d log k)
queries on average, depending on the particular placement
of the new object. Note that the embeddings we consider in
this paper are determined up to an equivalence class by the

correct ranking of the objects with respect to each object.
This analysis immediately yields a lower bound on the query
complexity of finding an embedding.

III. THE GEOMETRY OF AN EMBEDDING

Consider an embedding of n points in Rd. For any triple
(i, j, k), we have that either ||xi − xk|| < ||xk − xj || or its
opposite are true (we assume ties are not allowed). We wish
to learn an embedding {x1, . . . , xn} ⊂ Rd that satisfies all of
these constraints. If we concatenate each point xi ∈ Rd into a
column vector x = (xT1 , . . . , x

T
n)T , we see that an embedding

of n points in d dimensions can be represented by a single
vector living in Rnd. If for every triple (i, j, k) we define the
region ri,j,k = {x ∈ Rnd : ||xi − xk|| < ||xk − xj ||}, then
the query: “is object xk closer to xi or xj” is equivalent
to asking if x ∈ ri,j,k. We call this pairwise comparison
query a membership query. All possible intersections of
these regions (and their complements) partition Rnd into
many nd-dimensional regions which we will call nd-cells
to distinguish them from the regions of the form of ri,j,k.
Because every point in an nd-cell agrees with all of the
same constraints, we call any two embeddings in the same
nd-cell equivalent. From this perspective, we see that we are
trying to locate a point in one of these nd-cells bounded
by surfaces passing through Rnd that are induced by the
membership queries ri,j,k. Before considering this problem
directly, we would like to provide some intuition about the
space of embeddings.

A. A lower bound on the query complexity

In this section we state a lower bound on the number of
membership queries that are necessary to define an embed-
ding of n objects in d dimensions such that all the constraints
are satisfied. Our strategy is to add one object at a time to
the embedding and lower bound how quickly the number of
embeddings grows.

Recall that we assumed the existence of a fixed embedding
of n points in d dimensions that generated the n

(
n−1
2

)
constraints. Suppose we somehow had the exact locations of
k < n objects and we would simply like to add the (k+ 1)st
point to the embedding. At the very least, we must determine
the order of the distances from xk+1 to all the other xi’s for
i = 1, . . . , k. That is, we must determine some permutation
σ of the k indices such that we can write

||xk+1 − xσ(1)|| < ||xk+1 − xσ(2)|| < · · · < ||xk+1 − xσ(k)|| .
(2)

Because the points x1, . . . , xk are embedded in d-dimensions,
there are far fewer than k! possibilities for σ. In fact, if all
the points are in general position, the number of possibilities
for σ is known exactly. Before presenting this result it is
instructive to consider the geometric relationship between the
rankings of (2) and Rd.

Again, recall that the xi’s for i = 1, . . . , k are assumed
fixed, only xk+1 is unknown. To determine the number
of possibilities for σ of (2) we notice that every ranking
can be uniquely defined by a set of pairwise comparisons:

||xk+1 − xi|| < ||xk+1 − xj || for some set of indices {i, j}.
This pairwise comparison has a geometrical interpretation:
it says that object xk+1 resides in the halfspace defined
by the hyperplane that bisects and lies orthogonal to the
line connecting objects xi and xj . There is a hyperplane
associated with each pair of objects so as a result, the

(
k
2

)
hyperplanes partition the d-dimensional space into many d-
dimensional regions we call d-cells. If we orient each of the
hyperplanes such that a point in the space either lies above,
on or below each hyperplane, then all points in a d-cell are
above, on, or below all of the same hyperplanes. While each
halfspace is a partial ordering of just two objects, each d-
cell is associated with a total ordering over the k objects
describing the relative proximity of the (n + 1)th object
to the other objects. Because there is a one-to-one relation
between distinct rankings and the number of d-cells, we can
use this geometrical interpretation to characterize the number
of distinct possibilities of σ of (2). For further discussion see
[8] or [9].

Lemma 1. [9] Let x1, . . . , xk be a fixed embedding of k
objects in general position in Rd. Let C(k, d) denote the
number of d-cells formed by the arrangement of hyperplanes
induced by the

(
k
2

)
pairs of objects. C(k, d) satisfies the

recursion

C(k, d) = C(k − 1, d) + (k − 1)C(k − 1, d− 1) , (3)

where C(1, d) = 1 and C(k, 0) = 1.

