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Abstract—Finding sparse approximate solutions to large un-
derdetermined linear systems of equations is a common problem
in signal/image processing and statistics. Basis pursuit, the least
absolute shrinkage and selection operator (LASSO), wavelet-
based deconvolution and reconstruction, and compressed sensing
(CS) are a few well-known areas in which problems of this
type appear. One standard approach is to minimize an objective
function that includes a quadratic (`2) error term added to a
sparsity-inducing (usually `1) regularizater. We present an algo-
rithmic framework for the more general problem of minimizing
the sum of a smooth convex function and a nonsmooth, possibly
nonconvex regularizer. We propose iterative methods in which
each step is obtained by solving an optimization subproblem
involving a quadratic term with diagonal Hessian (i.e., separable
in the unknowns) plus the original sparsity-inducing regularizer;
our approach is suitable for cases in which this subproblem can
be solved much more rapidly than the original problem. Under
mild conditions (namely convexity of the regularizer), we prove
convergence of the proposed iterative algorithm to a minimum
of the objective function.

In addition to solving the standard `2−`1 case, our framework
yields efficient solution techniques for other regularizers, such as
an `∞ norm and group-separable regularizers. It also generalizes
immediately to the case in which the data is complex rather than
real. Experiments with CS problems show that our approach is
competitive with the fastest known methods for the standard
`2 − `1 problem, as well as being efficient on problems with
other separable regularization terms.

Index Terms—Sparse Approximation, Compressed Sensing,
Optimization, Reconstruction.

I. INTRODUCTION

A. Problem Formulation

In this paper we propose an approach for solving uncon-
strained optimization problems of the form

min
x

φ(x) := f(x) + τ c(x), (1)

where f : Rn → R is a smooth function, and c : Rn → R,
usually called the regularizer or regularization function, is
finite for all x ∈ Rn, but usually nonsmooth and possibly also
nonconvex. Problem (1) generalizes the now famous `2 − `1
problem (called basis pursuit denoising (BPDN) in [15])

min
x∈Rn

1
2
‖y −Ax‖22 + τ‖x‖1, (2)
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where y ∈ Rk, A∈Rk×n (usually k < n), τ ∈ R+, ‖ · ‖2 de-
notes the standard Euclidean norm, and ‖ ·‖p stands for the `p

norm (for p ≥ 1), defined as ‖x‖p = (
∑

i |xi|p)1/p. Problem
(2) is closely related to the following two formulations:

min
x
‖y −Ax‖22 subject to ‖x‖1 ≤ T, (3)

frequently referred to as the least absolute shrinkage and
selection operator (LASSO) [70], and

min
x
‖x‖1 subject to ‖y −Ax‖22 ≤ ε, (4)

where ε and T are nonnegative real parameters. These formu-
lations can all be used to identify sparse approximate solutions
to the underdetermined system y = Ax, and have become
familiar in the past few decades, particularly in statistics and
signal/image processing contexts. A large amount of research
has been aimed at finding fast algorithms for solving these
formulations; early references include [16], [55], [66], [69].
For brief historical accounts on the use of the `1 penalty in
statistics and signal processing, see [59] and [71]. The precise
relationship between (2), (3), and (4) is discussed in [39] and
[75], for example.

Problems with form (1) arise in wavelet-based image/signal
reconstruction and restoration (namely deconvolution) [34],
[36], [37]. In these problems, f(x) = ‖y − Ax‖22/2 (as in
(2)), with matrix A having the form A = RW, where R
is (the matrix representing) the observation operator (e.g., a
convolution with a blur kernel or a tomographic projection);
W contains a wavelet basis or redundant dictionary (i.e., mul-
tiplying by W corresponds to performing an inverse wavelet
transform); and x is the vector of representation coefficients of
the unknown image/signal. In wavelet-based image restoration,
the regularizer c is often the p-th power of an `p norm,
resulting from adopting generalized Gaussian priors for the
wavelet coefficients of natural images [60], although other
regularizers have been considered (e.g., [35], [43], [44]).

A popular new application for the optimization problems
above is compressive sensing1 (CS) [9], [10], [27]. Recent
results show that a relatively small number of random pro-
jections of a sparse signal can contain most of its salient
information. In the noiseless setting, accurate approximations
can be obtained by finding a sparse signal that matches the
random projections of the original signal, a problem which
can be cast as (4). Problem (2) is a robust version of this
reconstruction process, which is resilient to errors and noisy
data; this and similar criteria have been proposed and analyzed
in [11], [52], [81].

1A comprehensive, and frequently updated repository of CS literature and
software can be found in www.dsp.ece.rice.edu/cs/.



2

B. Overview of the Proposed Approach

Our approach to solving problems of the form (1) works by
generating a sequence of iterates {xt, t = 0, 1, . . . } and is
tailored to problems in which the following subproblem can
be set up and solved efficiently at each iteration:

xt+1 ∈ arg min
z

(z− xt)T∇f(xt) +
αt

2
‖z− xt‖22 + τ c(z),

(5)
for some αt ∈ R+. More precisely, we mean that it is much
less expensive to compute the gradient ∇f and to solve (5)
than it is to solve the original problem (1) by other means. An
equivalent form of subproblem (5) is

xt+1 ∈ arg min
z

1
2

∥∥z− ut
∥∥2

2
+

τ

αt
c(z), (6)

where
ut = xt − 1

αt
∇f(xt). (7)

This form is considered frequently in the literature, often under
the name of iterative shrinkage/thresholding (IST) algorithms,
discussed below. The proximity operator in Combettes and
Wajs [17, equation (2.13)] has the form of (6), and is central
to the algorithms studied in that paper, which are also suitable
for situations in which (5) can be solved efficiently.

Many choices of objective function f and regularizer c
in (1) satisfy the assumptions in the previous paragraph. A
particularly important case is the one in which c is separable
into the sum of functions of the individual components of its
argument, that is,

c(x) =
n∑

i=1

ci(xi). (8)

The `1 regularizer in (2) obviously has this form (with
ci(z) = |z|), as does the `p

p regularization function c(z) =
‖z‖p

p =
∑

i |zi|p. Also of interest are group separable (GS)
regularizers, which have the form

c(x) =
m∑

i=1

ci(x[i]), (9)

where x[1],x[2], . . . ,x[m] are m disjoint subvectors of x. Such
regularizers are suitable when there is a natural group structure
in x, which is the case, e.g., in the following applications:
• In brain imaging, the voxels associated with different

functional regions (for example, motor or visual cor-
tices) may be grouped together in order to identify a
sparse set of regional events. In [5], [6], [7] a novel
IST algorithm2 was proposed for solving GS-`2 (i.e.,
where ci(w) = ‖w‖2) and GS-`∞ (i.e., where ci(w) =
‖w‖∞ = max{|wi|}) problems.

• A GS-`2 penalty was proposed for source localization in
sensor arrays [57]; second-order cone programming was
used to solve the optimization problem.

• In gene expression analysis, some genes are organized in
functional groups. This has motivated an approach called

2The authors refer to this as an EM algorithm, which, in this case, is an
IST algorithm; see [37].

composite absolute penalty [79], which has the form (9),
and uses a greedy optimization scheme [80].

• GS regularizers have also been proposed for ANOVA
regression [54], [58], [78], and Newton-type optimization
methods have been proposed in that context. An interior-
point method for the GS-`∞ case was described in [74].

Another interesting type of regularizer is the total-variation
(TV) norm [64], which is of particular interest for image
restoration problems [13]. This function is not separable in
the sense of (8) or (9), though it is the sum of terms that each
involve only a few components of x. The subproblem (5) has
the form of an image denoising problem, for which efficient
algorithms are known (see, for example, [12], [20], [38], [45]).

