Part 3: Beyond Disagreement-Based Active Learning – Current Directions

- Subregion-Based Active Learning
- Margin-Based Active Learning: Linear Separators
- Shattering-Based Active Learning
- Distribution-Free Analysis, Optimality
- TicToc: Adapting to Heterogeneous Noise
- Tsybakov Noise

Tutorial on Active Learning: Theory to Practice

Steve Hanneke

Toyota Technological Institute at Chicago steve.hanneke@gmail.com

Robert Nowak

University of Wisconsin - Madison rdnowak@wisc.edu

ICML | 2019

Thirty-sixth International Conference on Machine Learning

Zhang & Chaudhuri, 2014

$\mathrm{DIS}(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

 $\begin{array}{l} \boldsymbol{A^2} \ (\textbf{Agnostic Active}) \\ \hline \text{for } t = 1, 2, \dots \ (\text{til stopping-criterion}) \\ 1. \ \textbf{sample } 2^t \ \text{unlabeled points } S \\ 2. \ \textbf{label points in } Q = \text{DIS}(\mathcal{H}) \cap S \\ 3. \ \textbf{optimize } \hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f) \\ 4. \ \textbf{reduce } \mathcal{H}: \ \text{remove all } f \ \text{with } \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|} \\ \textbf{output final } \hat{f} \end{array}$

Zhang & Chaudhuri, 2014

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

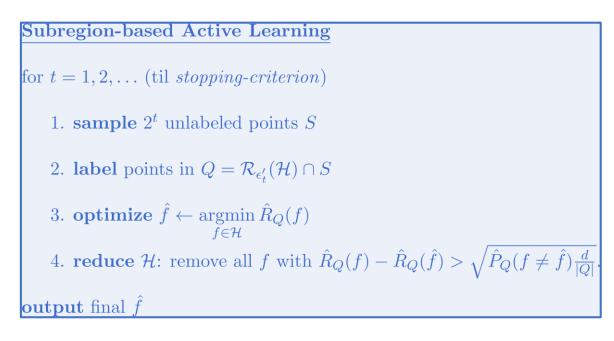
Subregion-based Active Learning
for $t = 1, 2, \dots$ (til stopping-criterion)
1. sample 2^t unlabeled points S
2. label points in $Q = \mathcal{R}_{\epsilon'_t}(\mathcal{H}) \cap S$
3. optimize $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
4. reduce \mathcal{H} : remove all f with $\hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{ Q }}$.
output final \hat{f}

Instead, pick region $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Pick ϵ' carefully each round, $R(\hat{f}) - R(f^*) \leq \epsilon$ at end

e.g., Bounded noise: $\epsilon' \propto d2^{-t}$

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$



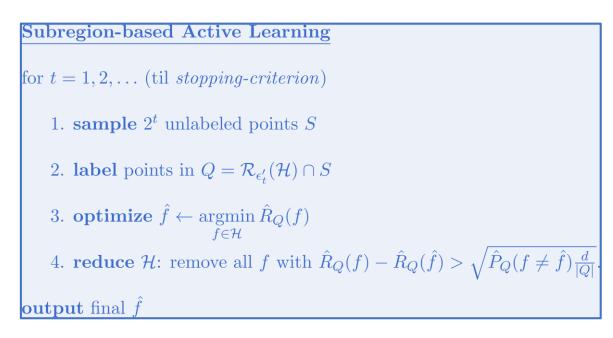
Pick region $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Zhang & Chaudhuri, 2014

$$\varphi_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathcal{B}(f^*, r)))}{r}$$

<u>Theorem</u>: with **Bounded noise**, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$



Zhang & Chaudhuri, 2014

Pick region
$$\mathcal{R}_{\epsilon'}(\mathcal{H})$$
 s.t.
 $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'$

$$\varphi_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathcal{B}(f^*, r)))}{r}$$

<u>Theorem</u>: with **Bounded noise**, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels

 $\approx \varphi_c d \log\left(\frac{1}{\epsilon}\right)$ Agnostic case: $\varphi'_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathbb{B}(f^*, 2\beta + r)))}{2\beta + r}$ Theorem: $R(\hat{f}) \leq R(f^*) + \epsilon \text{ using } \# \text{ labels}$ $\approx \varphi'_c d \frac{\beta^2}{\epsilon^2}$

Zhang & Chaudhuri, 2014

How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

- $\mathcal{R}_{\epsilon'}(\mathcal{H}) = \mathrm{DIS}(\mathcal{H})$ works
- Empirically (Zhang & Chaudhuri, 2014)
- Nice structure: e.g., Linear separators

Pick region $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

$$\varphi_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathcal{B}(f^*, r)))}{r}$$

<u>Theorem</u>: with Bounded noise, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels

Zhang & Chaudhuri, 2014

How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

- $\mathcal{R}_{\epsilon'}(\mathcal{H}) = \mathrm{DIS}(\mathcal{H})$ works
- Empirically (Zhang & Chaudhuri, 2014)
- Nice structure: e.g., Linear separators Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...)

Pick region $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

$$\varphi_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathcal{B}(f^*, r)))}{r}$$

<u>Theorem</u>: with Bounded noise, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels

Zhang & Chaudhuri, 2014

How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

• Nice structure: e.g., Linear separators

Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...)

Pick region
$$\mathcal{R}_{\epsilon'}(\mathcal{H})$$
 s.t.
 $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'$

$$\varphi_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathcal{B}(f^*, r)))}{r}$$

<u>Theorem</u>: with Bounded noise, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels

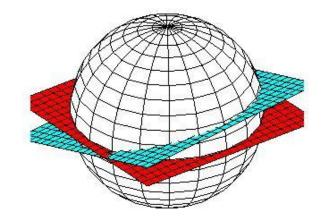
How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

• Nice structure: e.g., Linear separators

Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...) **Pick region** $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Uniform P_X on *d*-dim sphere

For $w \in B(w^*, r)$, **project** to $Span(w, w^*)$



How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

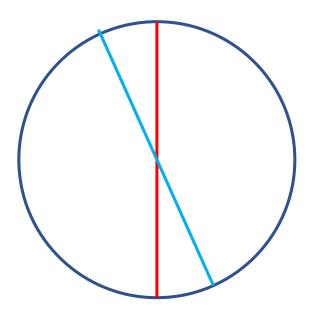
• Nice structure: e.g., Linear separators

Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...) **Pick region** $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Uniform P_X on d-dim sphere

For $w \in B(w^*, r)$, **project** to $Span(w, w^*)$

Most projected prob mass toward middle



How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

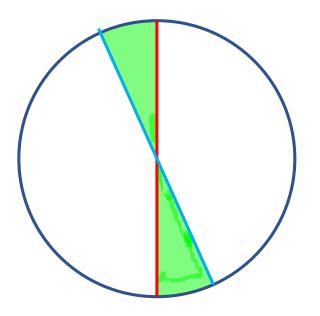
• Nice structure: e.g., Linear separators

Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...) **Pick region** $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Uniform P_X on d-dim sphere

For $w \in B(w^*, r)$, **project** to $Span(w, w^*)$

Most projected prob mass toward middle



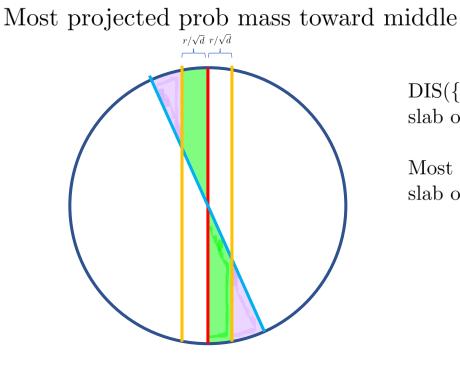
How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

• Nice structure: e.g., Linear separators

Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...) **Pick region** $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Uniform P_X on d-dim sphere