In the hyperplane arrangement induced by the k objects in
d dimensions, each hyperplane is intersected by every other
and is partitioned into C(k−1, d−1) subsets or (d−1)-cells.
The recursion, above, arises by considering the addition of
one object at a time. Using this lemma in a straightforward
fashion, we can show the following corollary (see [8]).

Corollary 1. There exist positive real numbers c1 and c2
such that

c1
k2d

2dd!
< C(k, d) < c2

k2d

2dd!

for k > d + 1. If k ≤ d + 1 then C(k, d) = k!. For k
sufficiently large, c1 = 1 and c2 = 2 suffice.

We are now ready to state a lower-bound on the query
complexity of finding an embedding.

Theorem 1. The number of membership queries
{x ∈ ri,j,k}i,j,k≤n required to determine an embedding
of n objects in d dimensions that satisfies all of the
constraints is Ω(dn log n).

Proof: Using the help of an oracle, who will not
only supply us the answers to membership queries but also
additional side information, we will construct an embedding
adding one object at a time. We will lower bound the number
of bits of information that we will need to collect from the
oracle and then use this as a lower bound for the number of
queries necessary since a query provides at most one bit of
information.

Recall that we assume the existence of a fixed embedding
{x1, . . . , xn} ⊂ Rd that generated the constraints. We begin
by asking the oracle for the exact locations of the first two
objects x1 and x2. Given the fixed positions of the first two
objects, we find which d-cell (a single halfspace in this case)
the third object resides in, tell the oracle, and then ask the
oracle to provide the exact location of the third object. That
is, before getting the exact location of an object from the
oracle, we must tell the oracle which d-cell the object is in.
After k objects have been embedded this way, we find the d-
cell that the (k+1)th object resides in, and then tell the oracle
who returns the exact location of this object. Because the
oracle is providing to us the exact locations of the objects, any
queries that are inferred, due to them being unambiguous, are
consistent with any embedding that satisfies all the n

(
n−1
2

)
constraints; even those that have not been considered by this
sequential procedure yet. This subtle point will be considered
again in Section IV-B when we do not have access to the
exact locations of the objects. There are C(k, d) possible
rankings of the k objects that we must discriminate between
to tell which d-cell the (k + 1)th object is in. Therefore, we
must provide at least Ω(d log k) bits of information to the
oracle. The lower bound follows from summing the number
of bits to add all of the objects to the embedding sequentially.

Based on how the above lower bound was constructed, it is
not clear how tight the bound is because the oracle provided
the exact location of the current object: information which
is clearly sufficient but unlikely to be absolutely necessary.
However, as alluded to before in Section II, theoretical and
empirical evidence suggests that as the number of objects
to be embedded grows, the amount of “wiggle” possible
in each point of the embedding decreases rapidly to zero
[10]. Intuitively, as the number of constraints grows with the
number of objects embedded, the embedding acts more and
more as if it were constrained with metric constraints. We
will revisit this idea in the Section VI.

B. Counting the number of embeddings

Given the lower bound of the last section, it is natural to
wonder how tight it is. If we could upper bound the number
of embeddings and look at the log of this number, this would
tell us how many bits it takes to encode an embedding. But
even if this number matched the lower bound, this would still
not tell us if we could achieve the lower bound because the
possible membership queries we have at our disposal may
not be informative enough. It turns out that to merely upper
bound the number of embeddings is a challenge. For the
special case when d = 1, we will demonstrate an upper bound
that matches the lower bound of above. We will then consider
the general case for d > 1.

Consider the membership query x ∈ ri,j,k = {x ∈ Rnd :
||xi − xk|| < ||xk − xj ||} for some (i, j, k) triple. This can
be simplified to a slightly more interpretable form:

(xi − xk)T (2xj − xi − xk) < 0 . (4)

In Rnd this corresponds to a cone in 2d dimensions (in a
rotated coordinate space) whose apex is the origin and is
constant in the remaining n − 2d dimensions. For d = 1,
xi ∈ R for all i = 1, . . . , n so x ∈ Rn and (4) degenerates
into a very simple geometric relation. If (xi−xk)(2xj−xi−
xk) < 0 then (xi − xk) < 0 and (2xj − xi − xk) > 0, or
(xi−xk) > 0 and (2xj−xi−xk) < 0. Because (xi−xk) = 0
and (2xj − xi − xk) = 0 simply define two hyperplanes,
an embedding consistent with all n