In the special case of c(x) ≡ 0, the solution of (5) is simply

xt+1 = ut = xt − 1
αt
∇f(xt),

so the method reduces to steepest descent on f with adjustment
of the step length (line search) parameter.

For the first term f in (1), we are especially interested
in the sum-of-squares function f(x) = (1/2)‖y −Ax‖22, as
in (2). If the matrix A is too large (and too dense) to be
handled explicitly, it may still be possible to compute matrix-
vector products involving A or its transpose efficiently. If
so, computation of ∇f and implementation of the approach
described here may be carried out efficiently. We emphasize,
however, that the approach we describe in this paper can be
applied to any smooth function f .

Observe that the first two terms in the objective function in
(5), that is, (z− xt)T∇f(xt) + αt

2 ‖z− xt‖22, can be viewed
as a quadratic separable approximation to f about xt (up to
a constant), that interpolates the first-derivative information
and uses a simple diagonal Hessian approximation αtI to the
second-order term. For this reason, we refer to the approach
presented in this paper as SpaRSA (for Sparse Reconstruction
by Separable Approximation). SpaRSA has the following
desirable properties:
(a) when applied to the `2 − `1 problem (2), it is compu-

tationally competitive with the state-of-the-art algorithms
designed specifically for that problem;

(b) it is versatile enough to handle a broad class of gener-
alizations of (2), in which the `1 term is replaced with
other regularization terms such as those described above;

(c) it is applicable immediately to problems (2) in which A
and y (and hence the solution x) contain complex data,
as happens in many signal/image processing problems
involving coherent observations, such as radar imaging
or magnetic resonance imaging (MRI).

As mentioned above, our approach requires solution of (5)
at each iteration. When the regularizer c is separable or group-
separable, the solution of (5) can be obtained from a number
of scalar (or otherwise low-dimensional) minimizations, whose
solutions are often available in closed form. We discuss this
issue further in Sections II-B and II-D.

The solution of (5) and (6) also solves the trust-region
problem obtained by forming the obvious linear model of f
around xt and using an `2-norm constraint on the step, that
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is,

min
z

∇f(xt)T (z− xt) + τc(z) (10)

subject to ‖z− xt‖2 ≤ ∆t,

for some appropriate value of the trust-region radius ∆t.
Different variants of the SpaRSA approach are distinguished

by different choices of αt. We are particularly interested
in variants based on the formula proposed by Barzilai and
Borwein (BB) [1] in the context of smooth nonlinear min-
imization; see also [19], [50]. Many variants of Barzilai
and Borwein’s approach, also known as spectral methods,
have been proposed. They have also been applied to con-
strained problems [3], especially bound-constrained quadratic
programs [18], [39], [68]. Pure spectral methods are nonmono-
tone; i.e., the objective function is not guaranteed to decrease
at every iteration; this fact makes convergence analysis a non-
trivial task. We consider a so-called “safeguarded” version of
SpaRSA, in which the objective is required to be slightly
smaller than the largest objective in some recent past of
iterations, and provide a proof of convergence for the resulting
algorithm.

C. Related Work

Approaches related to SpaRSA have been investigated in nu-
merous recent works. The recent paper of Figueiredo, Nowak,
and Wright [39] describes the GPSR (gradient projection for
sparse reconstruction) approach, which works with a bound-
constrained reformulation of (2). Gradient-projection algo-
rithms are applied to this formulation, including variants with
spectral choices of the steplength parameters, and monotone
and nonmonotone variants. When applied to `2−`1 problems,
the SpaRSA approach of this paper is closely related to GPSR,
but not identical to it. The steplength parameter in GPSR plays
a similar role to the Hessian approximation term αt in this
paper. While matching the efficiency of GPSR on the `2 − `1
case, SpaRSA can be generalized to a much wider class of
problems, as described above.

SpaRSA is also closely related to iterative shrink-
age/thresholding (IST) methods, which are also known in
the literature by different names, such as iterative denoising,
thresholded Landweber, forward-backward splitting, and fixed-
point iteration algorithms (see Combettes and Wajs [17],
Daubechies, Defriese, and De Mol [21], Elad [32], Figueiredo
and Nowak [36], and Hale, Yin, and Zhang [51]). The form
of the subproblem (5) is the same in these methods as in
SpaRSA, but IST methods use a more conservative choice
of αt, related to the Lipschitz constant of ∇f . In fact,
SpaRSA can be viewed as a kind of accelerated IST, with
improved practical performance resulting from variation of
αt. Other ways to accelerate IST algorithms include two-step
variants, as in the recently proposed two-step IST (TwIST)
algorithm [2], continuation schemes (as suggested in the
above mentioned [39] and [51], and explained in the next
paragraph), and a semi-smooth Newton method [48]. Finally,
we mention iterative coordinate descent (ICD) algorithms [8],
[40], and block coordinate descent (BCD) algorithms [73];
those methods work by successively minimizing the objective

with respect each component (or group of components) of x,
so are close in spirit to the well-known Gauss-Seidel (or block
Gauss-Seidel) algorithms for linear systems.

The approaches discussed above, namely IST, SpaRSA, and
GPSR, benefit from the use of a good approximate solution
as a starting point. Hence, solutions to (2) and (1) can be
obtained for a number of different values of the regularization
parameter τ by using the solution calculated for one such value
as a starting point for the algorithm to solve for a nearby
value. It has been observed that the practical performance
of GPSR, SpaRSA, IST, and other approaches degrades for
small values of τ . Hale, Yin, and Zhang [51] recognized this
fact and integrated a “continuation” procedure into their fixed-
point iteration scheme, in which (2) is solved for a decreasing
sequence of values of τ , using the computed solution for each
value of τ as the starting point for the next smaller value.
Using this approach, solutions are obtained for small τ values
at much lower cost than if the algorithm was applied directly to
(2) from a “cold” starting point. Similar continuation schemes
have been implemented into GPSR [39, Section IV.D] and
have largely overcome the computational difficulties associ-
ated with small regularization parameters. In this paper, we
contribute further to the development of continuation strategies
by proposing an adaptive scheme (suited to the `2 − `1 case)
which dispenses the user from having to define the sequence
of values of τ to be used.

Van den Berg and Friedlander [75] have proposed a method
for solving (4) for some ε > 0, by searching for the value of
T for which the solution xT of (3) has ‖y −AxT ‖22 = ε. A
rootfinding procedure is used to find the desired T , and the
ability to solve (3) cheaply is needed. Yin et al. [77] have
described a method for solving the basis pursuit problem, i.e.,
(4) with ε = 0, where the main computational cost is the
solution of a small number of problems of the form (2), for
different values of y and possibly also τ . The technique is
based on Bregman iterations and is equivalent to an augmented
Lagrangian technique. SpaRSA can be used to efficiently solve
each of the subproblems, since it is able to use the solution of
one subproblem as a “warm start” for the next subproblem.

In a recent paper [61], Nesterov has presented three ap-
proaches, which solve the formulation (1) and make use of
subproblems of the form (5). Nesterov’s PG (primal gradient)
approach follows the SpaRSA framework of Section II-A (and
was in fact inspired by it), choosing the initial value of αt at
iteration t by modifying the final accepted value at iteration
t − 1, and using a “sufficient decrease” condition to test for
acceptability of a step. Nesterov’s other approaches, DG (a
dual gradient method) and AC (an accelerated dual gradient
approach), are less simple to describe. At each iteration, these
methods solve a subproblem of the form (5) and a similar
subproblem with a different linear and quadratic term; the
next iteration is derived from both subproblems. Nesterov’s
computational tests on problems of the form (2) indicate that
the most sophisticated variant, AC, is significantly faster than
the other two variants.