For $w \in B(w^*, r)$, **project** to $Span(w, w^*)$



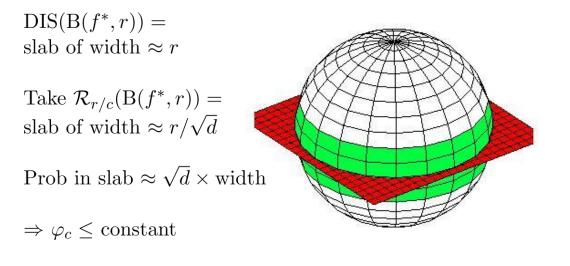
 $DIS(\{w, w^*\}) in$
slab of width $\approx r$

Most of its prob in slab of width $\approx r/\sqrt{d}$

How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

• Nice structure: e.g., Linear separators

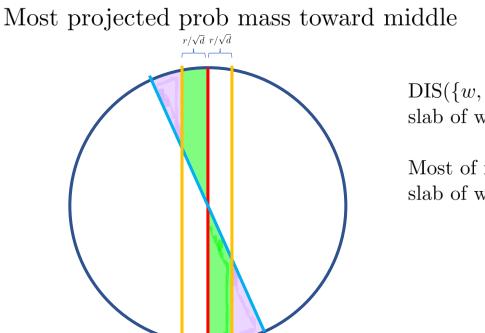
Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan, Broder, Zhang, 2007; ...)



Pick region $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

Uniform P_X on d-dim sphere

For $w \in B(w^*, r)$, project to $Span(w, w^*)$



 $DIS(\{w, w^*\})$ in slab of width $\approx r$

Most of its prob in slab of width $\approx r/\sqrt{d}$

How to find such an $\mathcal{R}_{\epsilon'}(\mathcal{H})$?

• Nice structure: e.g., Linear separators

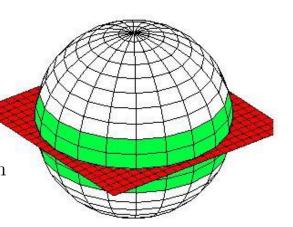
Margin-based Active Learning (Dasgupta, Kalai, Monteleoni, 2005; Balcan

 $DIS(B(f^*, r)) =$
slab of width $\approx r$

Take $\mathcal{R}_{r/c}(\mathbf{B}(f^*, r)) =$ slab of width $\approx r/\sqrt{d}$

Prob in slab $\approx \sqrt{d} \times \text{width}$

 $\Rightarrow \varphi_c \leq \text{constant}$



Pick region $\mathcal{R}_{\epsilon'}(\mathcal{H})$ s.t. $\forall f, f' \in \mathcal{H}, P_X(x \notin \mathcal{R}_{\epsilon'}(\mathcal{H}) : f(x) \neq f'(x)) \leq \epsilon'.$

$$\varphi_c := \sup_{r > \epsilon} \frac{P_X(\mathcal{R}_{r/c}(\mathcal{B}(f^*, r)))}{r}$$

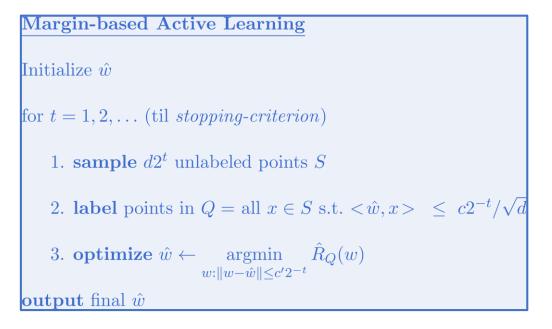
<u>Theorem</u>: with **Bounded noise**, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels $\approx \varphi_c d \log(\frac{1}{\epsilon})$

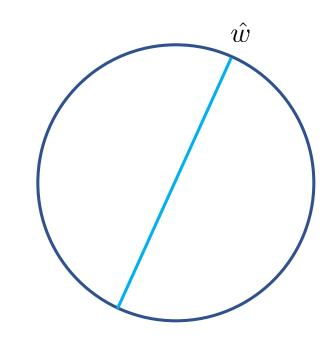
 $\Rightarrow \# \text{ labels} \approx d \log(\frac{1}{\epsilon}) \text{ suffice}$