(
n−1
2

)
labels is contained

within an n-cell bounded by hyperplanes. Because each query
induces at most two hyperplanes (actually just 1, on average,
because of the queries sharing hyperplanes) it follows that
Rn is partitioned by O(n3) hyperplanes corresponding to the
n
(
n−1
2

)
queries. It is well-known that N hyperplanes partition

Rp into no more than O(Np) p-dimensional regions [11]. It
then follows that for d = 1 and any n there exists some
constant c independent of n such that there are at most cn3n

embeddings because each n dimensional region corresponds
to at most one embedding.

Unfortunately, for d > 1 we have yet to discover
a non-trivial upper bound for the number of embed-
dings. The difficulty arises in the nonlinear nature of the
polynomials defining the queries. A common tactic in
counting the number of intersections of sets with non-
linear boundaries is to project to a higher dimensional
space where the boundaries are linear [12]. Let φ :
Rnd → Rn(n+2d+1)/2 be a map from x = (x1, . . . , xn)
to (x1, . . . , xn, x

T
1 x1, . . . , x

T
nxn, x

T
1 x2, . . . , x

T
n−1xn). Now

each query of the form (4) is a hyperplane in Rn(n+2d+1)/2.
Using the same technique as above for d = 1, we can upper
bound the total number of embeddings for all d ≥ 1 by some
constant times n3n(n+2d+1)/2. Unfortunately, this bound is
quite trivial for the following reason: for an embedding to
satisfy all the constraints, we would merely need to discover
how each of the n objects rank the other (n − 1) objects
with respect to the distance from themselves. Using binary
sort, each ranking of n− 1 objects can be discovered using
(n−1) log2(n−1) queries (see Section IV-A.) Because there
are n rankings to discover, this implies that it takes at most
n(n−1) log2(n−1) bits to describe an embedding. Observing
that log2(n3n(n+2d+1)/2)) > n(n − 1) log2(n − 1), we see
that if we use binary sort, we get a better bound than if we
use this linearizing technique that takes d into account.

This bound is loose because when we linearize the space
and count the number of equivalent regions in the projected
high dimensional space, this does not take into account the
fact that all possible solutions, x ∈ Rnd, actually lie on an
nd-dimensional manifold {φ(x) : x ∈ Rnd} in this high
dimensional space. The true number of embeddings is not the
total number of these regions in the high-dimensional space,
but just those that are intersected by the manifold {φ(x) :
x ∈ Rnd}. Fortunately, our experiments and analysis (see
Sections V and VI) suggest that the true rate of growth for the
number of embeddings is much smaller than that of predicted
by binary sort and does depend on the dimension d.

C. The inefficiency of randomly selected queries

Before we discuss different adaptive methods of selecting
queries, it is natural to wonder if such complicated schemes
are really necessary; is it sufficient to simply select queries
uniformly at random to find a solution? In this section we
show that if membership queries are selected in a random
fashion, Ω(n3) queries must be requested to uniquely deter-
mine an nd-cell and thus, an embedding. In fact, we actually
show that to solve a problem using extra side information
would require this many queries and because that information
could have always been ignored, to solve the problem without
the side information is at least as hard. Our strategy is to add
a single object to the embedding one at a time and show that
if there are k objects already embedded, it requires Ω(k2)
queries to add the (k + 1)th object.

We assume that queries are selected independently such
that after selecting a subset of the queries, they are exchange-
able in the sense that we can reorder them any way we like
and it does not affect which nd-cell they define. Enumerate
the objects so that they are labeled 1, . . . , n. Then, order the
randomly selected queries such that for any query defined
over the triple (i, j, k) in the list, all queries that are ordered
before it use objects whose indices are less than or equal to
max{i, j, k}. In other words, we would like to reorder the
selected queries such that it appears as if we are adding one
object at a time like we constructed the lower bound of above.
Again, suppose we somehow had the exact locations of k < n
objects and we would simply like to add the (k+ 1)th point
to the embedding. At the very least, we must determine the
order of the distances from xk+1 to all the other xi’s for
i = 1, . . . , k as in (2). Recall from Section III-A that if the
k objects are fixed, each possible ranking over the k objects
has a one-to-one correspondence with a d-cell that is bounded
by hyperplanes corresponding to the queries. If m queries
were chosen uniformly at random from the possible

(
k
2

)
, the

answers to m queries narrows the set of possible rankings
to a d-cell in Rd. This d-cell may consist of one or more of
the d-cells in the partition induced by all

(
k
2

)
hyperplanes.

