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Abstract

This paper studies sequential methods for recovery of sparse signals in high dimensions. When compared to fixed

sample size procedures, in the sparse setting, sequential methods can result in a particularly large reduction in the

number of samples needed for reliable signal support recovery. Starting with a lower bound, we show any sequential

sampling procedure fails in the high dimensional limit provided the average number of measurements per dimension

is less then D(P
0

||P
1

)

�1

log s, where s is the level of sparsity and D(P
0

||P
1

) the Kullback-Leibler divergence

between the underlying distributions. An extension of the Sequential Probability Ratio Test (SPRT) which requires

complete knowledge of the underlying distributions is shown to achieve this bound. We introduce a simple procedure

termed Sequential Thresholding which can be implemented with limited knowledge of the underlying distributions,

and guarantees exact support recovery provided the average number of measurements per dimension grows faster

than D(P
0

||P
1

)

�1

log s, achieving the lower bound. For comparison, we show any non-sequential procedure fails

provided the number of measurements grows at a rate less than D(P
1

||P
0

)

�1

log n, where n is the total dimension

of the problem.

I. INTRODUCTION

Signal support recovery in high dimensions is a fundamental problem arising in many aspects of science and

engineering. The goal of the basic problem is to determine, based on noisy observations, a sparse set of elements

that somehow differ from the others.

In this paper we study the following problem. Consider a support set S ⇢ {1, . . . , n} and a random variable Yi

such that

Yi ⇠

8

>

<

>

:

P
0

i 62 S

P
1

i 2 S
i = 1, . . . , n

where P
0

and P
1

are probability measures on Y . The dimension of the problem, n, is large – perhaps thousands or

millions or more – but the support set S is sparse in the sense that the number of elements following distribution

P
1

is much less than the dimension, i.e., |S| = s ⌧ n. The goal of the sparse recovery problem is to identify the

set S from multiple independent realizations of the random variables Y
1

, Y
2

, . . . , Yn.
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The conventional theoretical treatment of this problem assumes that the samples are collected prior to data analysis

in what is refereed to as a non-sequential (or fixed sample size) setting. In this case, m samples of each component

are made (m samples of Yi are gathered for each index i) and any test for inclusion in S is performed after the

data is collected. The fundamental limits of reliable recovery are readily characterized in terms of Kullback-Leibler

divergence and dimension (see Sec. III-B).

On the other hand, information gathering systems encountered in practice are often tasked with measuring some

temporal signal or process, leaving the potential for the system to adapt the sampling approach based on prior

observations. In this sequential setting, the decision to take an additional sample of any component i is based on

prior realizations of that component. Herein lies the advantage of sequential methods: if prior samples indicate a

particular component belongs (or doesn’t belong) to S with sufficient certainty, measurement of that component can

cease, and resources can be diverted to a more uncertain element. The focus of this paper is on the fundamental

limits of recovery of such sequential systems.

A. Main Contributions

The results presented in this paper are in terms of asymptotic rate at which the average number of samples per

dimension, denoted m, must increase with n to ensure exact recovery of S for any fixed distributions P
0

and P
1

.

For a given procedure, the probability of correctly recovering the set S depends on the triple (n, s,m). As the

dimension of the problems grows (as n ! 1), correctly recovering S becomes increasingly difficult, and m must

also increase if we hope to recover S . One manner in which we can quantify the performance of a procedure is

the rate at which m must grow as a function of n and s to ensure recovery of S .

As such, the main contributions are 1) to derive a lower bound on the number of measurements required for success

of any sequential procedure in the sparse setting, 2) introduce a simple sequential procedure termed Sequential

Thresholding which can be implemented with limited knowledge of the distributions and show this simple procedure

is asymptotically optimal, 3) compare this procedure to the known optimal SPRT which requires full knowledge

of P
0

and P
1

, and lastly 4) compare these results to the performance of any non-sequential procedure. Table I

summarizes these results.

TABLE I

AVERAGE NUMBER OF MEASUREMENTS PER DIMENSION FOR EXACT SUPPORT RECOVERY IN HIGH DIMENSIONAL LIMIT

any non-sequential m � logn
D(P1||P0)

necessary

any sequential m � log s
D(P0||P1)

necessary

SPRT based procedure m > log s
D(P0||P1)

sufficient requires exact knowledge of

P
0

, P
1

Sequential Thresholding m > log s
D(P0||P1)

sufficient can be implemented without

exact knowledge of P
1

These developments are intriguing primarily for two reasons. First, sequential procedures can succeed when



the number of measurements per dimension increases at a rate logarithmic in the level of sparsity, i.e. log s. In

contrast, well known results from statistical testing show non-sequential procedures require the average number of

measurements per dimension to increase at a rate logarithmic in the dimension, i.e. log n. Secondly, and perhaps

equally as surprising, Sequential Thresholding, a simple, practical procedure introduced here, achieves optimal

performance as the dimension grows large.