Various other schemes have been proposed for the `2-`1
problem (2) and its alternative formulations (3) and (4. These
include active-set-based homotopy algorithms [33], [56], [63]),
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and interior-point methods [15], [67], [9], [10], [53]. Matching
pursuit and orthogonal matching pursuit have also been pro-
posed for finding sparse approximate solutions of Ax = y
[4], [23], [28], [72]; these methods, previously known in
statistics as forward selection [76], are not based on an explicit
optimization formulation. A more detailed discussion of those
alternative approaches can be found in [39].

D. Outline of the Paper

Section II presents the SpaRSA framework formally, dis-
cussing how the subproblem in each iteration is solved (for
several classes of regularizers) as well as the different alter-
natives for choosing parameter αt; Section II also discusses
stopping criteria and the so-called “debiasing” procedure.
Section III presents an adaptive continuation scheme, which
is empirically shown to considerably speed up the algorithm
in problems where the regularization parameter is small. In
Section IV, we report a series of experiments which show
that SpaRSA has state of the art performance for the `2-`1
problems; other experiments described in that section illustrate
that SpaRSA can handle a more general class of problems.

II. THE PROPOSED APPROACH

A. The SpaRSA Framework

Rather than a specific algorithm, SpaRSA is an algorith-
mic framework for problems of the form (1), which can be
instantiated by adopting different regularizers, different ways
of choosing αt, and different criteria to accept a solution to
each subproblem (5). The SpaRSA framework is defined by
the following pseudo-algorithm.
Algorithm SpaRSA
1. choose factor η > 1 and constants αmin, αmax (with 0 <

αmin < αmax);
2. initialize iteration counter, t ← 0; choose initial guess

x0;
3. repeat
4. choose αt ∈ [αmin, αmax];
5. repeat
6. xt+1 ← solution of sub-problem (6);
7. αt ← η αt;
8. until xt+1 satisfies an acceptance criterion
9. t ← t + 1;
10. until stopping criterion is satisfied.

As mentioned above, the different instances of SpaRSA are
obtained by making different design choices concerning two
key steps of the algorithm: the setting of αt (line 4) and the
acceptance criterion (line 8). It is worth noting here that IST
algorithms are instances of the SpaRSA framework. If c is
convex (thus the subproblem (6) has a unique minimizer),
if the acceptance criterion accepts any xt+1, and if we use
a constant αt satisfying certain conditions (see [17], for
example), then we have a convergent IST algorithm.

B. Solving the Subproblems: Separable Regularizers

In this section, we consider the key operation of the SpaRSA
framework — solution of the subproblem (6) — for situations

in which the regularizer c is separable. Since the term ‖z−ut‖22
is a strictly convex function of z, (6) has a unique solution
when c is convex. (For nonconvex c, there may exist several
local minimizers.)

When c has the separable form (8), the subproblem (6) is
also separable and can be written as

xt+1
i ∈ arg min

z

(z − ut
i)

2

2
+

τ

αt
ci(z), i = 1, 2, . . . , n.

(11)
For certain interesting choices of ci, the minimization in (11)
has a unique closed form solution. When c(z) = ‖z‖1 (thus
ci(z) = |z|), we have a unique minimizer given by

arg min
z

(z − ut
i)

2

2
+

τ |z|
αt

= soft
(

ut
i,

τ

αt

)
, (12)

where soft(u, a) ≡ sign(u)max{|u|−a, 0} is the well-known
soft-threshold function.

Another notable separable regularizer is the so-called `0
quasi-norm c(z) = ‖z‖0 =

∑
i 1xi 6=0, which counts the

number of nonzero components of its argument. Although
ci(z)=1z 6=0 is not convex, there is a unique solution

arg min
z

(z − ut
i)

2

2
+

τ

αt
1xi 6=0 = hard

(
ut

i,

√
2 τ

αt

)
, (13)

where hard(u, a) ≡ u 1|u|>a is the hard-threshold function.
When ci(z) = |z|p, that is, c(z) = ‖z‖p

p, the closed form
solution of (11) is known for p ∈ {4/3, 3/2, 2} [14], [17]. For
these values of p, the function c is convex and smooth. For
ci(z) = |z|p with 0 < p < 1, the function c is nonconvex
(though it is quasi-convex), but the solutions of (11) can still
be obtained by applying a safeguarded Newton method and
considering the cases z < 0, z = 0, and z > 0 separately.

C. Solving the Subproblems: the Complex Case

The extension of (2) to the case in which A, x, and y are
complex is more properly written as

min
x∈Cn

1
2
(y −Ax)H(y −Ax) + τ

n∑

i=1

|xi|, (14)

where |xi| denotes the modulus of the complex number xi. In
this case, the subproblem (6) is

xt+1 ∈ arg min
z∈Cn

1
2
(z− ut)H(z− ut) +

τ

αt

n∑

i=1

|zi|, (15)

which is obviously still separable and leads to

arg min
z∈C

|z − ut
i|2

2
+

τ |z|
αt

= soft
(

ut
i,

τ

αt

)
, (16)

with the (complex) soft-threshold function defined for complex
argument by

soft(u, a) ≡ max{|u| − a, 0}
max{|u| − a, 0}+ a

u. (17)
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D. Solving the Subproblems: Group-Separable Regularizers

For group-separable (GS) regularizers of the form (9),
the minimization (6) decouples into a set of m independent
minimizations of the form

min
w∈Rl

1
2
‖w − b‖22 + β Φ(w), (18)

where l is the dimension of x[i], b = ut
[i], Φ = ci, and β =

τ/αt, with ut defined in (7).
As in [14], [17], convex analysis can be used to obtain the

solution of (18). If Φ is a norm, it is proper, convex (though
not necessarily strictly convex), and homogenous. Since, in
addition, the quadratic term in (18) is proper and strictly
convex, this problem has a unique solution, which can be
written explicitly as

arg min
w∈Rl

1
2
‖w − b‖22 + β Φ(w) = b− PβCΦ(b), (19)

where PB denotes the orthogonal projector onto set B, and
CΦ is a unit-radius ball in the dual norm Φ?, that is, CΦ =
{w ∈ Rl : Φ?(w) ≤ 1}. Detailed proofs of (19) can be found
in [17] and references therein.

Taking Φ as the `2 or `∞ norm is of particular interest
in the applications mentioned above. For Φ(w) = ‖w‖2, the
dual norm is also Φ?(w) = ‖w‖2, thus βC‖·‖2 = {w ∈ Rl :
‖w‖2 ≤ β}. Clearly, if ‖b‖2 ≤ β, then PβC‖·‖2

(b) = b,
thus b − PβC‖·‖2

(b) = 0. If ‖b‖2 > β, then PβC‖·‖2
(b) =

β b/‖b‖2. These two cases are written compactly as

w = b
max {‖b‖2 − β, 0}

max {‖b‖2 − β, 0}+ β
, (20)

which can be seen as a vectorial soft-threshold. Naturally, if
l = 1, (20) reduces to the scalar soft-threshold (12).

For Φ(w) = ‖w‖∞, the dual norm is Φ?(w) = ‖w‖1,
thus βC‖·‖∞ = {w ∈ Rn : ‖w‖1 ≤ β}. In this case, the
solution of (18) is the residual of the orthogonal projection of
b onto the `1 β-ball. This projection can be computed with
O(l log l) cost, as recently shown in [5], [6], [7], [22]; even
more recently, an O(l) algorithm was introduced [31].