If it contains more than one of the partition cells, then the
underlying ranking is ambiguous.

Lemma 2. Let N =
(
k
2

)
. Suppose m membership queries

{x ∈ ri,k+1,j}i,j≤k are chosen uniformly at random without
replacement from the possible

(
k
2

)
. Then for all positive

integers N ≥ m ≥ d the probability that the m queries
yield a unique ranking is

(
m
d

)
/
(
N
d

)
≤ (emN)d.

Proof. No fewer than d hyperplanes bound each d-cell in
the partition of Rd induced by all possible queries. The
probability of selecting d specific queries in a random draw
of m is equal to(
N − d
m− d

)/(
N

m

)
=

(
m

d

)/(
N

d

)
≤ md

d!

dd

Nd
≤

(
m

N

)d
dd

d!
≤

(
em

N

)d
. �

Note that
(
m
d

)
/
(
N
d

)
< 1/2 unless m = Ω(k2). Therefore, if

the queries are randomly chosen, then we will need to ask

almost all queries to guarantee that the inferred ranking over
the first k objects is probably correct. The proof of the next
theorem is shown by repeated application of the above result
using the same line of reasoning as the proof of Theorem 1.

Theorem 2. Given the existence of an embedding of
n objects in d dimensions, if m membership queries
{x ∈ ri,j,k}i,j,k≤n are chosen uniformly at random without
replacement from the possible n

(
n−1
2

)
, then to uniquely

determine the nd-cell and thus an embedding that satisfies
all of the constraints with probability greater than 1/2,
m = Ω(n3).

IV. QUERY SELECTION ALGORITHMS

In this section we propose query selection algorithms that
attempt to satisfy all of the n

(
n−1
2

)
constraints by only

requesting a small subset of them. First, we review classical
binary sort in Section IV-A because it is implemented in
all of the algorithms and its performance guarantees should
be clearly stated. We then propose a sequential algorithm
in Section IV-B that adds one object at a time to the
embedding and asks for queries only if they cannot be
inferred using all the known constraints up to that time.
Finally, we present a non-metric (or generalized) version of
landmark MDS in Section IV-C that was originally designed
to reduce the amount of data collection for metric MDS [13].
Both algorithms assume the existence of a subroutine that,
given any set of constraints that are consistent, will output
whether there exists an embedding that is consistent with all
of the constraints, or not. In addition, we assume that if such
an embedding exists, we can request it from the subroutine.
After presenting the algorithms that utilize this subroutine,
we will consider its implementation in Section IV-D.

A. Binary Sort
Binary sort is a simple, adaptive algorithm that finds an

arbitrary ranking over n objects using no more than n log2 n
pairwise comparisons. Because there are n! = Θ(nn) possi-
ble rankings, this algorithm is optimal in terms of the number
of requested pairwise comparisons if no additional structure
about the objects is assumed. The algorithm works as follows:
given a ranking of k objects, there are (k+ 1) positions that
the (k+ 1)th object can be put into; and because there is an
ordering over the objects, binary search can be used to find
the correct position in no more than log2(k+ 1) queries. By
induction, no more than n log2 n pairwise comparisons are
needed to rank n objects.

Consider finding an embedding of n objects in d dimen-
sions. An embedding is only unique up to the constraints
||xi − xj || < ||xj − xk|| for all triples (i, j, k). This is
equivalent to having each object rank the other n−1 objects
relative to their distance away from themselves, like in (2).
By the above argument, to find n rankings of (n−1) objects,
no more than n(n−1) log2(n−1) queries must be requested.

B. A sequential query selection algorithm
Here we introduce an algorithm to find an embedding of

n objects in d dimensions that sequentially chooses mem-
bership queries in an adaptive way in hopes of drastically

reducing the number of requested queries. But first, we
consider a naı̈ve approach to point out some potential pitfalls
of a sequential algorithm.

