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In this lecture we introduce the basic elements of statistical pattern recognition and set the stage for
the rest of the course. A probabilistic approach provides a good framework to cope with the uncertainty
inherent to any data-set.

1 Learning from Data

To formulate the basic learning from data problem, we must specify several basic elements: data spaces,
probability measures, loss functions, and statistical risk.

1.1 Data Spaces

Learning from data begins with a specification of two spaces:

X ≡ Input Space

Y ≡ Output Space

The input space is also sometimes called the “feature space” or “signal domain.” The output space is also
called the “label space,” “outcome space,” “response space,” or “signal range.”

Example 1
X = Rd d-dimensional Euclidean space of “feature vectors”

Y = {0, 1} two classes or “class labels”

Example 2
X = R one-dimensional signal domain (e.g., time-domain)

Y = R real-valued signal

A classic example is estimating a signal f in noise:

Y = f(X) + W

where X is a random sample point on the real line and W is a noise independent of X.
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1.2 Probability Measure and Expectation

Define a joint probability distribution on X ×Y denoted PX,Y . Let (X, Y ) denote a pair of random variables
distributed according to PX,Y . We will also have use for marginal and conditional distributions. Let PX

denote the marginal distribution on X, and let PY |X denote the conditional distribution of Y given X. For
any distribution P , let p denote its density function with respect to the corresponding dominating measure;
e.g., Lebesgue measure for continuous random variables or counting measure for discrete random variables.

Define the expectation operator:

E[f(X, Y )] ≡
∫

f(x, y)dPX,Y (x, y) =
∫

f(x, y)pX,Y (x, y)dxdy.

1.3 Loss Functions

A loss function is a mapping
` : Y × Y 7→ R

Example 3 In binary classification problems, Y = {0, 1}. The 0/1 loss function is usually used: `(y1, y2) =
1y1 6=y2 , where 1A is the indicator function which takes a value of 1 if condition A is true and zero otherwise.
We typically will compare a true label y with a prediction ŷ, in which case the 0/1 loss simply counts
misclassifications.

Example 4 In regression or estimation problems, Y = R. The squared error loss function is often employed:
`(y1, y2) = (y1 − y2)2, the square of the difference between y1 and y2. In application, we are interested in a
true value y in comparison to an estimate ŷ.

Example 5 In some classification problems it is useful to consider asymmetric loss functions. For example
when learning a rule to classify email as spam we often prefer to incorrectly label a spam email as legitimate
than the other way around. This can be made quite explicit through a proper choice of loss function

`(y1, y2) =

 10 if y1 = 1, y2 = 0
2 if y1 = 0, y2 = 1
0 if y1 = y2

.

If ŷ is our classification for a particular email (one if it spam and zero otherwise), and y is the true label,
then `(ŷ, y) reflects the fact that we prefer to misclassify spam emails than legitimate emails.

1.4 Statistical Risk

The basic problem in learning is to determine a mapping f : X 7→ Y that takes an input x ∈ X and predicts
the corresponding output y ∈ Y. The performance of a given map f is measured by its expected loss or risk:

R(f) ≡ E [`(f(X), Y )]

The risk tells us how well, on average, the predictor f performs with respect to the chosen loss function. A
key quantity of interest is the mininum risk value, defined as

R∗ = inf
f

R(f)

where the infimum is taking over all measurable functions.
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1.5 The Learning Problem

Suppose that (X, Y ) are distributed according to PX,Y ((X, Y ) ∼ PX,Y for short). Our goal is to find a map so
that f(X) ≈ Y with high probability. Ideally, we would chose f to minimize the risk R(f) = E[`(f(X), Y )].
However, in order to compute the risk (and hence optimize it) we need to know the joint distribution PX,Y .
In many problems of practical interest, the joint distribution is unknown, and directly minimizing the risk
is not possible.

Suppose that we have some “training examples”, that is, samples from the distribution PX,Y . Specifically,
consider n samples Xi, Yi

n
i=1 distributed independently and identically (i.i.d.) according to the otherwise

unknown PX,Y . These are calledtraining data, and denote the collection by Dn ≡ Xi, Yi
n
i=1. Let’s also define

a collection of candidate mappings F . We will use the training data Dn to pick a mapping f̂n ∈ F that we
hope will be a good predictor. This is sometimes called the Model Selection problem. Note that the selected
model fn is a function of the training data:

f̂n(X) = f(X;Dn) .

The that “hat” and the subscript n make the dependence on the training data explicit avoiding notational
clutter. The risk of f̂n is given by

R(f̂n) = E[`(fn(X), Y )|Dn] = EX,Y [`(fn(X), Y )] .

Note that f̂n is a random variable, and with the definition above the risk of R(f̂n) is also a random variable1.
For the most part of this course we will be interested in guaranteeing that R(f̂n) is small with very

high probability over the distribution of the training data (again, recall that R(f̂n) is a random variable).
Quite frequently we will mostly be interested in the expected risk, computed over random realizations of the
training data:

E[R(f̂n)] = EDn [R(f̂n)] .

We hope that f̂n produces a small expected risk.
The notion of expected risk can be interpreted as follows. We would like to define an algorithm (a model

selection process) that performs well on average, over any random sample of n training data. The expected
risk is a measure of the expected performance of the algorithm with respect to the chosen loss function. That
is, we are not gauging the risk of a particular map f ∈ F , but rather we are measuring the performance of
the algorithm that takes any realization of training data and selects an appropriate model in F .

This course is concerned with determining “good” model spaces F and useful and effective model selection
algorithms. Perhaps surprisingly one can do this even making only mild assumptions on the distribution
PX,Y .

1The notation E[A|B] indicates a conditional expectation, the expectation of A given B, therefore this is a random variable,
in fact E[A|B] = g(B) for some function g.
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