E. Choosing αt: Barzilai-Borwein (Spectral) Methods.

In the most basic variant of the Barzilai-Borwein (BB) spec-
tral approach, αt is chosen such that αt I mimics the Hessian
∇2f(x) over the most recent step. Letting st = xt−xt−1 and

rt = ∇f(xt)−∇f(xt−1),

we require that αt st ≈ rt in the least-squares sense, i.e.,

αt = arg min
α
‖α st − rt‖22 =

(st)T rt

(st)T st
. (21)

When f(x) = (1/2)‖Ax− y‖22, this expression becomes
αt = ‖Ast‖22/‖st‖22. In our implementation of the SpaRSA
framework, we use (21) to choose the first αt in each iteration
(line 4 of Algorithm SpaRSA), safeguarded to ensure that αt

remains in the range [αmin, αmax].
A similar approach, also suggested by Barzilai and Bor-

wein [1] is to choose βt so that βtI mimics the behavior of

the inverse Hessian over the latest step, and then set αt = β−1
t .

By solving st = βtrt in the least-squares sense, we obtain

αt =
(rt)T rt

(rt)T st
=
‖AT Ast‖2
‖Ast‖2 .

Other spectral methods have been proposed that alternate
between these two formulae for αt. There are also “cyclic”
variants in which αt is only updated (using the formulae
above) at every S-th iteration (S ∈ N); see Dai et al. [19]. We
will not consider those variants in this paper, since we have
verified experimentally that their performance is very close to
that of the standard BB method based on (21).

F. Acceptance Criterion

In the simplest variant of SpaRSA, the criterion used at each
iteration to decide whether to accept a candidate step is trivial:
accept whatever z solves the subproblem (5) as the new iterate
xt+1, even if it yields an increase in the objective function
φ. Barzilai-Borwein schemes are usually implemented in this
nonmonotone fashion. The drawback of these totally “free”
BB schemes is that convergence is very hard to study.

Globally convergent Barzilai-Borwein schemes for uncon-
strained smooth minimization have been proposed in which
the objective is required to be slightly smaller than the largest
objective from the last M iterations, where M is a fixed integer
(see [50]). If M is chosen large enough, the occasional large
increases in objective (that are characteristic of BB schemes,
and that appear to be essential to their good performance in
many instances) are still allowed. Inspired by this observation,
we propose an acceptance criterion in which the candidate
xt+1 obtained in line 6 of the algorithm (a solution of (6))
is accepted as the new iterate if its objective value is slightly
smaller than the largest value of the objective φ over the past
M + 1 iterations. Specifically, xt+1 is accepted only if

φ(xt+1) ≤ max
i=max(t−M,0),...,t

φ(xi)− σ

2
αt ‖xt+1 − xt‖2,

(22)
where σ ∈ (0, 1) is a constant, usually chosen to be close
to zero. This is the version of the proposed algorithmic
framework which we will simply denote as SpaRSA.

We consider also a monotone version (called SpaRSA-
monotone) which is obtained by letting M = 0. The existence
of a value of αt sufficiently large to ensure a decrease in the
objective at each iteration can be inferred from the connection
between (6) and the trust-region subproblem (10). For a small
enough trust-region radius ∆t, the difference between the
linearized model in (10) and the true function φ(z) − φ(xt)
becomes insignificant, so the solution of (10) is sure to produce
a decrease in φ. Monotonicity of IST algorithms [37] also
relies on the fact that there is a constant ᾱ > 0 such that
descent is assured whenever αt ≥ ᾱ.

G. Convergence

We now present a global convergence result for SpaRSA
applied to problems with the form of (1), with a few mild
conditions, which are satisfied by essentially all problems of
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interest. Specifically, we assume that f is Lipschitz continu-
ously differentiable, that c is convex and finite valued, and that
φ is bounded below.

Before stating the theorem, we recall that a point x̄ is said
to be critical for (1) if

0 ∈ ∂φ(x̄) = ∇f(x̄) + τ∂c(x̄). (23)

where ∂c denotes the subdifferential of c (see [65] for a
definition). Criticality is a necessary condition for optimality.
When f is convex, then φ is convex also, and condition (23)
is sufficient for x̄ to be a global solution of (1). Our theorem
shows that all accumulation points of SpaRSA are critical
points, and therefore global solutions of (1) when f is convex.

Theorem 1: Suppose that Algorithm SpaRSA, with accep-
tance test (22), is applied to (1), where f is Lipschitz con-
tinuously differentiable, c is convex and finite-valued, and φ
is bounded below. Then all accumulation points are critical
points.

The proof, which can be found in the Appendix, is inspired
by the work of Grippo, Lampariello, and Lucidi [49], who
analyzed a nonmonotone line-search Newton method for opti-
mization of a smooth function whose acceptance condition is
analogous to (22).

H. Termination Criteria

We described a number of termination criteria for GPSR in
[39]. Most of these continue to apply in SpaRSA, in the case
of c(x) = ‖x‖1. We describe them briefly here, and refer the
reader to [39, Subsection II-D] for further details.

One termination criterion for (2) can be obtained by refor-
mulating it as a linear complementarity problem (LCP). This
is done by splitting x as x = v −w with v ≥ 0 and w ≥ 0,
and writing the equivalent problem as

min
([

v
w

]
,

[
τ1n + AT (A(v −w)− y)
τ1n −AT (A(v −w)− y)

])
= 0, (24)

where 1n is the vector of 1s with length n, and the minimum
is taken componentwise. The distance to the LCP solution set
from a given vector (v,w) is bounded by a multiple of the
norm of the left-hand side in (24), so it is reasonable to ter-
minate when this quantity falls below a given small tolerance
tolP, where we set v = max(x, 0) and w = max(−x, 0).

Another criterion for the problem (2) can be obtained by
finding a feasible point s for the dual of this problem, which
can be written as

max
s

−1
2
sT s− yT s, subject to − τ1n ≤ AT s ≤ τ1n,

and then finding the duality gap corresponding to s and the
current primal iterate xt. This quantity yields an upper bound
on the difference between φ(xt) and the optimal objective
value φ∗, so we terminate when the relative duality gap falls
below a tolerance tolP. Further details can be found in [39,
Subsection II-D] and [53].

We note too that the criterion based on the relative change to
the set of inactive indices It := {i = 1, 2, . . . , n |xt

i 6= 0} be-
tween iterations, can also be applied. The technique described
in [39, Subsection II-D] can be extended by monitoring the

change in inactive set across a range of steps, not just the
single previous step from xt−1 to xt. It can also be extended
to group-separable problems by defining the inactive set in
terms of groups rather than individual components.

A less sophisticated criterion makes use of the relative
change in objective value at the last step. We terminate at
iteration t if

|φ(xt)− φ(xt−1)|
φ(xt−1)

≤ tolP. (25)

This criterion has the advantage of generality; it can be used
for any choice of regularization function c. However, it is
problematic to use in general as it may be triggered when the
step between the last two iterates was poor, but the current
point is still far from a solution. When used in the context of
nonmonotone methods it is particularly questionable, as steps
that produce a significant decrease or increase in φ are deemed
acceptable, while those which produce little change in φ
trigger termination. Still, we have rarely ecountered problems
of “false termination” with this criterion in our computational
tests.

A similarly simple and general criterion is the relative size
of the step just taken, that is,

‖xt − xt−1‖
‖xt‖ ≤ tolP. (26)

This criterion has some of the same possible pitfalls as
(25), but again we have rarely observed it to produce false
termination provided tolP is chosen sufficiently small.

When a continuation strategy (Subsection III) is used, in
which we we do not need the solutions for intermediate values
of τ to high accuracy, we can use a tight criterion for the
final value of τ and different (and looser) criteria for the
intermediate values. In our implementation of SpaRSA, we
used the criterion (25) with tolP = 10−5 at the intermediate
stages, and switched to the criterion specified by the user for
the target value of τ .

Finally, we make the general comment that termination at
solutions that are “accurate enough” for the application at hand
while not being highly accurate solutions of the optimization
problem is an issue that has been litte studied by optimization
specialists. It is usually (and perhaps inevitably) left to the
user to tune the stopping criteria in their codes to the needs
of their application. This issue is perhaps deserving of study
at a more general level, as the choice of stopping criteria
can dramatically affect the performance of many optimization
algorithms in practice.