Recall the sequential process used in the proof of the
lower bound of Theorem 1. We added one object at a time
by finding the d-cell the object was located in, and then
requested the exact location of the object within that d-cell
from the oracle. It is natural to wonder if this exact location
is really necessary and if picking an arbitrary point in the
d-cell would suffice. Unfortunately, as Borg illustrates in a
non-pathological example of an embedding, this arbitrary
placement of objects can potentially close off possibilities
for the locations of future objects which would make it
impossible to satisfy all the future constraints [2, Chapter 2].
Intuitively, if you are not careful with how you decide the
coordinates of the objects, it is very easy to walk yourself
into a corner with no escape. What we should take from
this example is that we must allow for the objects to have
maximum flexibility while obeying the constraints if we
would like to guarantee that all the constraints, in the end,
are satisfied.

The underlying principle behind our proposed algorithm
is very simple and has enjoyed great success in other active
learning settings [14], [8]. The sequential algorithm for re-
questing queries begins by enumerating the objects and con-
siders them one at a time. The algorithm will proceed through
the queries using binary sort and request the membership
query if only if it cannot be determined using the previously
requested constraints. That is, if Q is the set of constraints
corresponding to the membership queries we have requested
up to the consideration of some new query {x ∈ ri,j,k}, we
will run our constraint-validating subroutine twice: once with
Q ∪ {x ∈ ri,j,k} and the second time with Q ∪ {x ∈ rci,j,k}.
If the subroutine confirms that both set of constraints lead to
valid embeddings, then the query in question Q∪{x ∈ ri,j,k}
is said to be ambiguous. Otherwise, if only one of the runs of
the subroutine confirms a valid embedding, we can infer what
the constraint must be and we do not need to request it from
the user. This algorithm is presented in Figure 1. Note that
despite what is written in the presentation of the algorithm
in Figure 1, binary sort is implemented; it is presented this
way for clarity.

Given the full set of n
(
n−1
2

)
constraints from the al-

gorithm, we can then run the subroutine to get the full
embedding of the n objects in d dimensions.

C. Landmark non-metric MDS (LNM-MDS)

Here we introduce landmark non-metric MDS (LNM-
MDS) which can be thought of as a non-metric or generalized
version of landmark metric MDS [13]. The basic idea behind
landmark-based versions of MDS is that instead of collecting
data for all pairs or triples of objects, a small number of ob-
jects are designated as landmarks. The objects are embedded
using only distances (or comparisons, in this paper) relative
to the landmarks. For example, the LNM-MDS proposed here
only uses comparisons of the form ||xi − l|| < ||xj − l|| or
||l− xi|| < ||l′ − xi||, where xi and xj are arbitrary objects,

Sequential query selection algorithm

input: n objects in unknown positions in Rd
initialize: Q = ∅, enumerate objects x1, . . . , xn in uni-
formly random order

for k = {2, . . . , n}
for j = {1, . . . , k}

for i = {1, . . . , k}
if {x ∈ ri,j,k} is ambiguous using only Q,

ask if {x ∈ ri,j,k};
else

infer if {x ∈ ri,j,k} with Q and add it to Q
output: n

(
n−1
2

)
constraints

Fig. 1: Sequential algorithm for selecting queries. See Sec-
tion IV-B for the definition of an ambiguous query.

but l and l′ must be members of a small set of landmarks. If
d � n and the number of landmarks is large enough, then
the intuition is that using these landmarks may be sufficient
to describe the same information as if all information was
collected between all objects.

For any integer L ≥ 2, LNM-MDS chooses L objects
uniformly at random from the set of n and requests only
the queries between the objects so that each landmark has a
complete ranking over the other n− 1 objects and each non-
landmark object has a ranking over the L landmarks. This
algorithm is motivated by the idea that if the the dimension
d is not too big, perhaps the relative proximities to just a
small subset of the objects suffices to define the embedding.
While these rankings define L

(
n−1
2

)
+ (n − L)

(
L
2

)
total

pairwise comparisons, we will use binary sort to acquire these
rankings which would mean only about L(n − 1) log2(n −
1) + (n − L)L log2(L) will be requested. If the number
of landmarks is small, this could be a significant savings
in the number of requested queries compared to asking for
all n rankings over n − 1 objects, about n2 log2 n. While
LNM-MDS does not explicitly take advantage of the low-
dimensional nature of the embedding, it may implicitly use
it to its advantage because a few landmarks may suffice to
define the embedding. One of the drawbacks of this algorithm
is that to ensure that all the constraints are satisfied, one must
check if all the other queries not asked are unambiguous.
If landmarks are added one at a time, this could be very
computationally demanding.