Recall:
Passive
$$\approx \frac{d}{\epsilon}$$

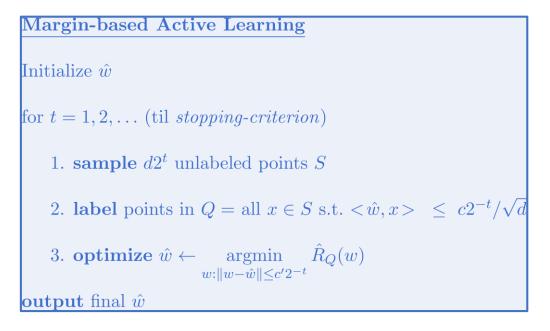
Comparison:

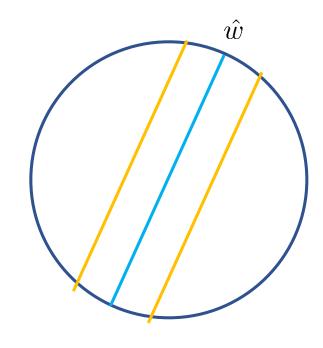
Recall $\theta \approx \sqrt{d}$ $\Rightarrow A^2 \ \# \ \text{labels} \approx d^{3/2} \log(\frac{1}{\epsilon})$



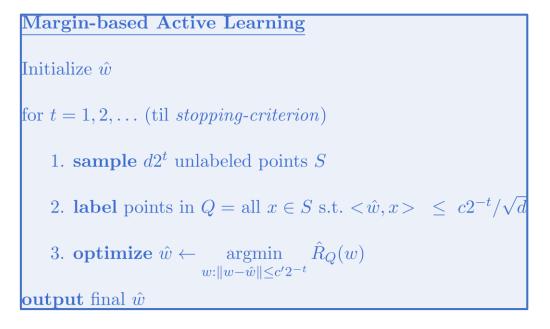


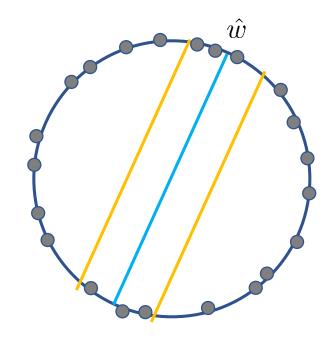
Uniform P_X on d-dim sphere



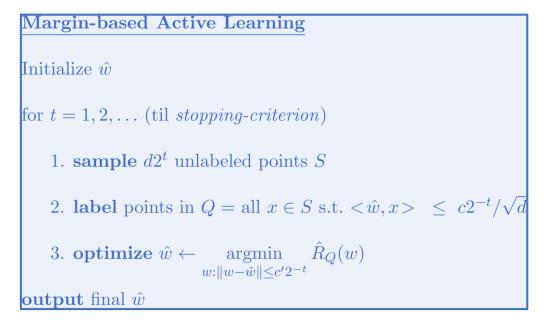


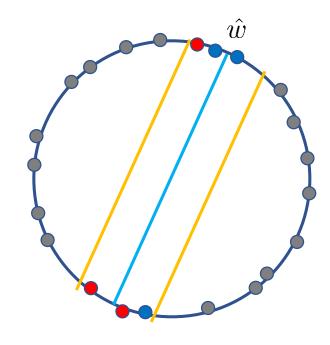
Uniform P_X on d-dim sphere



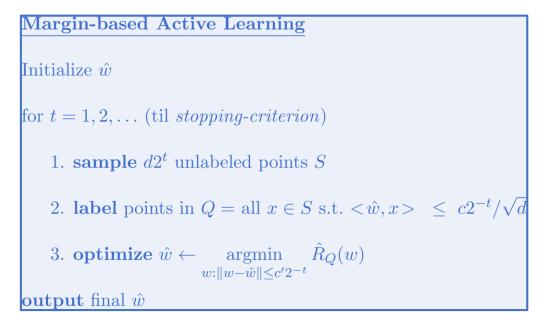


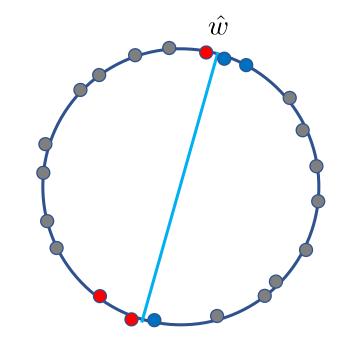
Uniform P_X on d-dim sphere



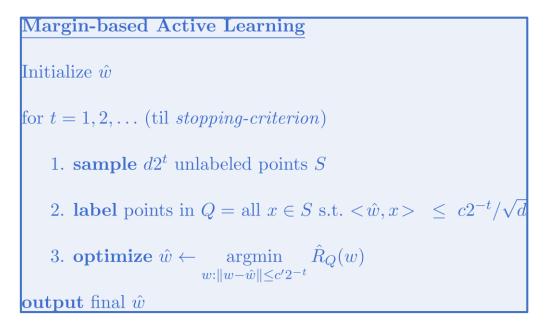


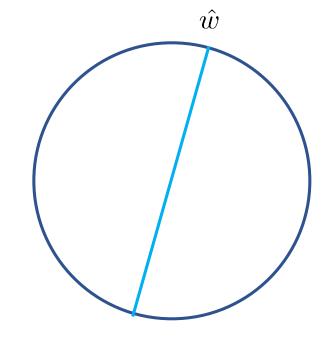
Uniform P_X on d-dim sphere





Uniform P_X on d-dim sphere





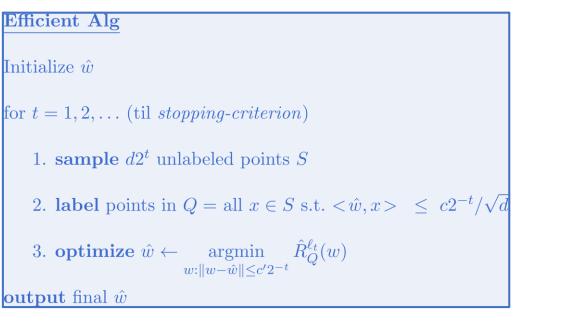
Uniform P_X on *d*-dim sphere **Theorem:** with **Bounded noise**, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels $\approx d \log(\frac{1}{\epsilon})$

(also works for isotropic log-concave distributions)

Computational Efficiency