B. Motivation

The problem of sparse signal recovery using sequential measurements arises in a number of commonly encoun-

tered problems in science and engineering. In communications, spectrum sensing for cognitive radio aims to identify

unoccupied communication bands in the electromagnetic spectrum. Most bands will be occupied by primary users,

but these users may come and go, leaving certain bands momentarily open and available for use by secondary

transmitters. As the noisy samples of these occupied and un-occupied bands are collected in a temporal manner,

sequential methods are a natural fit to map the occupation of the spectrum; in fact, recent work in spectrum sensing

has given considerable attention to such approaches (see, for example [3], [4]).

Another captivating example a of sparse recovery problem where sequential methods are currently employed is that

of the Search for Extraterrestrial Intelligence (SETI) project. Researchers at the SETI institute sense for narrowband

electromagnetic energy from distant star systems using large antenna arrays, with the hopes of finding extraterrestrial

transmission. The dimension of the problem consists of over 100 billion stars in the Milky Way alone, each with

9 million potential ‘frequencies’ in which to sense for narrow band energy. The subset of planetary systems with

extraterrestrial transmission is sparse (as, of course, SETI is yet to make a contact). Moreover, while researchers

may have a good idea of the distribution of the background noise, P
0

, complete knowledge of P
1

is of course

not available, making procedures based on sequential probability ratio testing impossible to implement. Roughly

speaking, researchers at SETI use a sequential procedure that repeatedly tests energy levels against a threshold

up to five times [5], [6]. If any of the up to five measurements are below the threshold, the procedure passes to

the next frequency/star. Should the measurements exceed the threshold on all five occasions, measurements of that

star and frequency are passed to an operator for further inspection. This procedure is closely related to Sequential

Thresholding. Sequential Thresholding results in substantial gains over fixed sample size procedures and, unlike

the SPRT, it can be computed without full knowledge of P
1

.

Sparse recovery also underlies a number of recent micro-array studies in biology. Here, biologists attempt to

estimate a sparse set of genes or proteins that are critically involved in a certain process or function (such as

virus replication). The biologists may have good estimates of the null distribution, P
0

, but not of the alternative

distribution, P
1

, again making procedures based on the SPRT impractical. A number of recent publications have

implemented various multi-stage (thus sequential) procedures [7]–[10] that operate without full knowledge of P
1

.

The proposed procedures in general aim to reduce the total dimension of the problem and then employ traditional

recovery techniques. While a number of authors suspect such sequential methods result in increased sensitivity, the

gains are not theoretically quantified.



C. Related Work

Many of the fundamental results in sequential analysis were developed by Wald, and formalized in his book,

Sequential Analysis [11]. Most relevant to the developments here, the sequential probability ratio test (SPRT) was

shown to be optimal in terms of minimizing the error probabilities and expected number of measurements for a

simple binary hypothesis test. A number of issues arise, including loss of optimality, when exact knowledge of the

distributions is unavailable. In this scenario, a number of procedures have been proposed for composite alternatives,

including those by Wald [12], which usually incorporate a weighting over parametric families, or generalized

likelihood ratio testing [13].

Sequential testing for sparse signals was perhaps first studied by Posner in [14]. Motivated by the the problem of

finding a lost satellite in the sky, Posner aimed to minimize the expected search time using a multistage procedure.

Posner’s procedure is closely related to the high dimensional extension of the sequential probability ratio test (see

Sec. IV for details). Sequential approaches to the high dimensional sparse recovery problem have recently been

given increased attention, perhaps motivated by the success of exploiting sparsity in other areas. Related work

includes [15], [16], in which the authors extend the work of [14] to include multiple targets, encompassing a more

general model.

In some of the first work to theoretically quantify the gains of sequential methods for high dimensional recovery

[17], [18], the authors proposed a sequential procedure for recovery in additive Gaussian noise, termed Distilled

Sensing. Our Sequential Thresholding approach is similar to the so-called Distilled Sensing method, however there

are two main distinctions. First, the results in this paper are applicable to a larger class of problems characterized

by finite Kullback-Leibler divergence; the Distilled Sensing approach is specific to the Gaussian setting. Second,

here we are concerned with the probability of error in exact recover of S; Distilled Sensing controls the false

discovery and non-discovery rates which is less demanding than the error rate control. Also closely related to the

lower bounds developed here are those of [19], which are in terms of the expected set difference, are restricted to

the Gaussian setting, and published after the initial work in [1], [2].

Another related set of problems is that of finding the best arm in a muli-armed bandit game [20], [21]. Some

approaches to these problems are similar in nature to Sequential Thresholding, namely the median elimination

procedure of [22], but the problem of finding the best arm is fundamentally different than recovering S . Another

difference is these procedures in general assume no knowledge of the distributions P
0

and P
1

, resulting in order

optimal procedures at best.