D. Constraint validation subroutine

This section describes the constraint validation subroutine
that determines whether a query is ambiguous or not. This
subroutine is, in essence, an algorithm for non-metric MDS
that just uses constraints of triples of objects as input. As
described in the beginning of Section III, to check if a set
of constraints is valid, we must check if there is non-empty
intersection of the sets defined by the membership queries
ri,j,k.

In general, to find a point in Rp that lies in the intersection
of sets is known as a feasibility program [15]. Unfortunately,
it is easy to show that the sets defined by the membership
queries, or equivalently the constraints of (4), produce non-
convex sets which makes the feasibility program non-convex.
This implies that what the constraint validation subroutine
converges to could be a local minima (if it converges at all)
which may erroneously indicate that a set of constraints do
not correspond to a valid embedding when they really do.
Clearly, this could be disastrous to the algorithm because
queries may be indicated as unambiguous when they really
are ambiguous. Some algorithms for solving non-metric
MDS deal with this non-convexity by allowing d to be
variable (in contrast to fixed), possibly as large as n, but
penalizing the optimization by adding the trace norm of the
inner product matrix of the embedding. This encourages low-
dimensional (or approximately low-dimensional) embeddings
[3]. Because essentially arbitrary constraints can be obeyed if
d is allowed to be n, this sort of approach would not constrain
the set of solutions and would indicate that almost all the
queries are ambiguous. What this means is that solving the
non-convex program is unavoidable and the only thing that
can be done is to repeat the optimization multiple times, each
with a random initialization. If this is done enough times, we
can be relatively confident that its results are trust-worthy.
Fortunately, in practice, this optimization problem tends to
converge to a solution rather easily if it exists. We will return
to this issue in the presentation of our numerical results.

The earliest reference of an algorithm that attempts to do
the job of the subroutine is credited to Johnson in 1973
who solves the feasibility problem by penalizing any violated
inequalities with a quadratic loss function [7]. In the last few
decades there have been enormous advances in optimization
and we know that a linear loss function using Lagrange
multipliers leads to much quicker convergence [15], [16].
To make the optimization problem converge in a reasonable
amount of time for the problem sizes we are considering
(3 ≤ n ≤ 50) many known techniques and tricks for non-
convex optimization are necessary [16]. Matlab code for our
implementation is available on the first author’s website [17].

V. EMPIRICAL RESULTS

In this section we present empirical results regarding how
many queries are requested to embed n objects into d di-
mensions. We compare standard binary sort of Section IV-A,
the sequential algorithm of Section IV-B, and LNM-MDS
of Section IV-C. In LNM-MDS, recall from Section IV-C
that to check if an existing solution given some number of
landmarks satisfies all the constraints, we have to check if any
of the queries not requested are ambiguous or not. Because
we will be adding one landmark at a time, we will give
the algorithm the benefit of the doubt in our simulations
and end LNM-MDS as soon as it finds an embedding using
the fewest number of landmarks with zero violations of all
the constraints (even those that it may not know about yet).
Clearly, this is a lower bound on its performance. On the
other hand, when either binary sort or the sequential algo-

rithm of Figure 1 finishes, it guarantees that all the constraints
are satisfied (under the assumption that the subroutine always
returns correct results).

Recall from Section IV-D that the constraint-validating
subroutine is solving a non-convex problem. It is possible
that the subroutine will converge to a local minima, indicating
that there does not exist an embedding consistent with the
given constraints when, actually, there does. This behavior
could potentially lead to the algorithm believeing that a query
is unambiguous when, in reality, it is the opposite case and
must be requested. For our simulations, we assumed that if
the algorithm failed to converge to a consistent embedding
after 3 attempts, then a consistent embedding did not exist.
Fortunately, in our studies, with the number of restarts set
to 3, in each run we observed no more than about a few
of these mistakes out of the total of about 3000 considered
for n = 30. However, this seemingly disastrous problem is
actually not much of a problem at all because in practice, the
only queries fed to the constraint validation subroutine are
those that were ambiguous when they were considered (we
do not need to give the algorithm unambiguous constraints
because by definition, their labels were determined by the
constraints already in the subroutine, which were ambigu-
ous.) This means that if a query is erroneously indicated as
unambiguous, it is not added to the optimization problem
and thus does not constrain the solution. Because we expect
many queries to be redundant, it is even possible that we will
infer the true label of this query with queries requested in the
future.

