
ECE 901 HW 7: Sparse De-noising Lower Bound

Gautam Dasarathy

1 Minimax Lower bound via hypothesis testing

In this homework, you will prove a general minimax lower bound and apply it to sparse
signal estimation. There are 8 problems you need to solve, indicated in red, below. Recall
the setup we had in class:

1. F is a class of models.

2. To each f 2 F , we have an associated probability distribution P
f

on X ⇥ Y and the
data Z = (X1, Y1, . . . , Xn

, Y
n

) 2 Z is drawn iid from one of these distributions, i.e.,

(X
i

, Y
i

)
iid⇠ P

f

, i = 1, 2, . . . , n.

3. d(·, ·) is a semi-metric on F .

What follows next is a minimax lower bounding technique based on a multiple-hypothesis
test . Fill in the missing steps in the proof of the following theorem.

Theorem 1. Under the above setup, suppose that for M � 2 there exists a set of models

{f1, . . . , fM

} ⇢ F such that d(f
i

, f
j

) � 2✏
n

, i 6= j, and that

P

M

i,j=1
1

M

2 D(P
fikPfj)  1

2 log M�
1, then the following minimax lower bound holds for the model class {(f, P

f

) : f 2 F}.

inf
f̂n

sup
f2F

E
Pf

h

d(f̂
n

, f)
i

� ✏
n

2
(1)

Proof. We showed in class that under the hypotheses given we have that

inf
f̂n

sup
f2F

E
Pf

h

d(f̂
n

, f)
i

� ✏
n

inf
f̂n

sup
f2F

P
f

(d(f̂
n

, f) � ✏
n

) � ✏
n

inf
f̂n

max
j2{1,...,M}

P
fj(d(f̂

n

, f
j

) � ✏
n

)

� ✏
n

inf
ĥn

max
j2{0,...,M}

P
fj(ĥn

(Z) 6= j) � ✏
n

inf
ĥn

1

M

X

j2{1,...,M}
P

fj(ĥn

(Z) 6= j),

where ĥ
n

: Z ! {1, . . . ,M} is any hypothesis test. (Note that in class, our subset was
indexed as {f0, . . . , fM

}; in this homework, we will start the indexing from 1 instead.)
The rest of the proof will focus on obtaining the following lower bound on the average

probability of error

P̄
e,M

, inf
ĥn

1

M

X

j2{1,...,M}
P

fj(ĥn

(Z) 6= j) � 1

2
.
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1/2 is indeed an arbitrary constant but it will su�ce for our purposes and it will keep the
presentation tidy.

1. Let J ⇠ unf ({1, . . . ,M}) be a random variable drawn independently of every-
thing else. Show that if the conditional distribution of Z given J = j is P

fj , then

P̄
e,M

= P(ĥ
n

(Z) 6= J).

Background on Information-Theoretic Concepts. Before we proceed, we need the
following definitions and properties:

1. For a random variable X ⇠ P
X

the entropy is defined as H(X) , E
PX [� log P

X

].
This quantity measures the “amount of randomness” in the random variable X. If X
takes values in a finite set X , we have that 0  H(X)  log |X |; H(X) = 0 if X is
deterministic and H(X) = log |X | if X ⇠ uniform(X ), i.e., a uniformly distributed
random variable has the most “amount of randomness”.

If X ⇠ Bernoulli(p), then we write h
b

(p) to denote the entropy H(X), i.e.,
h

b

(p) , �p log p� (1� p) log(1� p).

2. Given a pair of random variables X, Y ⇠ P
X

P
Y |X = P

XY

, notice that the entropy
satisfies the following:

H(X, Y ) , E
PXY [� log P

XY

] = E
PX [� log P

X

] + E
PXY

h

� log P
Y |X

i

.

The term E
PXY

h

� log P
Y |X

i

is denoted as H(Y | X) and is called the conditional

entropy of Y given X. It measures the average amount of randomness “left-over” in
Y given the value that X takes. This property can be generalized to show that given
n random variables X1, . . . , Xn

, we have the following chain rule of entropy

H(X1, . . . , Xn

) = H(X1) +
n

X

i=2

H(X
i

| X1, . . . , Xi�1).

3. Given two random variables X, Y ⇠ P
XY

, the KL divergence between their joint distri-
bution P

XY

and the product of their marginals P
X

⇥P
Y

is called the mutual information

between X and Y and is denoted as I(X; Y ). That is

I(X; Y ) , D (P
XY

kP
X

P
Y

) .

(Recall that the KL divergence of P2 from P1 is defined as D(P1kP2) =
E

P1 [log(P1/P2)]).
From the above definitions, it can be seen that I(X; Y ) = H(X) � H(X | Y ) =
H(Y ) � H(Y | X). Also, since the KL divergence is always positive, we have that
H(X) � H(X | Y ) = I(X; Y ) � 0 which implies that H(X) � H(X | Y ), i.e.,
conditioning can never increase the amount of randomness.
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We will proceed by defining the following “error event” random variable

E =

8

<

:

1 if ĥ
n

(Z) 6= J

0 o.w.
(2)

Let us expand the conditional entropy H(E, J | ĥ
n

(Z)) in two di↵erent ways as follows:

H(E, J | ĥ
n

(Z))
(a)
= H(J | ĥ

n

(Z)) + H(E | J, ĥ
n

(Z))
(b)
= H(J | ĥ

n

(Z)), (3)