(Awasthi, Balcan, Long, 2014,...)

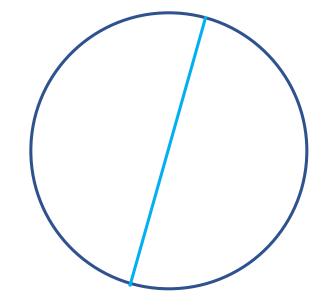
Uniform P_X on d-dim sphere



Surrogate loss

$$\ell_t(<\!w,x\!>,y) \approx \max\{1 - 2^t \sqrt{d}(y\!<\!w,x\!>),0\}$$

Hinge loss slope changes each round



Computational Efficiency

(Awasthi, Balcan, Long, 2014,...)

Uniform P_X on d-dim sphere

Theorem: with **Bounded noise**, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels $\approx d \log(\frac{1}{\epsilon})$ and running in polynomial time

Efficient Alg

Initialize \hat{w}

for $t = 1, 2, \dots$ (til stopping-criterion)

1. sample $d2^t$ unlabeled points S

2. label points in
$$Q = \text{all } x \in S \text{ s.t. } \langle \hat{w}, x \rangle \leq c 2^{-t} / \sqrt{c}$$

3. optimize
$$\hat{w} \leftarrow \underset{w:\|w-\hat{w}\| \leq c'2^{-t}}{\operatorname{argmin}} \hat{R}_Q^{\ell_t}(w)$$

output final \hat{w}

Surrogate loss

$$\ell_t(<\!w,x\!>,y) \approx \max\{1 - 2^t \sqrt{d}(y\!<\!w,x\!>),0\}$$

Hinge loss slope changes each round

Computational Efficiency

(Awasthi, Balcan, Long, 2014,...)