For our experiments, we chose d = {1, 2, 3} with n =
{3, . . . , 30}. Note that because binary sort is implemented
in both our sequential algorithm and LNM-MDS, neither
algorithm can do worse than binary sort, which requests
about n2 log2 n queries, regardless of how large d is. All
experiments were repeated just 5 times in the interest of
time. In Figure 2 we have plotted the mean and standard
deviation of the number of requested queries using error bars
for the sequential algorithm of Figure 1 in blue, LNM-MDS
in black, and binary sort in red. Clearly, LNM-MDS performs
nearly as bad as binary sort (but can never perform as badly
because binary sort is implemented for all the rankings in
LNM-MDS). LNM-MDS was only run for d = 1, 2 because
it was clear from just these results that LNM-MDS was not
exploiting the fact that d � n. It is also clear that the
sequential algorithm requests significantly fewer membership
queries than either binary sort or LNM-MDS.

VI. DISCUSSION

From just Figure 2, for a fixed dimension d, it is unclear
how the number of queries grows with n; is it more like
n2 log n or n log n? It is our conjecture that it grows like
the latter. In this section we will analyze the empirical data
more closely and also point out some theoretical results that,
together, we believe provide strong evidence to support our
conjecture.

Consider how many queries are requested when adding
just a single object to the embedding. Under the hypothesis

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Numb er of objects: n

N
u

m
b

e
r

o
f

re
q
u

e
st

e
d

q
u

e
ri

e
s

Sequential d=1
Sequential d=2
Sequential d=3
LNM−MDS d=1
LNM−MDS d=2
Binary Sort

Fig. 2: The mean number of requested membership queries
to determine all the constraints of an embedding of n objects
in d dimensions using the three algorithms described in
Section IV. The standard deviation of the trials are presented
using error bars.

5 10 15 20 25 30
0

50

100

150

200

250

N umb er of ob jects: n

N
u

m
b

e
r

o
f

re
q
u

e
st

e
d

q
u

e
ri

e
s

Sequential d=1
Sequential d=2
Sequential d=3
Binary Sort

Fig. 3: Given all the constraints between (n − 1) objects in
d dimensions, the mean number of requested membership
queries to determine the all the constraints of n objects in d
dimensions. The standard deviation of the trials are presented
using error bars.

that the number of queries for the sequential algorithm grows
like n log n times some constant depending on the dimension,
we should observe that the number of queries required to add
just a single object should be no greater than order log n. If
the hypothesis is false and the number of queries actually
grows faster than this, like n2 log n, the number of queries
requested to add just a single object should grow like n log n.
Figure 3 presents the average number of queries required to
add just the kth object for k = 3, . . . , 30 and d = 1, 2, 3 for
the sequential algorithm in blue and for binary sort in red. It
is clear that this the quantity associated with the sequential
algorithm grows sub-linearly and perhaps even reasonable
to conjecture that it grows logarithmically. This behavior
can be explained by some previous analyses of non-metric
multidimensional scaling and the previous analysis of the
ranking problem alluded to earlier.

If we consider an embedding of n objects in d dimensions
that satisfies all of the constraints, we know that this embed-
ding lives in some nd-cell and therefore has some amount
of flexibility. In related studies, this amount of flexibility
is observed to decrease rapidly to zero as n grows. For
example, at least qualitatively, the amount of flexibility in
an embedding in 2 dimensions has been observed to be
negligible for n as small as 10 or 15 using similar constraints
to those discussed here [10], [18]. So as k < n becomes very
large, adding the (k+1)th object becomes more and more like
adding an object to a fixed embedding of k objects. Recall
that the embedding is constrained only so far as forcing each
object to rank the other objects with respect to their relative
proximity. To add the (k+ 1)th object to the embedding, we
must discover how the (k + 1)th object ranks the other k
objects, and how the k objects insert the (k + 1)th object
into their ranking. In previous work, we showed that if the
positions of the first k objects are fixed and known, and we
have discovered how the (k + 1)th object has ranked some
subset of j < k objects, it requires only about d/j pairwise
comparisons, in expectation, to insert the (j + 1)th object
into the ranking [8, Lemma 4]. It follows that to discover
how the (k+ 1)th object ranks all k objects, it requires only
about d log k queries. This predicts part of the story, but we
still must consider how many queries it requires to insert
the (k + 1)th object in to the rankings of the other 1, . . . , k
objects.