I. Debiasing

In many situations, it is worthwhile to debias the solution
as a postprocessing step, to eliminate the attenuation of signal
magnitude due to the presence of the regularization term. In
the debiasing step, we fix at zero those individual components
(in the case of `1 regularization) or groups (in the case of
group regularization) that are zero at the end of the SpaRSA
process, and minimize the objective f over the remaining
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elements. Specifically, the case of a sum-of-squares objective
(1/2)‖Ax− y‖22, the debiasing phase solves the problem

min
x

1
2
‖A·IxI − y‖22, (27)

where I is the set of indices corresponding to the components
or groups that were nonzero at termination of the SpaRSA
procedure for minimizing φ, A·I is the column submatrix of
A corresponding to I, and xI is the subvector of unknowns
for this index set. A conjugate gradient procedure is used, and
the debiasing phase is terminated when the squared residual
norm for (27), that is

∥∥AT
·I(A·IxI − y)

∥∥2

2
,

falls below its value at the SpaRSA solution by a factor
of tolD, where a typical value is tolD = 10−4. (The
same criterion is used in GPSR; the criterion shown in [39,
(21)] is erroneous.) When the column submatrix A·I is well
conditioned, as happens when a restricted isometry property
is satisfied, the conjugate gradient procedure converges quite
rapidly, consistently with the known theory for this method
(see for example Golub and Van Loan [46, Section 10.2]).

It was shown in [39], for example, that debiasing can im-
prove the quality of the recovered signal considerably. Such is
not always the case, however. Shrinking of signal coefficients
can sometimes have the desirable effect of reducing distortions
caused by noise [26], an effect that could be undone by
debiasing.

III. WARM STARTING AND ADAPTIVE CONTINUATION

Just as for the GPSR and IST algorithms, the SpaRSA
approach benefits significantly from a good starting point x0,
which suggests that we can use the solution of (1), for a
given value of τ , to initialize SpaRSA in solving (1) for a
nearby value of τ . Generally, the “warm-started” second run
will require fewer iterations than the first run, and dramatically
fewer iterations than if it were initialized at zero.

An important application of warm-starting is continuation,
as in the fixed point continuation (FPC) algorithm recently
described in [51]. It has been observed that IST, SpaRSA,
GPSR, and other approaches become slow when applied to
problems (2) with small values of the regularization parameter
τ . (Solving (2) with a very small value of τ is one way of
approximately solving (4) with ε = 0.) However, if we use
SpaRSA to solve (1) for a larger value of τ , then decrease
τ in steps toward its desired value, running SpaRSA with
warm-start for each successive value of τ , we are often able to
identify the solution much more efficiently than if we just ran
SpaRSA once for the desired (small) value of τ from a cold
start. We illustrate this claim experimentally in Section IV.

One of the challenges in using continuation is to choose the
sequence of τ values that leads to the fastest global running
time. In the continuation schemes proposed in [51] and [39],
it is left to the user to define this sequence of τ values. Here
we propose a scheme for the `2−`1 case that does not require
the user to specify the sequence of values of τ . Our adaptive
scheme is based on the fact that it is possible to give some
meaning to the notions of “large” or “small”, when referring

to the regularization parameter τ in the context of problem
(2). It can be shown that if

τ ≥ ‖AT y‖∞,

then the unique solution to (2) is the zero vector [41], [53].
Accordingly, a value of τ such that τ . ‖AT y‖∞ can be
considered “large”, while a value such that τ ¿ ‖AT y‖∞
can be seen as small. Inspired by this fact, we propose the
following scheme for solving (2):
Algorithm Adaptive Continuation
1. initialize iteration counter, t ← 0, and choose initial

estimate x0;
2. yt ← y;
3. repeat
4. τt ← max{ζ‖AT yt‖∞, τ}, where ζ < 1;
5. xt+1 ← SpaRSA(y,A, τt,xt);
6. yt+1 ← y −Axt+1;
7. t ← t + 1;
8. until τt = τ ;

In line 5 of the algorithm, SpaRSA(y,A, τt,xt) denotes a
run of the SpaRSA algorithm for problem (2), with τ replaced
by τt, and initialized at xt. The key steps of the algorithm are
those in lines 4, 5, and 6, and the rationale behind these steps
is as follows. After running SpaRSA with the regularization
parameter τt, the linear combination of the columns of A,
according to the latest iterate xt+1, is subtracted from the
observation y, yielding yt+1. The idea is that yt+1 contains
the information about the unknown x which can only be
obtained with a smaller value of the regularization parameter;
moreover, the “right” value of the regularization parameter
to extract some more of this information is given by the
expression in line 4 of the algorithm. Notice that in step 5,
SpaRSA is always run with the original observed vector y (not
with yt), so our scheme is not a pursuit-type method (such as
StOMP [30]).

We note that if the invocation of SpaRSA in line 5 produces
an exact solution, we have that ‖AT yt+1‖∞ = τt, so that
line 4 simply reduces the value of τ by a constant factor
of ζ at each iteration. Since in practice an exact solution
may not be obtained in line 5, the scheme above produces
different computational behavior which is usually better in
practice. Although the description of the adaptive continuation
scheme was made with reference to the SpaRSA algorithm,
this scheme can be used with any other algorithm that benefits
from good initialization and that is faster for larger values of
the regularization parameter. For example, by using IST in
place of SpaRSA in line 5, we obtain an adaptive version of
the FPC algorithm [51].

IV. COMPUTATIONAL EXPERIMENTS

In this section we report experiments which demonstrate
the competitive performance of the SpaRSA approach on
problems of the form (2), including problems with complex
data, and its ability to handle different types of regularizers.
All the experiments (except for those in Subsection IV-E) were
carried out on a personal computer with an Intel Core2Extreme
3 GHz processor and 4GB of memory, using a MATLAB
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implementation of SpaRSA. The parameters of SpaRSA were
set as follows: M = 5, σ = 0.01, αmax= 1/αmin = 1030; for
SpaRSA-monotone, we set M = 0, σ = 10−5, and η = 2;
finally, for the adaptive continuation strategy, we set ζ = 0.2.

A. Speed Comparisons for the `2 − `1 Problem

We compare the performance of SpaRSA with that of other
recently proposed algorithms for `2 − `1 problems (2). In our
first experiment, in addition to the monotone and nonmonotone
variants of SpaRSA, we consider the following algorithms:
GPSR [39], FPC [51], TwIST [2], l1_ls [53], and AC [61].
The `2−`1 test problem that we consider is similar to the one
studied in [53] and [39]. The matrix A in (2) is a random k×n
matrix, with k = 210 and n = 212, with Gaussian i.i.d. entries
of zero mean and variance 1/(2n). (This variance guarantees
that, with high probability, the maximum singular value of
A is at most 1, which is assumed by FPC and TwIST.) We
choose y = Axtrue + e, where e is a Gaussian white vector
with variance 10−4, and xtrue is a vector with 160 randomly
placed ±1 spikes, with zeros in the other components. We
set τ = 0.1 ‖AT y‖∞, as in [39], [53]; this value allows the
`2 − `1 formulation to recover the solution, to high accuracy.

To make the comparison independent of the stopping rule
for each approach, we first run FPC to set a benchmark
objective value, then run the other algorithms until they each
reach this benchmark. Table I reports the CPU times required
by the algorithms tested, as well as the final mean squared
error (MSE) of the reconstructions with respect to xtrue. These
results show that, for this `2− `1 problem, SpaRSA is slightly
faster than GPSR and TwIST, and clearly faster than FPC,
l1_ls, and AC. Not surprisingly, given that all approaches
attain a similar final value of φ, they all give a similar value of
MSE. Of course, these speed comparisons are implementation
dependent, and should not be considered as a rigorous test,
but rather as an indication of the relative performance of the
algorithms for this class of problems.