for $t = 1, 2, \dots$ (til stopping-criterion) 1. sample $d2^t$ unlabeled points S 2. label points in $Q = \text{all } x \in S \text{ s.t. } \langle \hat{w}, x \rangle \leq c 2^{-t} / \sqrt{d}$ 3. optimize $\hat{w} \leftarrow \underset{w:\|w-\hat{w}\| \le c'2^{-t}}{\operatorname{argmin}} \hat{R}_Q^{\ell_t}(w)$

output final \hat{w}

Efficient Alg

Initialize \hat{w}

Surrogate loss

$$\ell_t(<\!w,x\!>,y) \approx \max\{1 - 2^t \sqrt{d}(y\!<\!w,x\!>),0\}$$

Hinge loss slope **changes** each round

Uniform P_X on d-dim sphere

Theorem: with Bounded noise, $R(\hat{f}) \leq R(f^*) + \epsilon$ using # labels $\approx d \log(\frac{1}{\epsilon})$ and running in polynomial time

Theorem: with **Agnostic** case, $R(\hat{f}) \leq CR(f^*)$ in polynomial time

(was first alg. known to achieve these; even passively)

(also works for isotropic log-concave distributions)

Up Next: Shattering-Based Active Learning

(Hanneke, 2009, 2012)

Shattering-Based Active Learning

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

 $DIS(\mathcal{H})$ checks for shattering 1 point.

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

 $\frac{A^{2} \text{ (Agnostic Active)}}{\text{for } t = 1, 2, \dots \text{ (til stopping-criterion)}} \\
1. \text{ sample } 2^{t} \text{ unlabeled points } S \\
2. \text{ label points in } Q = \text{DIS}(\mathcal{H}) \cap S \\
3. \text{ optimize } \hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_{Q}(f) \\
4. \text{ reduce } \mathcal{H}: \text{ remove all } f \text{ with } \hat{R}_{Q}(f) - \hat{R}_{Q}(\hat{f}) > \sqrt{\hat{P}_{Q}(f \neq \hat{f})} \frac{d}{|Q|}.$ output final \hat{f}

 $DIS(\mathcal{H})$ checks for shattering 1 point.

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning for t = 1, 2, ... (til stopping-criterion) 1. sample 2^t unlabeled points S2. label points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$ 3. optimize $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$ 4. reduce \mathcal{H} : remove all f with $\hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}$ output final \hat{f}

 $DIS(\mathcal{H})$ checks for shattering 1 point.

(Hanneke, 2009, 2012)

Shattering-Based Active Learning

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning	
for $t = 1, 2, \dots$ (til <i>stopping-criterion</i>)	
1. sample 2^t unlabeled points S]
2. label points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$]
3. add the remaining points $x \in S$ to Q with label $\hat{y}_x := \operatorname*{argmax}_y P_X^k (A \in \mathcal{X}^k : \mathcal{H}_{x,y} \text{ shatters } A \mathcal{H} \text{ shatters } A) \blacktriangleleft$]
4. optimize $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$	
5. reduce \mathcal{H} : remove all f with $\hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{ Q }}$.	
output final \hat{f}	

 $DIS(\mathcal{H})$ checks for shattering 1 point.

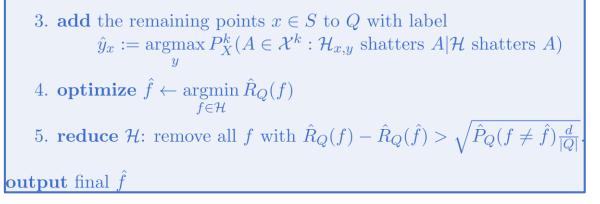
Denote
$$\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

