ECE 901 HW 7: Sparse De-noising Lower Bound

Gautam Dasarathy

1 Minimax Lower bound via hypothesis testing

In this homework, you will prove a general minimax lower bound and apply it to sparse
signal estimation. There are 8 problems you need to solve, indicated in red, below. Recall
the setup we had in class:

1. F is a class of models.

2. To each f € F, we have an associated probability distribution Py on X x Y and the
data Z7 = (X1,Y1,...,X,,Y,) € Z is drawn did from one of these distributions, i.e.,

(X, V) % Pri=1,2,... n.

3. d(-,-) is a semi-metric on F.

What follows next is a minimax lower bounding technique based on a multiple-hypothesis
test . Fill in the missing steps in the proof of the following theorem.

Theorem 1. Under the above setup, suppose that for M > 2 there exists a set of models
{f1,.... fu} C F such that d(fi, f;) > 2€n, i # j, and that Y} _, 7 D(Py,||Py,) < 4 log M —

ij=1 12
1, then the following minimax lower bound holds for the model class {(f, Py) : f € F}.
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Proof. We showed in class that under the hypotheses given we have that

inf sup Ep, [d(fn, f)} > €, inf sup Pf(d(fn,f) > €,) > €,inf max Pfj(d(fn,fj) > €,)
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where h, : Z — {1,...,M} is any hypothesis test. (Note that in class, our subset was
indexed as {fo, ..., far}; in this homework, we will start the indexing from 1 instead.)

The rest of the proof will focus on obtaining the following lower bound on the average
probability of error

| =

Pe,M £ inf — Z Pfj(iln(Z) #7j) =



1/2 is indeed an arbitrary constant but it will suffice for our purposes and it will keep the
presentation tidy.

1. Let J ~unf ({1,...,M}) be a random variable drawn independently of every-
thing else. Show that if the conditional distribution of Z given J = j is P}, then

Py =P(ha(Z) £ J).

Background on Information-Theoretic Concepts. Before we proceed, we need the
following definitions and properties:

1. For a random variable X ~ Py the entropy is defined as H(X) £ Ep, [ log Px].
This quantity measures the “amount of randomness” in the random variable X. If X
takes values in a finite set X', we have that 0 < H(X) < log|X|; H(X) = 0 if X is
deterministic and H(X) = log|X]| if X ~ uniform(X), i.e., a uniformly distributed
random variable has the most “amount of randomness”.

If X ~ Bernoulli(p), then we write hy(p) to denote the entropy H(X), i.e.,
hy(p) £ —plogp — (1 —p) log(1 — p).

2. Given a pair of random variables X,Y ~ PxPyx = Pxy, notice that the entropy
satisfies the following:

H(X,Y) £ Epy, [~ log Pxy] = Ep, [~ log Px] + Epy, |~ log Prx].

The term Ep,, [—1og Py|X] is denoted as H(Y | X) and is called the conditional
entropy of Y given X. It measures the average amount of randomness “left-over” in
Y given the value that X takes. This property can be generalized to show that given
n random variables X, ..., X,,, we have the following chain rule of entropy

H(le"'vXn) ZH(X1)+ZH(XZ ’ le"'axi—l)-

=2

3. Given two random variables X, Y ~ Pxy, the KL divergence between their joint distri-
bution Pxy and the product of their marginals Py X Py is called the mutual information
between X and Y and is denoted as I(X;Y). That is

I(X;Y) 2 D (Pxy|PxPy).

(Recall that the KL divergence of P, from P, is defined as D(P||P) =
Ep, [log(P1/P)]).

From the above definitions, it can be seen that I(X;Y) = H(X) - H(X | Y) =
H(Y)—- H(Y | X). Also, since the KL divergence is always positive, we have that
H(X)—-HX |Y) = I(X;Y) > 0 which implies that H(X) > H(X | Y), ie,
conditioning can never increase the amount of randomness.



We will proceed by defining the following “error event” random variable

b {1 if hy(Z) #J @

0 ow.
Let us expand the conditional entropy H(E, J | h,(Z)) in two different ways as follows:

H(E, J | ho(2)) L H(T | ha(2)) + H(E | J.ha(2)) 2 H(T | ha(2)), (3)

2. Explain why equalities (a) and (b) above are true.

On the other hand, we have

. . . A ® A
H(E, J | ha(2)) € H(E | ho(2)) + H(J | E,hn(2)) < ho(Prs) + H(J | B, (2)),
3. Prove equality (a) and inequality (b) above.

