Nonparametric Active Learning

Steve Hanneke

Toyota Technological Institute at Chicago steve.hanneke@gmail.com

Robert Nowak UW-Madison rdnowak@wisc.edu

ICML | 2019

Thirty-sixth International Conference on Machine Learning

Active Learning and Inductive Bias

feature 2

Model Bias: Standard active learning algorithms perform no better than passive or might even converge to suboptimal solutions!

Two Faces of Active Learning

Goal: Use nonparametric (or overparameterized) models to avoid bias and design active learning algorithms that exploit intrinsic structure in data

label examples close to estimated decision boundary

find clusters in unlabeled data and label one representative from each

Dasgupta, Sanjoy. "Two faces of active learning." Theoretical computer science 412.19 (2011): 1767-1781.

Hierarchical Clustering for Active Learning

Theorem: If it is possible to prune the cluster tree to m leaves that are fairly pure in the labels of their constituent points, then O(m) labeled examples suffice to accurately label the entire dataset

Dasgupta and Hsu. "Hierarchical sampling for active learning." ICML 2008

Combining Active and Semi-Supervised Learning

Construct nearest neighbor graph of unlabeled dataset

Using prior model based on graph-Laplacian, select labels to minimize predicted risk

Propagate labels to rest of graph: e.g., nearestneighbors, graph-Laplacian, etc

Zhu, Xiaojin, John Lafferty, and Zoubin Ghahramani. "Combining active learning and semi-supervised learning using gaussian fields and harmonic functions." *ICML 2003 workshop*. Vol. 3. 2003.

Provably Correct Algorithm: Binary Search on Graph

basic idea:

then find all shortest paths between red and blue labeled nodes and bisect the shortest shortest path

Binary Search on Graph

Recursive application of shortest-shortest path bisection efficiently identifies cutset, partitioning graph into pure-labeled components

propagate labels to rest of graph: e.g., nearestneighbors, graph-Laplacian, etc

Dasarathy, Gautam, RN, and Xiaojin Zhu. Conference on Learning Theory. 2015.

Active Learning with Kernels and Neural Nets

Active learning based on nearest neighbor graphs and clustering can be effective, but require two separate steps

- 1. build graph or partition on unlabeled dataset
- 2. exploit graph/cluster structure for active learning

Can we develop similar procedures that can be applied directly to popular classifiers like kernel methods and neural networks?

multilayer neural net
$$y = W_L f(W_{L-1} \cdots f(W_1 x) \cdots))$$

kernelized classifier
$$y = \sum_{i=1}^{n} \alpha_i k(\boldsymbol{x}_i, \boldsymbol{x})$$

Rethinking Conventional Wisdom

deep nets are trained to perfectly fit training data, yet still generalize well

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. "Understanding deep learning requires rethinking generalization." *arXiv preprint arXiv:1611.03530* (2016).

Double-Descent

model complexity (number of parameters)

Maximizing model *smoothness* subject to the interpolation constraints is a form of the Occam's razor

from Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal. "Reconciling modern machine learning and the bias-variance trade-off." *arXiv preprint arXiv:1812.11118* (2018).

Theory Meets Practice

MNIST experiments with kernels, random features, and neural nets

from Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal. "Reconciling modern machine learning and the bias-variance trade-off." *arXiv preprint arXiv:1812.11118* (2018).

Rethinking Active Learning

model complexity (number of parameters)

Standard active learning theory and methods are based on bounding test error in terms of training error (e.g., VC theory)

In the interpolating regime, the training error is identically zero and yields no information about the expected loss

Kernel Machines and Neural Networks

- kernel machine is a single hidden-layer neural network
- interpolation possible with infinite dimensional Reproducing Kernel Hilbert Space (RKHS) or overparameterized neural net

Active Learning in Overparameterized Setting

Active Learning in Overparameterized Setting

New example in between identically labeled examples

difficult to interpolate, large $||f_+^u||$

less smooth

smoother

 $\|\cdot\| = RKHS$ norm or norm of neural network weights

Active Learning in Overparameterized Setting

Max-Min Sampling Criterion

Intuition: attacking the most challenging points in the input space first may eliminate the need to label other "easier" examples later

Mina Karzand and RN. "Active Learning in the Overparameterized and Interpolating Regime." arXiv preprint arXiv:1905.12782 (2019).