One additional one order of magnitude improvement in
MSE can be obtained easily by using the debiasing procedure
described in Subsection II-I. In this problems, this debiasing
step takes (approximately) an extra 0.15 seconds.

An indirect comparison with other codes can be made
via [53, Table 1], which shows that l1_ls outperforms the
method from [29] by a factor of approximately two, as well as
`1-magic by about two orders of magnitude and pdco from
SparseLab by about one order of magnitude.

The second experiment assesses how the computational
cost of SpaRSA grows with the size of matrix A, using a
setup similar to the one in [39], [53]. We assume that the
computational cost is O(nα) and obtain empirical estimates
of the exponent α. We consider random sparse matrices
(with the nonzero entries normally distributed) of dimensions
(0.1 n) × n, with n ranging from 104 to 106. Each matrix is
generated with about 3n nonzero elements and the original
signal with n/4 randomly placed nonzero components. For
each value of n, we generate 10 random matrices A and
original signals x and observed data according to y = Ax + e,
where e is white noise of variance σ2 = 10−4. For each

TABLE I
CPU TIMES AND MSE VALUES (AVERAGE OVER 10 RUNS) OF SEVERAL

ALGORITHMS ON THE EXPERIMENT DESCRIBED IN THE TEXT; THE FINAL
VALUE OF THE OBJECTIVE FUNCTION IS THE APPROXIMATELY 3.635 FOR

ALL METHODS.

Algorithm CPU time (secs.) MSE
SpaRSA 0.32 3.42e-3
SpaRSA-monotone 0.34 3.43e-3
GPSR-BB-monotone 0.43 3.45e-3
GPSR-Basic 0.63 3.42e-3
FPC 1.52 3.44e-3
l1_ls 6.57 3.43e-3
AC 2.89 3.46e-3
TwIST 0.57 3.43e-3

data set (that is, each pair A, y), τ is set to 0.1 ‖AT y‖∞.
The results in Fig. 1 (which are averaged over the 10 data
sets of each size) show that SpaRSA, GPSR, and FPC have
approximately linear cost, with FPC being a little worse than
the other two algorithms. The exponent for l1_ls is known
from [39], [53] to be approximately 1.2, while that of the
`1-magic algorithms is approximately 1.3.
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Fig. 1. Assessment of the empirical growth exponent of the computational
complexity of several algorithms.

B. Adaptive Continuation

To assess the effectiveness of the adaptive regularization
scheme proposed in Section III, we consider a scenario similar
to the one in the first experiment, but with two differences. The
data is noiseless, that is, y = Axtrue, and the regularization
parameter is set to τ = 0.001 ‖AT y‖∞. The results shown in
Table II confirm that, with this small value of the regularization
parameter, both GPSR and SpaRSA without continuation
become significantly slower and that continuation yields a
significant speed improvement. (We do not implement the
continuation strategy for l1_ls as, being an interior point
method, it does not benefit greatly from warm starts.) In this
example, the debiasing step of Section II-I takes about 0.15
seconds, and yields an additional reduction in MSE by a factor
of approximately 15.

The plot in Figure 2 shows how the CPU time of SpaRSA
with and without continuation (as well as GSPR and FPC)
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TABLE II
CPU TIMES AND MSE VALUES (AVERAGE OVER 10 RUNS) OF SEVERAL

ALGORITHMS, WITHOUT AND WITH CONTINUATION, ON THE EXPERIMENT
DESCRIBED IN THE TEXT. NOTICE THAT FPC HAS BUILT-IN

CONTINUATION, SO IT IS LISTED IN THE CONTINUATION METHODS
COLUMN.

Algorithm CPU time (secs.), CPU time (secs.), MSE
no continuation continuation

SpaRSA 16.18 1.61 4.96e-7
SpaRSA-monot. 17.13 1.63 3.41e-7
GPSR-BB-monot. 26.38 2.01 5.39e-7
GPSR-Basic 43.17 1.88 4.86e-7
FPC – 5.22 5.49e-7
l1_ls 28.24 – 8.51e-7
AC 32.30 10.84 5.31e-7
TwIST 3.53 – 4.59e-7
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Fig. 2. CPU times as a function of the ratio τ/τmax, where τmax = ‖AT ‖∞,
for several algorithms without and with continuation.

grows when the value of the regularization parameter de-
creases, confirming that continuation is able to keep this
growth very mild, in contrast to the behavior without con-
tinuation.

C. Group-Separable Regularizers

We now illustrate the use of SpaRSA with the GS reg-
ularizers defined in (9). Our experiments in this subsection
use synthetic data and are mainly designed to illustrate the
difference between reconstructions obtained with the GS-`2
and the GS-`∞ regularizers, both of which can be solved in the
SpaRSA framework. In Subsection IV-E below, we describe
experiments with GS regularizers, using magnetoencephalo-
graphic (MEG) data.

Our first synthetic experiment uses a matrix A with the
same dimension and structure as the matrix in Subsec-
tion IV-A. The vector xtrue has 212 components, divided into
m = 64 groups of length li = 64. To generate xtrue, we
randomly choose 8 groups and fill them with zero-mean
Gaussian random samples of unit variance, while all other
groups are filled with zeros. We set y = Axtrue + e, where
e is Gaussian white noise with variance 10−4. Finally we run
SpaRSA, with f(x) = (1/2)‖Ax− y‖22 and c(x) as given by

(9), where ci(x[i]) = ‖x[i]‖2. The value of τ is hand-tuned for
optimal performance. Figure 3 shows the result obtained by
SpaRSA, based on the GS-`2 regularizer, which successfully
recovers the group structure of xtrue, as well as the result
obtained with the classical `1 regularizer, for the best choice
of τ . The improvement in reconstruction quality obtained by
exploiting the known group structure is evident.
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Fig. 3. Comparison of GS-`2 regularizer with a conventional `1 regularizer.
This example illustrates how exploiting known group structure can provide a
dramatic gain.

In the second experiment, we consider a similar scenario,
with a single difference: Each active group, instead of being
filled with Gaussian random samples, is filled with ones.
This case is clearly more adequate for a GS-`∞ regularizer,
as illustrated in Figure 4, which achieves an almost perfect
reconstruction, with an MSE two orders of magnitude smaller
than the MSE obtained with a GS-`2 regularizer.
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Fig. 4. Comparison of GS-`2 and GS-`∞ regularizers. Signals with uniform
behavior within groups benefit from the GS-`∞ regularizer.
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D. Problems with Complex Data

SpaRSA — like IST, FPC, ICD, and TwIST, but unlike
GPSR — can be applied to complex data, provided that the
regularizer is such that the subproblem at each iteration allows
a simple solution. We illustrate this possibility by considering
a classical signal processing problem where the goal is to
estimate the number, amplitude, and initial phase of a set of
superimposed sinusoids, observed under noise [25], [42], a
problem that arises, for example, in direction of arrival (DOA)
estimation [47] and spectral analysis [8]. Several authors have
addressed this problem as that of estimating of sparse complex
vector [8], [42], [47].

A discrete formulation of this problem may be given the
form (2), where matrix A is complex, of size k×2mf (where
mf is the maximum frequency), with elements given by

Ajf = exp{i 2 π j f/(2mf )}, for f = 1, ..., mf , j = 1, ..., k,

and Ajf = A∗i(j−mf ), for f = mf + 1, ..., 2mf and j =
1, ..., k. As usual, i denotes

√−1. For further details, see [42].
It is assumed that the observed signal is generated according
to

y = Ax + n, (28)

where x is a 2mf -vector in which xf+mf
= x∗f , for f =

1, ...,mf , with four random complex entries appearing in four
random locations among the first mf elements. Each sinusoid
is represented by two (conjugate) components of x, that is,
xf = Afeφf i and xf+mf

= x∗f = Afe−φii, where Af is
its amplitude and φf its initial phase. The noise vector n
is a vector of i.i.d. samples of complex Gaussian noise with
standard deviation .05.