D. Organization

The remainder of the paper is organized as follows. In Sec. II we formalize the problem. Sec. III-A derives the

necessary condition on the number of samples required for exact recovery using any procedure. For comparison,

Sec. III-B derives a neccessary condition on the average number of measurements for non-sequential procedures.

Next, Sec. IV analyzes the SPRT in the sparse setting and discusses some of the shortcomings of the test when exact



knowledge of the distributions is not available. Lastly, Sec. V introduces Sequential Thresholding and analyzes its

performance.

II. PROBLEM FORMULATION

Let S be a subset of {1, . . . , n} with cardinality s = |S|. For any index i 2 {1, . . . , n}, the random variable Yi,j

is independent, identically distributed according to

Yi,j ⇠

8

>

<

>

:

P
0

i 62 S

P
1

i 2 S
i = 1, . . . , n (1)

where P
0

and P
1

are probability measures with joint support on Y . In words, the random variable Yi,j follows

distribution P
1

(·) if i belongs to S , and follows P
0

(·) otherwise, and j indexes multiple i.i.d. samples of any

component i. We refer to P
0

as the null distribution, and P
1

the alternative.

Our analysis is concerned with exact recovery of the set S . Let ˆS be an estimate of S . The family wise error

rate is defined as:

Pe = P( ˆS 6= S) = P

0

@

[

i 62S
Ei [

[

i2S
Ei

1

A (2)

where Ei is the event that an error is made at index i.

In the lower bounds developed in this paper our consideration is limited to component wise procedures that test

each index in an identical manner. This assumption implies that the individual error rates at each index are the

same; specifically, P(Ei) = P(Ei0) for all i, i0 2 S , and, likewise P(Ei) = P(Ei0) for all i, i0 62 S . Under this

assumption we can simply notation and define the false positive and false negative rates:

↵ = P
0

(E) � = P
1

(E)

where P
0

(E) = P(Ei|i 62 S) and P
1

(E) = P(Ei|i 2 S). The component wise assumption implies the procedure only

uses samples of component i to make inference about that particular component. More specifically, the decision to

re-measure a particular component or include it in the estimate of S depends only on samples of that component. As

the dimension of the problem grows large (which is our regime of interest), there is no loss of optimality associated

with this restriction [19].

The log-likelihood ratio statistic comprised of multiple i.i.d. samples of a particular index is defined as:

L(`)
i (Yi,1, . . . , Yi,`) :=

X̀

j=1

log

P
1

(Yi,j)

P
0

(Yi,j)
. (3)

Here, the superscript ` explicitly indicates the number of samples used to form the likelihood ratio and is suppressed

when unambiguous. The Kullback-Leibler divergence from distribution P
1

to P
0

is defined as:

D(P
1

||P
0

) = E
1



log

P
1

(Y )

P
0

(Y )

�



where E
1

[·] is expectation with respect to distribution P
1

, which gives the usual convergence of the normalized

likelihood ratio as ` grows large:

1

`
L(`)
i

a.s.�!
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>

:

�D(P
0

||P
1

) i 62 S

D(P
1

||P
0

) i 2 S.
(4)

It is sometimes convenient to state results in terms of the maximum of D(P
0

||P
1

) and D(P
1

||P
0

). In this case, we

define

D
KL

= max {D(P
0

||P
1

), D(P
1

||P
0

)} .

In order to bound rates of convergence of particular testing procedures, we make use of the variance of the likelihood

ratio, denoted

�2

(P
1

||P
0

) = var

⇣

L(1)

i |i 2 S
⌘

= E
1

"

✓

log

P
1

(Y )

P
0

(Y )

�D(P
1

||P
0

)

◆

2

#

.

A sampling procedure � is a method used to determine the number of samples taken of each index. To be precise

in characterizing a sampling procedure, we present three definitions.

Definition 1. Sampling procedure. A binary valued function � on (i, j) 2 {1, . . . , n}⇥N that defines the number

of samples of Yi that are observed. Specifically, if �i,j = 1, then Yi,j is observed, and can be used in estimation

of S . Conversely, if �i,j = 0, then Yi,j is not observed, and is not used in estimation of S .

Definition 2. Non-sequential (fixed sample size) sampling procedure. Any sampling procedure � such that �i,j is

not a function of Yi0,j0 for any i0, j0.

Definition 3. Sequential sampling procedure. A sampling procedure � in which �i,j is allowed to depend on

previous samples, specifically, �i,j : {Yi,1, . . . , Yi,j�1

} 7! {0, 1}.

Sequential procedures can make use of information as it becomes available to adjust the sample size, while

non-sequential procedures, or fixed sample size procedures, fix the number of samples taken a priori. Note that

under this definition, the set of non-sequential procedures are a subset of sequential procedures.

In order to make fair comparison between different procedures, we limit the total number of samples in expec-

tation. For any procedure � we require

E

2

4

X

i,j

�i,j

3

5  nm (5)

for some m � 0. This simply implies, on average, the procedure uses m or fewer samples per dimension.

