
ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 1: Elements of Statistical Learning Theory

1. Probabilistic Formulation of learning from data and prediction problems.

2. Performance Characterization:

concentration inequalities

uniform deviation bounds

approximation theory

rates of convergence

3. Practical Algorithms that run in polynomial time (e.g., decision trees, wavelet methods, support
vector machines).

1 Learning from Data

To formulate the basic learning from data problem, we must specify several basic elements: data spaces,
probability measures, loss functions, and statistical risk.

1.1 Data Spaces

Learning from data begins with a specification of two spaces:

X ≡ Input Space

Y ≡ Output Space

The input space is also sometimes called the “feature space” or “signal domain.” The output space is also
called the “class label space,” “outcome space,” “response space,” or “signal range.”

Example 1
X = Rd d-dimensional Euclidean space of “feature vectors”

Y = {0, 1} two classes or “class labels”

Example 2
X = R one-dimensional signal domain (e.g., time-domain)

Y = R real-valued signal

A classic example is estimating a signal f in noise:

Y = f(X) + W

where X is a random sample point on the real line and W is a noise independent of X.
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1.2 Probability Measure and Expectation

Define a joint probability distribution on X ×Y denoted PX,Y . Let (X, Y ) denote a pair of random variables
distributed according to PX,Y . We will also have use for marginal and conditional distributions. Let PX

denote the marginal distribution on X, and let PY |X denote the conditional distribution of Y given X. For
any distribution P , let p denote its density function with respect to the corresponding dominating measure;
e.g., Lebesgue measure for continuous random variables or counting measure for discrete random variables.

Define the expectation operator:

EX,Y [f(X, Y )] ≡
∫

f(x, y)dPX,Y (x, y) =
∫

f(x, y)pX,Y (x, y)dxdy.

We will also make use of corresponding marginal and conditional expectations such as EX and EY |X .
Wherever convenient and obvious based on context, we may drop the subscripts (e.g., E instead of EX,Y )

for notational ease.

1.3 Loss Functions

A loss function is a mapping
` : Y × Y 7→ R

Example 3 In binary classification problems, Y = {0, 1}. The 0/1 loss function is usually used: `(y1, y2) =
1y1 6=y2 , where 1A is the indicator function which takes a value of 1 if condition A is true and zero otherwise.
We typically will compare a true label y with a prediction ŷ, in which case the 0/1 loss simply counts
misclassifications.

Example 4 In regression or estimation problems, Y = R. The squared error loss function is often employed:
`(y1, y2) = (y1 − y2)2, the square of the difference between y1 and y2. In application, we are interested in a
true value y in comparison to an estimate ŷ.

1.4 Statistical Risk

The basic problem in learning is to determine a mapping f : X 7→ Y that takes an input x ∈ X and predicts
the corresponding output y ∈ Y. The performance of a given map f is measured by its expected loss or risk:

R(f) ≡ EX,Y [`(f(X), Y )]

The risk tells us how well, on average, the predictor f performs with respect to the chosen loss function. A
key quantity of interest is the mininum risk value, defined as

R∗ = inf
f

R(f)

where the infinum is taking over all measurable functions.

1.5 The Learning Problem

Suppose that (X, Y ) are distributed according to PX,Y ((X, Y ) ∼ PX,Y for short). Our goal is to find a map so
that f(X) ≈ Y with high probability. Ideally, we would chose f to minimize the risk R(f) = E[`(f(X), Y )].
However, in order to compute the risk (and hence optimize it) we need to know the joint distribution PX,Y .
In many problems of practical interest, the joint distribution is unknown, and minimizing the risk is not
possible.

Suppose that we have some exemplary samples from the distribution. Specifically, consider n samples
Xi, Yi

n
i=1 distributed independently and identically (iid) according to the otherwise unknown PX,Y . Let us

call these samples training data, and denote the collection by Dn ≡ Xi, Yi
n
i=1. Let’s also define a collection
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of candidate mappings F . We will use the training data Dn to pick a mapping fn ∈ F that we hope will be
a good predictor. This is sometimes called the Model Selection problem. Note that the selected model fn is
a function of the training data:

fn(X) = f(X;Dn),

which is what the subscript n in fn refers to. The risk of fn is given by

R(fn) = EX,Y [`(fn(X), Y )]

Note that since fn depends on Dn in addition to a new random pair (X, Y ), the risk is a random variable
(i.e., a function of the training data Dn). Therefore, we are interested in the expected risk, computed over
random realizations of the training data:

EDn [R(fn)]

We hope that fn produces a small expected risk.
The notion of expected risk can be interpreted as follows. We would like to define an algorithm (a model

selection process) that performs well on average, over any random sample of n training data. The expected
risk is a measure of the expected performance of the algorithm with respect to the chosen loss function. That
is, we are not gauging the risk of a particular map f ∈ F , but rather we are measuring the performance of
the algorithm that takes any realization of training data and selects an appropriate model in F .

This course is concerned with determining “good” model spaces F and useful and effective model selection
algorithms.