The noisy signal, the clean original signal (obtained by (28),
without noise) and its estimate are shown in Figure 5. These
results show that the `2 − `1 formulation and the SpaRSA
and FPC algorithms are able to handle this problem. In this
example, SpaRSA (with adaptive continuation) converges in
0.56 seconds, while the FPC algorithm obtains a similar result
in 1.43 seconds.

E. MEG Brain Imaging

To see how our approach can speed up real-world optimiza-
tion problems, we applied variants of SpaRSA to a magne-
toencephalographic (MEG) brain imaging problem, replacing
the EM algorithm of [5], [6], [7], which is equivalent to IST.
MEG imaging using sparseness-inducing regularization was
also previously considered in [47].

In MEG imaging, very weak magnetic fields produced by
neuronal activity in the cortex are measured and used to
infer cortical activity. The physics of the problem lead to an
underdetermined linear model relating cortical activity from
tens of thousands of voxels to measured magnetic fields at
100 to 200 sensors. This model combined with low SNR
necessitates regularization of the inverse problem.

We solve the GS-`2 version of the regularization problem
where each block of coefficients corresponds to a spatio-
temporal subspace. The spatial components of each block
describe the measurable activity within a local region of the
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Fig. 5. Top plot: noisy superposition of four sinusoidal functions. Bottom
plot: the original (noise free) superposition and its SpaRSA estimate.

cortex, while the temporal components describe low frequency
activity in various time windows. The cortical activity infer-
ence problem is formulated as

Θ̂ = arg min
Θ
‖Y −ASΘTT ‖2F + λ

∑

i,j

‖Θi,j‖F , (29)

where Y is the k × m matrix of the length-m time signals
recorded at each of the k sensors, where A is the k × n
linear mapping of cortical activity to the sensors, S is the
dictionary of spatial bases, T is the dictionary of temporal
bases, and Θ contains the unknown coefficients that represent
the cortical activity in terms of the spatio-temporal basis.
Both S and T are organized into blocks of coefficients likely
to be active simultaneously. The blocks of coefficients Θi,j

represent individual space-time events (STEs). The estimate
of cortical activity is the sum of a small number of active
(nonzero) STEs,

X̂ =
∑

i,j

SiΘi,jTT
j , (30)

where most Θi,j are zero.
An EM algorithm to solve the optimization above was

proposed in [5], [6], [7]; that EM algorithm works by repeating
two basic steps,

Ẑ(t) = Θ̂
(t−1)

+ cST HT (Y −ASΘ̂
(t−1)

TT )T

Θ̂(t) = arg min
Θ



‖Θ− Ẑ(t)‖2F + cλ

∑

i,j

‖Θi,j‖F



 , (31)

where c is a step size. It is not difficult to see that this
approach fits the SpaRSA framework, with subproblems of the
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form (18), for a constant choice of parameter αt ≡ 1/c. To
guarantee that the iterates produce a nonincreasing sequence
of objective function values, we can choose c to satisfy
c ≤ ‖TTT ‖−1‖ASST AT ‖−1; see [24].

In the experiments described below, we used a data set
with dimensions k = 274, m = 224, n = 73542, and there
were 1179 and 256 spatial and temporal bases, respectively.
A simulated cortical signal was used to generate the data,
while matrix A was derived from a real world experimental
setup. White noise was added to the simulated measurements
to achieve an SNR (defined as ‖AX‖2F /E[N]2F , where N is
additive noise) of 5 dB. The dimension of each coefficient
block Θi,j was 3 × 32. For more detailed information about
the experimental set-up, see [7].

We made simple modifications to the EM code to implement
other variants of the SpaRSA approach. The changes required
to the code were conceptually quite minor; they required only
a mechanism for selecting the value of αt at each iteration
(according to formulae such as (21)) and, in the case of
monotone methods, increasing this value as needed to obtain a
decrease in the objective. The same termination criteria were
used for all SpaRSA variants and for EM.

In the cold-start cases, the algorithms were initialized with
Θ̂

(0)
= 0. In all the SpaRSA variants, the initial value α0 was

set to 2/c, where c is the constant from (31) that is used in
the EM algorithm. (The SpaRSA results are not sensitive to
this initial value.)

We used two variants of SpaRSA that were discussed above:
• SpaRSA: Choose αt by the formula (21) at each iteration

t;
• SpaRSA-monotone: Choose αt initially by the formula

(21) at iteration t, by increase by a factor of 2 as needed
to obtain reduction in the objective.

The relative regularization parameter λ was set to various
values in the range (0, 1). (For the value λ = 1, the problem
data is such that the solution is Θ̂ = 0.) Convergence testing
was performed on only every tenth iteration.

Both MATLAB codes (SpaRSA and EM) were executed
on a personal computer with two Intel Pentium IV 3 GHz
processors and 2GB of memory, running CentOS 4.5 Linux.
Table III reports on results obtained by running EM and
SpaRSA from the cold start, for various values of λ. Iteration
counts and CPU times (in seconds) are shown for the three
codes. For SpaRSA-monotone, we also report the total number
of function/gradient evaluations, which is generally higher
than the iteration count because of the additional evaluations
performed during backtracking. The last columns show the
final objective value and the number of nonzero blocks. These
values differ slightly between codes; we show the output here
from the SpaRSA (nonmonotone) runs.

The most noteworthy feature of Table III is the huge
improvement in run time of the SpaRSA strategy on this data
set over the EM strategy — over two orders of magnitude. In
fact, the EM algorithm did not terminate before reaching the
upper limit of 10000 function evaluations except in the case
λ = 0.7.

Table IV shows results obtained using a continuation strat-

TABLE IV
COMPUTATIONAL RESULTS FOR CONTINUATION STRATEGY. TIMES IN

SECONDS.

SpaRSA SpaRSA-monotone final active
λ its time its evals time cost blocks
0.70 60 18. 30 53 14. 1.5975e-6 2
0.60 40 12. 40 51 14. 1.5440e-6 3
0.50 30 9. 30 40 11. 1.4548e-6 4
0.40 60 17. 50 72 20. 1.3278e-6 4
0.30 70 20. 60 88 24. 1.1621e-6 4
0.25 60 17. 60 94 25. 1.0644e-6 6
0.20 150 43. 90 160 42. 9.5652e-7 9
0.15 110 32. 80 143 37. 8.3749e-7 12
0.10 310 88. 190 359 92. 7.0568e-7 19

egy, in which we solve for the largest value λ = 0.7 (the
first value in the table) from a zero initialization, and use the
computed solution of each λ value as the starting point for the
next value in the table. For the values λ = 0.3 and λ = 0.2,
the warm start improves the time to solution markedly for the
SpaRSA methods. EM also benefits from warm starting, but
we do not report the results from this code as the runtimes are
still much longer than those of SpaRSA.

V. CONCLUDING REMARKS

In this paper, we have introduced the SpaRSA algorith-
mic framework for solving large-scale optimization problems
involving the sum of a smooth error term and a possibly
nonsmooth regularizer. We give experimental evidence that
SpaRSA matches the speed of the state-of-the-art method
when applied to the `2 − `1 problem, and show that SpaRSA
can be generalized to other regularizers such as those with
group-separable structure. Ongoing work includes a more
thorough experimental evaluation involving wider classes of
regularizers and other types of data, and theoretical analysis
of the convergence properties.
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APPENDIX

In this appendix, we present the proof of Theorem 1.
We begin by introducing some notation and three technical
lemmas which support the main proof. Denoting

dt = xt+1 − xt,
`(t) = arg max

i=max(0,t−M),...,t
φ(xi), (32)

the acceptance condition (22) can be written as

φ(xt+1) ≤ φ(x`(t))− σ

2
αt ‖dt‖2. (33)

Our first technical lemma shows that in the vicinity of a
noncritical point, and for αt bounded above, the solution of
(5) is a substantial distance away from the current iterate xt.