The family wise error rate of any procedure used to estimate S depends on the underlying distributions P
0

and

P
1

, the dimension, n, the level of sparsity s, and the average number of samples per component, m. Throughout, s

and m are non-decreasing functions in n (and thus, the set S is also a function of n). We suppress this dependence

on n for ease of exposition. Our focus will be on finding the relationship between the triple (n, s,m) such that



for any fixed distributions P
0

and P
1

, either limn!1 Pe = 0 (the procedure is reliable) or limn!1 Pe > 0 (the

procedure is unreliable). Without loss of generality, we assume s < n/2 (since, of course, if s � n/2, one can

re-label the problem, swapping P
0

and P
1

). As we are interested in sparse problems, a few of the results require the

assumption that s ⌧ n. We often make the assumption that limn!1
s
n = 0, which is termed sub-linear sparsity,

but this scaling is stated explicitly when needed.

III. LIMITS OF RELIABLE RECOVERY

This section presents lower bounds on the number of measurements required for reliable recovery by any procedure

in both the sequential and non-sequential setting. The bounds are in terms of the expected number of samples per

dimension.

A. Limitation of Sequential Procedures

The following theorem quantifies the limitations of any procedure, which includes both sequential and non-

sequential procedures, as non-sequential procedures are a subset of sequential procedures (from Def. 2 and Def. 3).

The bound applies to finite problems, but also implies a necessary rate of growth as n becomes large, captured in

the ensuing corollary.

Theorem 4. Finite sample limitations of sequential procedures. Any (sequential) procedure with

m 
log s+ log

�

1

4�

�

D
KL

also has

Pe � 1� e�� ⇡ �

where the approximation holds for small �.

Proof: See Appendix A.

Thm. 4 establishes a lower bound on the expected number of samples needed to achieve a particular family wise

error rate. As the dimension of the problem grows, it provides us with a necessary condition for reliable recovery.

Corollary 5. Limitations of sequential procedures. Assume limn!1 s/n = 0. Any (sequential) procedure with

lim

n!1

m

log s
 1

D(P
0

||P
1

)

also has limn!1 Pe > 1/5.

Proof: Thm. 4 implies that if m  log s
DKL

then Pe � 1� e�1/4 > 1/5. Dividing by log s and taking the limit as

n ! 1 would give the lemma if D
KL

= D(P
0

||P
1

). Instead, returning to the proof of Thm. 4, it is easily verified

that if limn!1 s/n = 0, the analysis follows with D
KL

replaced by D(P
0

||P
1

).

In words, if the number of samples per dimension grows at a rate slower than logarithmically in the level of

sparsity, no procedure can reliably recover S . In shorthand notation, if m  log s
D(P0||P1)

then Pe can not be driven

to zero, and recovery of S is unreliable in the large n limit.



B. Limitation of Non-Sequential Procedures

Non-sequential methods, which sample each index a fixed number of times, can require significantly more

measurements than sequential procedures. In the following theorem we state a necessary condition on m for any

reliable non-sequential procedure. The proof is based on analysis of the Chernoff Information [23]. Our consideration

is restricted to non-sequential procedures which sample each component i = 1, . . . , n exactly m times:

�i,j =

8

>

<

>

:

1 j  m

0 j > m.

Theorem 6. Limitation of non-sequential procedures. Assume limn!1 s/n = 0. Any non-sequential procedure

with

lim

n!1

m

log n
<

1

D(P
1

||P
0

)

. (6)

also has

lim

n!1
Pe > 0.

Proof: See Appendix B.

IV. SEQUENTIAL PROBABILITY RATIO TESTING

A. The SPRT

Provided P
0

and P
1

are known, sequential probability ratio tests are optimal for binary hypothesis tests in terms

of minimizing the expected number of measurements for any error probabilities ↵ and � (shown originally in [24]);

this optimality translates to the high dimensional case by simply considering n parallel SPRTs.

Each individual SPRT operates by continuing to measure a component if the corresponding likelihood ratio is

within an upper and lower threshold, and terminating measurement otherwise. For scalar thresholds �
L

and �
U

, the

procedure is defined as

�i,j0+1

=

8

>

<

>

:

1 if �
L


Qj0

j=1

P1(Yi,j)

P0(Yi,j)
 �

U

0 else

(7)

where
Qj0

j=1

P1(Yi,j)

P0(Yi,j)
is the likelihood ratio comprised of all prior samples. If the likelihood ratio falls below �

L

, the

SPRT labels index i as not belonging to ˆS; if the likelihood ratio exceeds �
U

, index i is assigned to ˆS . Equivalently,

the test can be implement in the log-likelihood domain, and L(j0)
i can be compared against log(�

L

) and log(�
U

).

The procedure requires a random number of samples of each component, denoted Ji, and defined as

Ji := min{j : �i,j+1

= 0}.