2. Explain why equalities (a) and (b) above are true.

On the other hand, we have

H(E, J | ĥ
n

(Z))
(a)
= H(E | ĥ

n

(Z)) + H(J | E, ĥ
n

(Z))
(b)

 h
b

(P̄
e,M

) + H(J | E, ĥ
n

(Z)),

3. Prove equality (a) and inequality (b) above.

H(J | E, ĥ
n

(Z)) = (1� P̄
e,M

)H(J | E = 0, ĥ
n

(Z)) + P̄
e,M

H(J | E = 1, ĥ
n

(Z))

 P̄
e,M

log M, (4)

where we have used the fact that H(J | E = 0, ĥ
n

(Z)) = 0 since given that no error occurs
(E = 0), the value of ĥ

n

(Z) completely determines the value of J . Also, given that an error
does occur (E = 1) and the value ĥ

n

(Z), H(J | E = 1, ĥ
n

(Z)) = log(M � 1) since J is
uniformly distributed on the set {1, . . . ,M} \ {ĥ

n

(Z)}
Combining (3) and (4), we have

1 + P̄
e,M

log M � H(J | ĥ
n

(Z)) � H(J | Z),

where the last inequality follows since ĥ
n

(Z) is a deterministic function of Z, and thus
conditioning on Z provides at least as much information as ĥ

n

(Z)). This is the so-called
data processing inequality. The entropy (amount of randomness) in J can only be reduced
if we are given Z instead of ĥ

n

(Z), since it might be the case that a deterministic function
ĥ

n

(Z) does not have as much “information” about J as Z does.
Now, using the fact that I(J ; Z) = H(J) �H(J | Z) = log M �H(J | Z), we have the

following inequality (which is a version of Fano’s inequality)

P̄
e,M

� 1� I(J ; Z) + 1

log M
. (5)

3



Finally, we observe that

I(J ; Z)
(a)
= D(P

JZ

kP
J

P
Z

)

(b)
=

1

M

M

X

i=1

D

0

@P
fi

�

�

�

�

�

�

M

X

j=1

P
fj

1

A

(c)

 1

M2

M

X

i,j=1

D
⇣

P
fikPfj

⌘

where (a) and (b) follow from the definition, and (c) follows from the fact that the KL di-
vergence is convex.

4. Show that this last inequality, when used in (5), concludes the proof.

2 Minimax Lower Bound for Sparse Denoising

Consider the problem of estimating a vector f 2 Rn from noisy measurements z 2 Rn of the
form

z = f + ✏, (6)

where ✏ ⇠ N (0, I) and f 2 F
k

, {x 2 Rn : kxk0  k}, i.e., f has at most k non-zero entries.
We saw in class that, using soft-thresholding, it is possible to achieve a mean-squared

error upper bound of

(2 log n + 1)

"

1 +
n

X

i=1

min
n

|f(i)|2, 1
o

#

= (2 log n + 1) [1 + k] ,

where f(i) is the i�th coordinate of the vector f . Notice that the quantity on the right is
no greater than 4k log n if n, k � 3.

Your mission, if you choose to accept it, is to prove the following minimax lower bound:
There exists a constant C > 0 such that

E⇤ , inf
f̂

sup
x2Fk

E


�

�

�f̂(z)� f
�

�

�

2

2

�

� C max
⇢

k log
✓

n

k

◆

, k
�

, (7)

where f̂ is any estimator. This shows that the log n factor is an unavoidable consequence of
having to identify the unknown pattern of sparsity. You can use the following outline. First,
prove the following simple lower bound.

5. Show that k is a lower bound on the mean squared error. (Hint: Suppose we
are given the support of f .)
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The lower bound of k is loose when k ⌧ n, and a tighter lower bound can be obtained
using using multiple hypothesis testing (Theorem 1). The idea behind using the above
theorem is to identify a set of M examples that demonstrate the hardness of the problem.
This will be your first task:

Assume that n and k are fixed, and for simplicity, assume that k is even and that k < n/2.
We will consider k-sparse vectors with non-zero elements equal to a

n

> 0 in magnitude (will
will choose a

n

later to maximize the lower bound). Show there exists a set of such vectors

{f1, . . . , fM

} ⇢ F
k

, with M =
⇣

n

k

⌘

k/4
, satisfying

kf
i

� f
j

k2
2 � a

n

/2 , 8i 6= j . (8)

While it is possible show an explicit construction of this set, you can instead use the
following outline which employs the probabilistic method.

6. Consider a set U =
n

f 2
n

�
q

an
k

, 0, +
q

an
k

o

n

: kfk0 = k
o

. Show that the cardinal-

ity of this set is |U| =
⇣

n

k

⌘

2k. Also, show that for a fixed f 2 U , the following
holds

|{f 0 2 U : kf � f 0k0  k/2}| 
 

n

k/2

!

3k/2.

7. Use (i) to argue that if one picks a size (n/k)k/4 set of elements at random from
U , then with probability greater than 1/2, this random set has the property
(8). For this you might find the following combinatorial inequality (which
hold when n� k > (0.5)k) useful:

⇣

n

k

⌘

⇣

n

k/2

⌘ �
✓

n

k
� 1

2

◆

k/2

.

8. Argue that this shows that there exists at least one set of vectors {f1, . . . , fM

}
such that M + 1 =

⇣

n

k

⌘

k/4
which satisfies property.

9. Conclude the proof of the theorem using Theorem 1. (Hint: Compare the
results of (a) and (b) with the hypotheses of Theorem 1; this should tell you the
right value of a

n

.)
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