H(J | E h(Z)) = (1= P.a)H(J | E=0,h(2)) + P.yyH(J | E =1,h,(2))
< P, log M, (4)

where we have used the fact that H(J | E = 0, h,(Z)) = 0 since given that no error occurs
(E = 0), the value of h,(Z) completely determines the value of J. Also, given that an error
does occur (E = 1) and the value h,(Z), H(J | E = 1,h,(Z)) = log(M — 1) since J is
uniformly distributed on the set {1,..., M} \ {hn(Z)}

Combining (3) and (4), we have

1+ Py logM > H(J | ho(2)) > H(J | Z),

where the last inequality follows since ﬁn(Z) is a deterministic function of Z, and thus
conditioning on Z provides at least as much information as ﬁn(Z )). This is the so-called
data processing inequality. The entropy (amount of randomness) in J can only be reduced
if we are given Z instead of Bn(Z ), since it might be the case that a deterministic function
ﬁn(Z) does not have as much “information” about J as Z does.

Now, using the fact that I(J;2) = H(J) — H(J | Z) =logM — H(J | Z), we have the
following inequality (which is a version of Fano’s inequality)

_ I(J;Z2)+1
Poy>1—\b2)r2 5
M2 Tog M (5)



Finally, we observe that
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where (a) and (b) follow from the definition, and (c) follows from the fact that the KL di-
vergence is convex.

4. Show that this last inequality, when used in (5), concludes the proof. O

2 Minimax Lower Bound for Sparse Denoising

Consider the problem of estimating a vector f € R™ from noisy measurements z € R” of the
form

z=f+e, (6)

where e ~ N'(0,1) and f € F & {z € R": ||z[o < k}, i.e., f has at most k non-zero entries.
We saw in class that, using soft-thresholding, it is possible to achieve a mean-squared
error upper bound of

(2logn 4 1) {1 +imin{yf(¢)|2,1}} = (2logn+1)[1+ 4],

where f(i) is the i—th coordinate of the vector f. Notice that the quantity on the right is
no greater than 4klogn if n, k > 3.

Your mission, if you choose to accept it, is to prove the following minimax lower bound:
There exists a constant C' > 0 such that

£ & irf;f Is;% E {Hf(z) — f‘m >C max{k:log <%) ,k} , (7)

where f is any estimator. This shows that the logn factor is an unavoidable consequence of
having to identify the unknown pattern of sparsity. You can use the following outline. First,
prove the following simple lower bound.

5. Show that £ is a lower bound on the mean squared error. (Hint: Suppose we
are given the support of f.)



The lower bound of k is loose when k < n, and a tighter lower bound can be obtained
using using multiple hypothesis testing (Theorem 1). The idea behind using the above
theorem is to identify a set of M examples that demonstrate the hardness of the problem.
This will be your first task:

Assume that n and k are fixed, and for simplicity, assume that k is even and that k < n/2.
We will consider k-sparse vectors with non-zero elements equal to a,, > 0 in magnitude (will
will choose a,, later to maximize the lower bound). Show there exists a set of such vectors

{fi,- s fu} C Fp, with M = (%)]M, satisfying

Ifi = fl12>an/2 , Vi, (8)

While it is possible show an explicit construction of this set, you can instead use the
following outline which employs the probabilistic method.

6. Consider a set U = {f € {—\/%, 0,+ %}n N fllg = k} Show that the cardinal-
ity of this set is [U| = (Z) 2%, Also, show that for a fixed f € U, the following
holds

, . , n
et = 7l < k2 < (), )3

7. Use (i) to argue that if one picks a size (n/k)"/* set of elements at random from
U, then with probability greater than 1/2, this random set has the property
(8). For this you might find the following combinatorial inequality (which
hold when n — k > (0.5)k) useful:

) . (2- 1)’“/2.

(o) ~\F 2

8. Argue that this shows that there exists at least one set of vectors {fi,..., fu}

k/4
such that M +1 = (%) / which satisfies property.

9. Conclude the proof of the theorem using Theorem 1. (Hint: Compare the
results of (a) and (b) with the hypotheses of Theorem 1; this should tell you the
right value of a,.)