As we proceed we make a minor assumption on the distribution of the log-likelihood statistic. Specifically, the

ensuing theorem and proof require existence of positive constants C
1

and C
2

such that

E[L(Ji)

i |L(Ji)

i < log �
L

] � log �
L

� C
1

E[L(Ji)

i |L(Ji)

i > log �
U

]  log �
U

+ C
2

(8)



for all thresholds �
U

and �
L

. In some cases, bounds for C
1

and C
2

are known (see [12], p.145, where explicit

expressions for the Bernoulli and Gaussian case are given). In words, the requirement is the existence of a constant

that bounds the expected value of the log-likelihood ratio when the procedure terminates, regardless of the value

of the threshold. This condition is satisfied when L(1)

i follows any bounded distribution, Gaussian distributions,

exponential distributions, among others. It is not satisfied by distributions with infinite variance or polynomial tails.

A more thorough discussion of this restriction is studied in [25].

Theorem 7. Ability of the SPRT. The SPRT procedure with thresholds �
L

=

1

s1+✏ and �
U

= (n� s)1+✏, any ✏ > 0,

has

lim

n!1
Pe = 0

and

lim

n!1

m

log s
 1 + ✏

D(P
0

||P
1

)

.

provided s < n/ log n, and the condition in (8) is satisfied.

Proof: See Appendix C.

B. Implementation Issues

Implementing an SPRT on each component can be challenging for many problems encountered in practice. While

the SPRT is optimal when both P
0

and P
1

are known and testing a single component amounts to a simple binary

hypothesis test, scenarios often arise where some parameter of distribution P
1

is unknown. When some parameter

of P
1

is unknown, the likelihood ratio cannot be formed, and sufficient statistics for the likelihood ratio result in

adjustments to the thresholds based on the unknown parameters of distribution P
1

. With incorrect thresholds, the

SPRT is no longer optimal. To see this more concretely, consider a problem where P
1

is a normal distribution

with an unknown positive mean µ, and P
0

is a zero mean standard normal distribution. Here, the SPRT procedure

continues to sample a particular index if

log �
L

j0µ
+

µ

2

 1

j0

j0
X

j=1

Yi,j 
log �

U

j0µ
+

µ

2

, (9)

equivalent to (7). While the statistic
Pj0

j=1

Yi,j does not depend on the unknown parameter µ, the thresholds do. If

the test is implemented with an incorrect value of µ, it may continue to sample an index ad infinitum (the so-called

open continuation region [26]). This occurs when µ is overestimated; consider a scenario in which the threshold is

set using µ̃ = 10µ, where µ is the true mean of P
1

. If P
1

is the true distribution, we have 1

j0
Pj0

j=1

Yi,j ⇠ N (µ, 1/j0),

which, with high probability, will not exceed the upper threshold (which is greater than 5µ).

V. SEQUENTIAL THRESHOLDING

Sequential Thresholding is based on simple idea: repeatedly reduce the dimension of the problem by sequentially

eliminating elements that exhibit strong evidence they don’t belong to S . Sequential Thresholding consists of a



series of K measurement steps, where each step eliminates from consideration a proportion of the components

measured on the prior step. After the last step, the procedure terminates, and the remaining components are taken

as the estimate of S .

To illustrate the main idea behind the procedure, we first introduce a simplified version of Sequential Thresholding

and analyze the simplified procedure for a specific problem. This simple Sequential Thresholding, while not achieving

asymptotic optimality, does admit a simple error analysis. The more general version of Sequential Thresholding,

which does achieve optimality and the lower bound of Cor. 5, is presented in the second half of this section.

A. Example of Simple Sequential Thresholding

To highlight the main idea behind Sequential Thresholding, and the potential performance gains, consider a

problem where P
0

⇠ N (0, 1) and P
1

⇠ N (✓, 1) for some ✓ > 0. The simple Sequential Thresholding procedure

requires two inputs - 1) the number of steps, K ⇡ log n, and 2) an even integer m � 2 that defines the average

number of samples per index, and hence the total budget. On the first step the procedure samples all indices

m/2 times each, for all i, requiring mn/2 samples. These m/2 samples are summed for each index. If this sum,
Pm/2

j=1

Yi, is less than zero, that particular index is not sampled on subsequent passes. This eliminates a proportion

(approximately half) of components following the null distribution (since the median of
Pm/2

j=1

Yi for i 62 S is

zero). Indices that exceed the threshold, i.e. {i :
Pm/2

j=1

Yi > 0}, are sampled on the subsequent step. This process

continues for K ⇡ log

2

n steps. After the Kth step, the procedure terminates, and estimates S as the set of indices

that have not been eliminated from consideration. Roughly speaking, provided s ⌧ n, the procedure reduces the

number of samples taken on each step by half as most components follow the null, which is zero mean. The total

number of samples required by the procedure on all passes is mn/2 +mn/4 +mn/8 + · · · ⇡ mn. This implies,

on average, m or fewer samples per dimension.