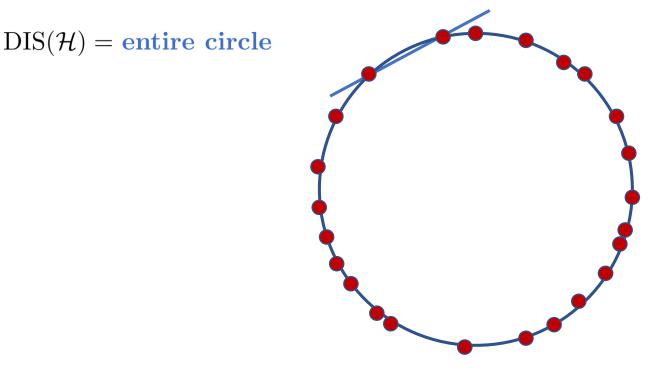
Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$



Example: Linear separators, Uniform P_X on circle Suppose true labels are **all** -1



Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

1. sample 2^t unlabeled points S

2. label points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

3. add the remaining points x ∈ S to Q with label ŷ_x := argmax P^k_X(A ∈ X^k : H_{x,y} shatters A|H shatters A)
4. optimize f̂ ← argmin R̂_Q(f)
5. reduce H: remove all f with R̂_Q(f) - R̂_Q(f̂) > √P̂_Q(f ≠ f̂) d/|Q|
output final f̂ **Example:** Linear separators, Uniform P_X on circle Suppose true labels are **all** -1

DIS $(\mathcal{H}) =$ entire circle Try k = 1Given sample xRand x' probably not close Can't shatter $\{x, x'\}$ without a lot of points wrong So won't query x

Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

1. sample 2^t unlabeled points S

2. **label** points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

3. add the remaining points x ∈ S to Q with label ŷ_x := argmax P^k_X(A ∈ X^k : H_{x,y} shatters A|H shatters A) y
4. optimize f̂ ← argmin R̂_Q(f) f∈H
5. reduce H: remove all f with R̂_Q(f) - R̂_Q(f) > √P̂_Q(f ≠ f̂) d/|Q|
output final f̂

Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$

Example: Linear separators, Uniform P_X on circle Suppose true labels are **all** -1

 $DIS(\mathcal{H}) = entire circle$ Try k = 1random x' $(A = \{x'\})$ Given sample xRand x' probably not close Can't shatter $\{x, x'\}$ sample point xwithout a lot of points wrong So won't query x $DIS(\mathcal{H}_{x,-1})$ still entire circle (minus x) $DIS(\mathcal{H}_{x,+1})$ small region $\Rightarrow \hat{y}_x = -1$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

1. sample 2^t unlabeled points S

2. **label** points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

3. add the remaining points x ∈ S to Q with label ŷ_x := argmax P^k_X(A ∈ X^k : H_{x,y} shatters A|H shatters A) y
4. optimize f̂ ← argmin R̂_Q(f) f∈H
5. reduce H: remove all f with R̂_Q(f) - R̂_Q(f) > √P̂_Q(f ≠ f̂) d/|Q| output final f̂

Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$

Example: Linear separators, Uniform P_X on circle Suppose true labels are **all** -1

 $DIS(\mathcal{H}) = entire circle$ Try k = 1random x' $(A = \{x'\})$ Given sample xRand x' probably not close Can't shatter $\{x, x'\}$ sample point xwithout a lot of points wrong So won't query x $DIS(\mathcal{H}_{x,-1})$ still entire circle (minus x) $DIS(\mathcal{H}_{x,+1})$ small region $\Rightarrow \hat{y}_x = -1$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

1. sample 2^t unlabeled points S

2. **label** points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

3. add the remaining points x ∈ S to Q with label ŷ_x := argmax P^k_X(A ∈ X^k : H_{x,y} shatters A|H shatters A) y
4. optimize f̂ ← argmin R̂_Q(f) f∈H
5. reduce H: remove all f with R̂_Q(f) - R̂_Q(f) > √P̂_Q(f ≠ f̂) d/|Q| output final f̂

Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$

Example: Linear separators, Uniform P_X on circle Suppose true labels are **all** -1