Lemma 2: Suppose that x̄ is not critical for (1). Then for
any constant ᾱ > αmin, there is ε(ᾱ) > 0 such that for any
subsequence {xtj}j=0,1,2,... with limj→∞ xtj = x̄ with αtj ∈
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TABLE III
COMPUTATIONAL RESULTS FROM x = 0 STARTING POINT, FOR VARIOUS VALUES OF λ. TIMES IN SECONDS.. ∗MAXIMUM ITERATION COUNT REACHED

PRIOR TO SOLUTION.

EM SpaRSA SpaRSA-monotone final active
λ its time its time its evals time cost blocks
0.7 8961 2464. 60 18. 30 53 14. 1.5975e-6 2
0.5 10000∗ 2749.∗ 90 26. 80 129 34. 1.4548e-6 4
0.4 10000∗ 2754.∗ 90 26. 70 117 31. 1.3278e-6 4
0.3 — 210 60. 140 248 64. 1.1621e-6 4
0.2 — 360 102. 210 369 95. 9.5652e-7 8

[αmin, ᾱ], we have ‖dtj‖ = ‖xtj+1 − xtj‖ > ε(ᾱ) for all j
sufficiently large.

Proof: Assume for contradiction that for such a sequence,
we have ‖dtj‖ → 0, so that limj→∞ xtj+1 = x̄. By optimality
of xtj+1 = xtj + dtj in (5), we have

0 ∈ ∇f(xtj ) + αtjd
tj + τ∂c(xtj+1).

By taking limits as j → ∞, and using outer semicontinuity
of ∂c (see [65, Theorem 24.5]) and boundedness of αtj

, we
have that (23) holds, contradicting noncriticality of x̄.

The next lemma shows that the acceptance test (22) is
satisfied for all sufficiently large values of αt.

Lemma 3: Let σ ∈ (0, 1) be given. Then there is a con-
stant α̃ > 0 such that for any sequence {xtj}j=0,1,2,..., the
acceptance condition (22) is satisfied whenever αtj ≥ α̃.

Proof: We show that in fact

φ(xtj+1) ≤ φ(xtj )− σ

2
αtj‖dtj‖2,

which implies (22) for t = tj . Denoting by γ the Lipschitz
constant for ∇f , we have

φ(xtj+1)− φ(xtj ) =
= f(xtj+1) + τc(xtj+1)− f(xtj )− τc(xtj )
≤ ∇f(xtj )T dtj + γ‖dtj‖2 + τc(xtj+1)− τc(xtj )

≤
(

γ − 1
2
αtj

)
‖dtj‖2,

where the last inequality follows from the fact that xtj+1

achieves a better objective value in (5) than z = xtj . The
result then follows provided that

γ − 1
2
αtj ≤ −σ

2
αtj ,

which is in turn satisfied whenever αtj ≥ α̃, where α̃ :=
2γ/(1− σ).

Our final technical lemma shows that the step lengths
obtained by solving (5) approach zero, and that the full
sequence of objective function values has a limit.

Lemma 4: The sequence {xt} generated by Algorithm
SpaRSA with acceptance test (22) has limt→∞ dt = 0. More-
over there exists a number φ̄ such that limt→∞ φ(xt) = φ̄.

Proof: Recalling the notation (32), note first that the
sequence {φ(x`(t))}t=0,1,2,... is monotonically decreasing, be-

cause from (32) and (33) we have

φ(x`(t+1)) = max
j=0,1,...,min(M,t+1)

φ(xt+1−j)

= max
{

max
j=1,...,min(M,t+1)

φ(xt+1−j), φ(xt+1)
}

≤ max
{

φ(x`(t)), φ(x`(t))− σ

2
αt‖dt‖2

}

= φ(x`(t)).

Therefore, since φ is bounded below, there exists φ̄ such that

lim
t→∞

φ(x`(t)) = φ̄. (34)

By applying (33) with t replaced by `(t)− 1, we obtain

φ(x`(t)) ≤ φ(x`(`(t)−1))− σ

2
α`(t)−1‖d`(t)−1‖2;

by rearranging this expression and using (34), we obtain

lim
t→∞

α`(t)−1‖d`(t)−1‖2 = 0,

which, since αr ≥ αmin for all r, implies that

lim
t→∞

d`(t)−1 = 0. (35)

We have from (34) and (35) that

φ̄ = lim
t→∞

φ(x`(t))

= lim
t→∞

φ(x`(t)−1 + d`(t)−1)

= lim
t→∞

φ(x`(t)−1). (36)

We will now prove, by induction, that the following limits are
satisfied for all j ≥ 1:

lim
t→∞

d`(t)−j = 0,

lim
t→∞

φ(x`(t)−j) = φ̄.
(37)

We have already shown in (35) and (36) that the results holds
for j = 1; we now need to show that if they hold for j, then
they also hold j+1. From (33) with t replaced by `(t)−j−1,
we have

φ(x`(t)−j) ≤ φ(x`(`(t)−j−1))− σ

2
α`(t)−j−1‖d`(t)−j−1‖2.

(We have assumed that t is large enough to make the indices
`(t)− j − 1 nonnegative.) By rearranging this expression and
using αr ≥ αmin for all r, we obtain

‖d`(t)−j−1‖2 ≤ 2
σαmin

[
φ(x`(`(t)−j−1))− φ(x`(t)−j)

]
.

By letting t → ∞, and using the inductive hypothesis along
with (34), we have that the right-hand side of this expression
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approaches zero, and hence limt→∞ d`(t)−(j+1) = 0, proving
the inductive step for the first limit in (37). The second limit
in (37) follows immediately, since

lim
t→∞

φ(x`(t)−(j+1)) = lim
t→∞

φ(x`(t)−(j+1) + d`(t)−(j+1))

= lim
t→∞

φ(x`(t)−j)

= φ̄.

To complete our proof that limt→∞ dt = 0, we note that
`(t) is one of the indices t−M, t−M + 1, . . . , t. Hence, we
can write t−M − 1 = `(t)− j for some j = 1, 2, . . . , M +
1. Thus from the first limit in (37), we have limt→∞ dt =
limt→∞ dt−M−1 = 0. For the limit of function values, we
have that, for all t,

x`(t) = xt−M−1 +
`(t)−(t−M−1)∑

j=1

d`(t)−j ,

thus limt→∞(x`(t)−xt−M−1) = 0. It follows from continuity
of φ and the second limit in (37) that limt→∞ φ(xt) = φ̄.

We now prove Theorem 1.
Proof: (Theorem 1) Suppose (for contradiction) that x̄ is

an accumulation point that is not critical. Let {tj}j=0,1,2,... be
the subsequence of indices such that limj→∞ xtj = x̄. If the
parameter sequence {αtj} were bounded, we would have from
Lemma 2 that ‖dtj‖ = ‖xtj+1 − xtj‖ ≥ ε for some ε > 0
and all j sufficiently large. This contradicts Lemma 4, so we
must have that {αtj} is unbounded. In fact we can assume
without loss of generality that {αtj} increases monotonically
to ∞ and that αtj ≥ η max(αmax, α̃) for all j. For this to be
true, the value α = αtj /η must have been tried at iteration tj
and must have failed the acceptance test (22). But Lemma 3
assures us that (22) must have been satisfied for this value of
α, a further contradiction.

We conclude that no noncritical point can be an accumula-
tion point, proving the theorem.
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