Algorithm 1 Simple Implementation of Sequential Thresholding
input: K ⇡ log n steps, budget m � 2

initialize: S
1

= {1, . . . , n}

for k = 1, . . . ,K do

for i 2 Sk do

measure: {Yi,j}m/2
j=1

⇠

8

>

<

>

:

Qm/2
j=1

P
0

(Yi,j) i 62 S
Qm/2

j=1

P
1

(Yi,j) i 2 S
threshold: Sk+1

:= {i 2 Sk :

Pm/2
j=1

Yi,j > 0}

end for

end for

output: SK+1

Corollary 8. Ability of simple Sequential Thresholding. Let K = d(1 + ✏) log
2

ne for any ✏ > 0 and consider



the setting above where P
0

⇠ N (0, 1) and P
1

⇠ N (✓, 1). The simple Sequential Thresholding algorithm satisfies

limn!0

Pe = 0 provided

m >
log s+ log log

2

n

✓2/8
.

Proof: From a union bound,

Pe  (n� s)↵+ s�. (10)

The false positive event occurs when, for i 62 S , the index survives all K thresholding steps. By the independence

across steps, and since the median of
Pm/2

j=1

Yi for i 2 S is zero,

↵ =

✓

1

2

◆K


✓

1

n

◆

(1+✏)

. (11)

The false negative event occurs when for some i 2 S , the sum
Pm/2

j=1

Yi falls below zero on any step. Applying a

union bound and Gaussian tail bound, since
Pm/2

j=1

Yi ⇠ N (m✓/2,m/2), we have

�  K

2

exp

�

�m✓2/4
�

 (1 + ✏) log
2

(n) exp
�

�m✓2/4
�

 exp

�

�m✓2/4 + log ((1 + ✏) log
2

n)
�

. (12)

Combining (10), (11) and (12) gives

Pe  (n� s)

✓

1

n

◆

(1+✏)

+ exp

�

�m✓2/4 + log s+ log ((1 + ✏) log
2

n)
�

.

Imposing the condition in the theorem, and taking the limit as n ! 1 gives the desired result.

While the sub-optimal simple version of Sequential Thresholding does not achieve the lower bound, it does out-

perform non-sequential procedures. The procedure requires the average number of samples per dimension, m, to be

order log s+ log log n for successful recovery. On the other hand, Sec. III-B shows non-sequential methods require

m on the order of log n samples. For large n and small s, log n can be significantly larger than log s+ log log n,

implying that Sequential Thresholding, for sufficiently sparse problems, will succeed with fewer samples than any

non-sequential procedure.

B. Details of Sequential Thresholding

While the previous discussion highlighted the main principle behind Sequential Thresholding, the procedure

becomes slightly more complicated in its full generality. To the show procedure achieves the lower bound of Cor. 5

as n grows large, both the allocation of measurements across steps and the proportion of null components discarded

on each step must be adjusted.

In general, Sequential Thresholding requires three inputs: 1) K, the number of steps, 2) a constant ⇢ 2 [1/2, 1)

representing the proportion of null components discarded on each step, and 3) a total measurement budget mn



(implying m samples per dimension). The expected proportion of null components discarded on each step, ⇢, is

fixed throughout the procedure and defined as

P
0

(L(mk)

i  �k) = ⇢. (13)

Here, mk is the number of samples used on any particular index measured on step k. As mk is a function of the

step index, so is the threshold �k.

With ⇢ and K as inputs, and a total expected measurement budget mn, Sequential Thresholding operates as

follows. Let Sk denote the subset of {1, . . . , n} comprised of components still under consideration at step k. The

procedure first initializes by setting S
1

= {1, . . . , n}. For steps k = 1, . . . ,K, the procedure proceeds as follows.

On step k, each component in Sk is sampled mk times. The number of samples taken on step k is defined as

mk =

�

m k ⇢2
✓

n

n+ sK2

◆⌫

. (14)

The procedure then compares the likelihood ratio comprised of the mk samples to the threshold defined in (13) and

includes only the indices that exceed the threshold in the set of components to be sampled on the following step:

Sk+1

=

n

i : L(mk)

i > �k, i 2 Sk

o

where �k is defined in (13). In words, if L(mk)

i is below �k, no further measurements of component i are taken

for the remainder of the procedure. Otherwise, component i is measured on the subsequent step. By definition of

�k, approximately ⇢ times the number of remaining components following P
0

will be eliminated on each step; if

s ⌧ n, each thresholding step eliminates approximately ⇢ times the total number of components remaining. After

step K, the procedure terminates and estimates S as the indices still under consideration: ˆS = SK+1

. The procedure

is detailed in Alg. 2.