As k gets very large, the size of the d-cells corresponding
to the possible ways the (k + 1)th object can rank the first
k objects (see Section III) becomes very small, something
like on the order k−2d. What this means is that if we first
locate the (k+1)th object in this tiny cell, with respect to the
other objects, it looks fixed. This means that to these other
objects, it looks as if they are simply adding a fixed object to
their ranking which takes only about d/k queries. Using these
informal approximations, we should expect that only about
d log k + k × d/k ≈ d log k queries will be requested to add
the (k + 1)th object. Repeated application of this argument
and the observation that embeddings appear more and more
fixed as n→∞, we conjecture with some level of confidence
that the algorithm of Section IV-B requests no more than

O(dn log n) queries to uniquely define an embedding of n
objects in d dimensions.

VII. FINAL REMARKS AND EXTENSIONS

We believe the previous section provided a great deal
of support for the conjecture that the number of queries
required to embed n objects in d dimensions grows no faster
than O(dn log n). But, of course, this is just a conjecture.
Future work will attempt to prove this conjecture. However,
theoretical results aside, we have demonstrated an algorithm
that requests drastically fewer queries than standard methods
due to its exploitation of the known structure of the space.
Furthermore, we have made code for this algorithm available
on the first author’s website [17]. While we have assumed
from the start that the objects embed into exactly d dimen-
sions with no violations of the inequalities, this assumption
should never be expected to be true in practice, especially
when humans providing the query responses. Fortunately,
the sequential algorithm described here can easily be made
robust to only probably-correct query responses by paying
an additional log n multiplicative factor in the number of
requested queries using the techniques developed in [8]. Due
to the potential practical benefits of a robust version of the
sequential algorithm, we are eager to experiment with human
subjects, for that was our driving motivation in the first place.

REFERENCES

[1] N. Stewart, G.D.A. Brown, and N. Chater. Absolute identification by
relative judgment. Psychological Review, 112(4):881–911, 2005.

[2] I. Borg and P.J.F. Groenen. Modern multidimensional scaling: Theory
and applications. Springer Verlag, 2005.

[3] S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman, and
S. Belongie. Generalized non-metric multidimensional scaling. In
Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics, 2007.

[4] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A.T. Kalai. Adaptively
learning the crowd kernel. Arxiv preprint arXiv:1105.1033, 2011.

[5] T.H.A. Bijmolt and M. Wedel. The effects of alternative methods of
collecting similarity data for multidimensional scaling* 1. Interna-
tional Journal of Research in Marketing, 12(4):363–371, 1995.

[6] B. McFee. Distance metric learning from pairwise proximities.
[7] R.M. Johnson. Pairwise nonmetric multidimensional scaling. Psy-

chometrika, 38(1):11–18, 1973.
[8] K. Jamieson and R. Nowak. Active ranking using pairwise compar-

isons. Neural Information Processing Systems (NIPS), 2011.
[9] C.H. Coombs. A theory of data. Psychological review, 67(3):143–159,

1960.
[10] R.N. Shepard. Metric structures in ordinal data. Journal of Mathemat-

ical Psychology, 3(2):287–315, 1966.
[11] R. C. Buck. Partition of space. The American Mathematical Monthly,

50(9):pp. 541–544, 1943.
[12] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern

recognition, volume 31. Springer Verlag, 1996.
[13] V. De Silva and J.B. Tenenbaum. Sparse multidimensional scaling

using landmark points. Dept. Math., Stanford University, Stanford,
CA, Tech. Rep, 2004.

[14] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active
learning. Machine Learning, 15(2):201–221, 1994.

[15] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
Univ Pr, 2004.

[16] J. Nocedal and S.J. Wright. Numerical optimization. Springer verlag,
1999.

[17] K. Jamieson. Projects. [http://homepages.cae.wisc.edu/∼jamieson/me/
Projects.html], September 2011.

[18] R. Bissett and B. Schneider. Spatial and conjoint models based
on pairwise comparisons of dissimilarities and combined effects:
Complete and incomplete designs. Psychometrika, 56(4):685–698,
1991.

