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A Note on Compressed Sensing

This is a short note on the compressed sensing analysis in the paper “Simple Bounds for Recovering Low-
Complexity Models,” by Candes and Recht. To simplify the analysis, the notation used here is slightly
different than in the paper.

Suppose that x∗ ∈ Rn has support on S ⊂ {1, . . . , n}. Consider a matrix Φ ∈ Rm×n and suppose that
we observe z = Φx∗ ∈ Rm. Our goal is to recover x∗ from z by solving the optimization

min
x
‖x‖1 subject to Φx = Φx∗ .

Under certain conditions, x∗ is the unique solution to this optimization. Note that every x that satisfies the
constraint can be decomposed as x = x∗ + h, where Φh = 0. We want to show that ‖x∗ + h‖1 > ‖x∗‖1 for
every non-zero h satisfying Φh = 0.

Before stating the key conditions, let us introduce a little notation. Let Sc denote the complement of S
and let |S| denote the size of S. For any vector y ∈ Rn, let yS denote the restriction of y to S (i.e., yS is
equal to y on S and zero on Sc) and define ySc analogously. Note that y = yS + ySc . Let ΦS denote the
m×|S| submatrix of Φ obtained by discarding all columns in Sc. Finally, recall that g ∈ Rn is a subgradient
of a function f : Rn → R at a point x if for all h ∈ Rn

f(x + h) ≥ f(x) + 〈g, h〉 .

We are interested in subgradients of the function ‖x‖1. Let xi denote the i-th element of x. If xi > 0, then
the subgradient in that direction is +1. If xi < 0, then the subgradient in that direction is −1. If xi = 0,
then the subdifferential (set of subgradients) in that direction is [−1, +1].

Now the following conditions suffice to guarantee that x∗ is the unique solution. Suppose that

1. ΦS has full rank

and there exists a q ∈ Rm such that y = Φ′q satisfies

2. yS = sign(x∗S)

3. ‖ySc‖∞ < 1

Then x∗ is the unique solution to the optimization above.
To see this, define v ∈ Rn such that vSc = sign(hSc) and 0 elsewhere. Observe that sign(x∗S) + v is a

subgradient of ‖ · ‖1 at x∗. Then

‖x∗ + h‖1 ≥ ‖x∗‖1 + 〈sign(x∗S) + v, h〉 , by definition of subgradient
= ‖x∗‖1 + 〈sign(x∗S) + v − y, h〉 , since 〈y, h〉 = q′Φh = 0
= ‖x∗‖1 + 〈sign(x∗S) + vS + vSc − (yS + ySc), h〉
= ‖x∗‖1 + 〈vS + vSc − ySc , h〉 , since yS = sign(x∗S)
= ‖x∗‖1 + 〈vSc − ySc , h〉 , since vS = 0
= ‖x∗‖1 + 〈vSc − ySc , hSc〉
≥ ‖x∗‖1 + ‖hSc‖1 − ‖ySc‖∞‖hSc‖1 , since vSc = sign(hSc)
= ‖x∗‖1 + (1− ‖ySc‖∞)‖hSc‖1 > ‖x∗‖1 , since ‖ySc‖∞ < 1 and ‖hSc‖1 > 0

which gives us the result. The fact that ‖hSc‖1 > 0 follows from the assumption that ΦS has full rank. Note
that h = hS + hSc , so Φh = 0 implies that ΦhS = −ΦhSc . Because ΦS has full rank, hSc = 0 implies that
hS = 0. Therefore, if h 6= 0, then hSc 6= 0.
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Recall that for the compressed sensing result, Φ ∈ Rm×n with iid N (0, 1) entries and m > |S|. It
follows immediately that ΦS has full rank for every S with probability 1. The other key issue is finding a
q such that y = Φ′q satisfies the other two conditions. To satisfy the second condition, it suffices to take
q = ΦS(Φ′SΦS)−1sign(x∗(S)), where x∗(S) is the |S| × 1 subvector of x∗ composed of the elements in S.
Using the concentration inequalities, it is possible to show that this choice also satisfies the third condition
with high probability (see “Simple Bounds for Recovering Low-Complexity Models,” by Candes and Recht,
for details).