Algorithm 2 Sequential Thresholding

input: K =

l

log

1
1�⇢

⇣

2(n�s)
�

⌘m

steps, ⇢ 2 [1/2, 1), maximum budget m

initialize: S
1

= {1, . . . , n}

for k = 1, . . . ,K do

for i 2 Sk do

measure: {Y (k)
i,j }mk

j=1

⇠

8

>

<

>

:

Qmk

j=1

P
0

(Y (k)
i,j ) i 62 S

Qmk

j=1

P
1

(Y (k)
i,j ) i 2 S

where mk is given in (14)

threshold: Sk+1

:= {i 2 Sk : L(mk)

i,k > �k}

end for

end for

output: SK+1



C. Measurement Budget

By design, Sequential Thresholding satisfies the measurement budget in (5). Consider the expected number of

samples required by Sequential Thresholding:
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where the equality follows from the law of total probability and conditioning on one or more false negative events.

From the description of the procedure, one or more false negatives can only reduce the total number of samples,

and we have
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Combining this with (15) gives
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(1� ⇢)k�1
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�
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k⇢2
�

(1� ⇢)k�1
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 mn

✓

n� s+ sK2
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 mn.

Here, the equality follows from independence of the samples across the K steps. The third inequality follows as

the sum is a geometric series for ⇢ 2 [1/2, 1) and as
PK

k=1

k  K2.

D. Ability of Sequential Thresholding

For fixed P
0

and P
1

, the following theorem and corollary relate (n, s,m) to the family wise error rate of the

procedure. The corollary follows from the more general Thm. 10.

Corollary 9. Ability of Sequential Thresholding. If

lim

n!1

m

log s
>

1

D(P
0

||P
1

)

then sequential threshold satisfies

lim

n!1
Pe = 0



with input parameters K = d log (2(n� s))/ (2 log log s)� 1/2e and ⇢ = 1� 1p
log s

provided s < n/(log n)2 and

limn!1 s = 1.

Proof: The proof follows from Thm. 10 by setting � =

1

log s , which implies limn!1 Pe = 0. By setting K

and ⇢ as defined in the statement of the theorem, limn!1 cn = D(P
0

||P
1

), where cn is defined in (16). Together

with the forward part of the theorem, this implies the corollary.

Comparison of Cor. 9 to Cor. 5 shows that Sequential Thresholding is asymptotically optimal in terms of

the required number of samples needed for reliable recovery. We continue with the main theorem of Sequential

Thresholding, which quantifies the expected number of samples per dimension in the finite setting. The theorem is

in terms of a sequence, cn, which, under certain conditions, approaches the Kullback-Leibler divergence between

P
0

and P
1

. Proof of the theorem relies on techniques closely related to the Chernoff-Stein Lemma, and is found

in the Appendix.

Theorem 10. Finite sample performance of Sequential Thresholding. Consider Sequential Thresholding with K =

l

log

1
1�⇢

⇣

2(n�s)
�

⌘m

steps and measurement allocation in (14). Provided

m � log s+ log ��1

+ log 4

cn

then

Pe  �

where
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n+ sK2
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⇢2n log s
D(P0||P1)(n+sK2
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� 1
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(1� ⇢)

1
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(16)

and is assumed to be positive.

Proof: See Appendix D.

Thm. 10 and Cor. 9 imply that as the size of the problem increases (as n goes to infinity), if m is greater than

D(P
0

||P
1

)

�1

log s, the procedure will succeed in exact recovery of the sparse support set. This achieves the lower

bound in Cor. 5, which states that any reliable procedure requires at least D(P
0

||P
1

)

�1

log s samples per dimension.

This implies that Sequential Thresholding is in a sense first order optimal. While not discussed here, one could

also analyze the rate at which the procedure approaches the lower bound in Cor. 5, although the authors suspect

the procedure would not achieve second order optimality.

E. Implementation and Practical Concerns

One of the main attributes of Sequential Thresholding is that implementation does not require exact knowledge

of distribution P
1

. While apparent in the example of simple Sequential Thresholding at the beginning of the section,

in which two normal distributions are compared, this appealing property also extends to other settings. To be more



specific, consider a sparse recovery problem in which P
0

is known (or well approximated), but P
1

is defined by a

parametric family of distributions with an unknown parameter ✓. Clearly the likelihood ratio,

L(Y ) = log

✓

P
1

(Y, ✓)

P
0

(Y )

◆

cannot be formed as ✓ is unknown. None-the-less, if the likelihood ratio is a monotonic function of a test statistic

T which does not depend on the unknown parameter ✓, then an equivalent test based on T can be written; (13)

can be written in terms of T . As the test statistic and the thresholds, �k, depend only on P
0

, the procedure can be

implemented without knowledge of ✓.

In practice this occurs for many distributions in the exponential family as the log-likelihood ratio, Li, defined in

(3), is a monotonic function of a test statistic T that does not depend on parameters of P
1

. This property is well

illustrated by the example of testing two Gaussian distributions discussed in the beginning of the section. If we

assume the null distribution is known, but the offset mean of P
1

is unknown, the procedure can still be implemented.