Properties of Max-Min Sampling in RKHS

Assume that $f \in \mathcal{H}$, \mathcal{H} is a Reproducing Kernel Hilbert Space (RKHS), and f is the minimum RKHS-norm interpolator of the labeled examples

$$\boldsymbol{u}^{\star} = \arg \max_{\boldsymbol{u} \in U} \min \left\{ \|\boldsymbol{f}_{-}^{\boldsymbol{u}}\|, \|\boldsymbol{f}_{+}^{\boldsymbol{u}}\| \right\}$$

Key Properties of RKHS Active Learner:

- Minimum norm labeling of new example \boldsymbol{u} is given by sign of current interpolator f
- Selects samples near the current decision boundary <u>and</u> closest to oppositely labeled examples
- Yields optimal binary search behavior in one-dimension

Kernel Active Learner in One Dimension

Theorem: Consider N points uniformly distributed in [0,1] and labeled according to piecewise constant binary-valued function g(x) with k pieces. Then the Laplace kernel active learner perfectly predicts the labels of all N points after labeling $O(k \log N)$ examples.

Kernel Active Learner in Multiple Dimensions

Strength and Weakness of Max-Min Criterion

Limitation of max-min criterion:

- Can be too myopically focused on learning decision boundary
- RKHS norm is insensitive to data distribution

Data-Based Norm

Data-based Criterion:

$$f = \min \mathsf{RKHS} \text{ norm interpolator of } \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$$

$$f^{\boldsymbol{u}} = \min \mathsf{RKHS} \text{ norm interpolator adding } \boldsymbol{u}$$

$$\boldsymbol{u}^* = \arg \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{x \in \mathcal{U}} \left(f^{\boldsymbol{u}}(x) - f(x) \right)^2$$

select new example that leads to greatest change in interpolating function *on the dataset*

Max-Min RKHS norm vs. Data-based norm

$$\boldsymbol{u}^{\star} = \arg \max_{\boldsymbol{u} \in U} \min \left\{ \|\boldsymbol{f}_{-}^{\boldsymbol{u}}\|, \|\boldsymbol{f}_{+}^{\boldsymbol{u}}\| \right\} \qquad \boldsymbol{u}^{\star} = \arg \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{x \in \mathcal{U}} \left(\boldsymbol{f}^{\boldsymbol{u}}(x) - \boldsymbol{f}(x) \right)^{2}$$

selection using on data-based norm strikes balance between focusing boundary and exploring more globally

Min-Max and Data-Based Criteria

data-based criterion has more graceful error decay

Cluster-Seeking Nature of Data-Based Criterion

$$\boldsymbol{u}^{\star} = \arg \max_{\boldsymbol{u} \in U} \min \left\{ \left\| \boldsymbol{f}_{-}^{\boldsymbol{u}} \right\|, \left\| \boldsymbol{f}_{+}^{\boldsymbol{u}} \right\| \right\} \qquad \boldsymbol{u}^{\star} = \arg \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{x \in \mathcal{U}} \left(f^{\boldsymbol{u}}(x) - f(x) \right)^{2}$$

focuses more on finding boundaries

focuses more on finding clusters

MNIST Experiment using Laplace Kernel

7210414959

Conclusions

- theory and methods of active learning are well-developed in the classical statistical learning framework (e.g., VC theory)
- classical theory may not be applicable in overparameterized regime
- new framework for active learning based on minimum norm interpolators shows promise in theory and practice, for both kernel machines and neural networks
- many opportunities to develop new theory for modern deep learning methods and new computationally efficient algorithms for active learning

Thanks!

slides: http://nowak.ece.wisc.edu/ActiveML.html

Recommended Reading

Dasgupta and Hsu. "Hierarchical sampling for active learning." ICML 2008

Zhu, Xiaojin, John Lafferty, and Zoubin Ghahramani. "Combining active learning and semisupervised learning using gaussian fields and harmonic functions." *ICML 2003 workshop on the continuum from labeled to unlabeled data in machine learning and data mining*. Vol. 3. 2003.

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. "Understanding deep learning requires rethinking generalization." *arXiv preprint arXiv:1611.03530* (2016).

Dasarathy, Gautam, Robert Nowak, and Xiaojin Zhu. "S2: An efficient graph based active learning algorithm with application to nonparametric classification." *Conference on Learning Theory*. 2015.

Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal. "Reconciling modern machine learning and the bias-variance trade-off." *arXiv preprint arXiv:1812.11118* (2018).

Tong, Simon, and Daphne Koller. "Support vector machine active learning with applications to text classification." *Journal of machine learning research* 2.Nov (2001): 45-66.

Gal, Yarin, Riashat Islam, and Zoubin Ghahramani. "Deep bayesian active learning with image data." *Proceedings of the 34th International Conference on Machine Learning-Volume 70*. JMLR. org, 2017.

Sener, Ozan, and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach." *arXiv preprint arXiv:1708.00489* (2017).

Savarese, Pedro, Itay Evron, Daniel Soudry, and Nathan Srebro. "How do infinite width bounded norm networks look in function space?." *arXiv preprint arXiv:1902.05040* (2019).

Mina Karzand and RN. "Active Learning in the Overparameterized and Interpolating Regime." *arXiv preprint arXiv:1905.12782* (2019).