The sum of the measurements,
P

j Yi,j , is a sufficient statistic whose distribution under P
0

does not depend on P
1

.

This implies that �k does not depend on P
1

, and thus, the procedure can be implemented without this knowledge.

There are two possible implementations of Sequential Thresholding which we refer to as parallel and scanning.

The parallel implementation samples and tests all n components in parallel according to the procedure. The scanning

implementation measures and tests the n components in a sequence (which can be arbitrary). For example, the

scanning implementation can begin with component i = 1 and repeatedly measure and threshold the observations

up to K times. If an observation falls below the threshold at any point, then the scanning procedure immediately

moves on to the next component. If K observations are made without an observation falling below the threshold,

then the component is added to the set SK+1

.

The two implementations are equivalent from a theoretical perspective. The parallel implementation may be more

natural for large-scale experimental designs (e.g., in the biological sciences), whereas the scanning implementation

is more appropriate in communications applications such as spectrum sensing. The latter also reveals natural

connections between Sequential Thresholding and the SPRT.

VI. CONCLUSION

This paper showed that sequential methods for support recovery of high dimensional sparse signals in noise

can succeed using far fewer measurements than non-sequential methods. More specifically, non-sequential methods

require the number of measurements to grow logarithmically with the dimension, while sequential methods succeed if

the number of measurements grows logarithmically with the level of sparsity. A simple procedure termed Sequential

Thresholding was shown to achieve the lower bound asymptotically. Sequential Thresholding can be implemented

without full knowledge of the underlying distributions, making it more practical for sparse recovery encountered

in real world problems.
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APPENDIX A

PROOF OF THEOREM 4

Proof: We first bound the family wise error rate in terms of the false positive and false negative probabilities

associated with incorrectly assigning or excluding any element from ˆS . From (2),
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By the assumption of a coordinate wise test,

Pe = 1� (1� �)s(1� ↵)n�s

� 1� e��se�↵(n�s) (17)

where the last inequality follows as (1� �)n  e��n for � 2 [0, 1] and n 2 {1, . . . }. To continue, we can bound

the expected number of samples associated with any particular index. From [26], Thm. 2.39, the following holds

for any binary hypothesis test
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where m
0

is the expected number of samples of any component i 62 S . We can further bound the expected number

of samples as

m
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where the first inequality follows as ↵ log(1/(1��)) � 0, and the last inequality follows as ↵ log↵+(1�↵) log(1�

↵) � log(1/2), all ↵ 2 [0, 1]. Likewise

m
1

�
(1� �) log

⇣

1��
↵

⌘

+ � log

⇣

�
1�↵

⌘

D(P
1

||P
0

)

� (1� �) log↵�1 � log 2

D(P
1

||P
0

)

where m
1

is the average number of samples given i 2 S , and the first inequality is again from Thm. 2.39 of [26].

Let D
KL

= max {D(P
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), D(P
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0

)}. We have
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If ↵  � we have
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where the last inequality is easily verified for � 2 [0, 1].

Imposing the condition in the forward part of the theorem, m  (log s+ log(4�)�1

)/D
KL

gives

log s+ log

�

1

4�

�

D
KL

� m �
log

⇣

1

2�

⌘

� log 2

D
KL

which implies

log s+ log

✓

1

4�

◆

� log

✓

1

2�

◆

� log 2

and thus

� � �

s
.

Hence,
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and
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which, provided s < n/2, gives

Pe � 1� e��.

completing the proof.

APPENDIX B

PROOF OF THEOREM 6

Proof: We write the family wise error rate as:

Pe = P
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which cannot be driven to zero if

↵ >
1

n� s
. (19)

Equivalently, if
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m
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From [23], p. 386, (Chernoff Information),
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then limn!1 Pe > 0.

APPENDIX C

PROOF OF THEOREM 7

Proof: For an SPRT with thresholds �
L

and �
U

, from [26], the following well known inequalities hold:
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From a union bound on the family-wise error rate
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implying the forward portion of the lemma.

We can write the expected number of measurements per dimension as
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and �
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provided s < n/ log n, completing the proof.

APPENDIX D

PROOF OF THEOREM 10

Proof: From the union bound on the family wise error rate, we have

Pe  (n� s)↵+ s�. (25)

The false negative event is given as
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We continue by bounding the above probability. The following analysis is closely related to the Chernoff-Stien
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The above relationship holds for any �k, though only proves meaningful if set correctly. To this end, for some
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where the last line follows from Chebyshev’s inequality. To insure the probability a null component is discarded
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To summarize developments thus far, we’ve shown that if �k = �mk(D(P
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where the last inequality follows as the sum is a geometric series.
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Combining (30) and (31) gives
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where the last inequality holds for s � 1, �  1 which proves the theorem.