 $DIS(\mathcal{H}) = entire circle$ Try k = 1random x' $(A = \{x'\})$ Given sample xRand x' probably not close Can't shatter $\{x, x'\}$ sample point xwithout a lot of points wrong So won't query x $DIS(\mathcal{H}_{x,-1})$ still entire circle (minus x) $DIS(\mathcal{H}_{x,+1})$ small region $\Rightarrow \hat{y}_x = -1$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = \text{all } x \in S \text{ s.t.}$ $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

3. add the remaining points x ∈ S to Q with label ŷ_x := argmax P^k_X(A ∈ X^k : H_{x,y} shatters A|H shatters A)
4. optimize f̂ ← argmin R̂_Q(f) f∈H
5. reduce H: remove all f with R̂_Q(f) - R̂_Q(f) > √P̂_Q(f ≠ f̂) d/|Q|
output final f̂ Generally, need to try various k and pick one (See the papers)

Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

1. sample 2^t unlabeled points S

01

2. **label** points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

Generally, need to try various k and pick one (See the papers)

$$\begin{split} \theta^{(k)} &:= \sup_{r > \epsilon} \frac{P_X^k(A \in \mathcal{X}^k : \mathbb{B}(f^*, r) \text{ shatters } A)}{r} \\ \tilde{d} &:= \min \left\{ k : P_X^k(A \in \mathcal{X}^k : \mathbb{B}(f^*, r) \text{ shatters } A) \xrightarrow[r \to 0]{} \right\} \\ \tilde{\theta} &:= \theta^{(\tilde{d})} \\ \hline \mathbf{Theorem:} \text{ For Bounded noise, } R(\hat{f}) \leq R(f^*) + \epsilon \\ &\text{with } \# \text{ labels} \\ &\approx C \tilde{\theta} d \log(\frac{1}{\epsilon}) \end{split}$$

Denoting $\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$ Note: $\tilde{\theta} \ll \frac{1}{\epsilon}$

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. **label** points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

Denoting
$$\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$$

Generally, need to try various k and pick one (See the papers)

$$\begin{split} \theta^{(k)} &:= \sup_{r > \epsilon} \frac{P_X^k (A \in \mathcal{X}^k : \mathbb{B}(f^*, r) \text{ shatters } A)}{r} \\ \tilde{d} &:= \min \Big\{ k : P_X^k (A \in \mathcal{X}^k : \mathbb{B}(f^*, r) \text{ shatters } A) \xrightarrow[r \to 0]{} \\ \tilde{\theta} &:= \theta^{(\tilde{d})} \\ \hline \mathbf{Theorem:} \text{ For Bounded noise, } R(\hat{f}) \leq R(f^*) + \epsilon \\ &\text{with } \# \text{ labels} \\ &\approx C \tilde{\theta} d \log(\frac{1}{\epsilon}) \end{split}$$

Note: $\theta \ll \frac{1}{\epsilon}$ In the example: $\tilde{\theta} = 2, \ \theta = \frac{1}{\epsilon}$

Shattering-Based Active Learning

Recall: \mathcal{H} shatters x_1, \ldots, x_k if all 2^k classifications realized by \mathcal{H}

Shattering-based Active Learning

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. **label** points in $Q = \text{all } x \in S$ s.t. $P_X^k(A \in \mathcal{X}^k : \mathcal{H} \text{ shatters } A \cup \{x\} | \mathcal{H} \text{ shatters } A) \geq \frac{1}{2}$

Denoting
$$\mathcal{H}_{x,y} := \{h \in \mathcal{H} : h(x) = y\}$$

Generally, need to try various k and pick one (See the papers)

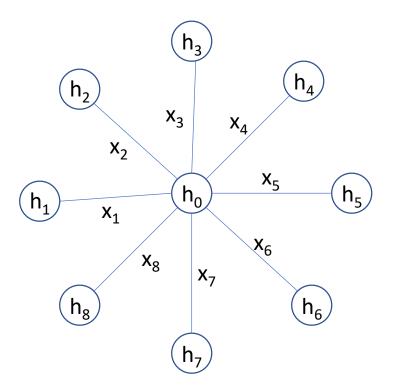
$$\begin{aligned} \theta^{(k)} &:= \sup_{r > \epsilon} \frac{P_X^k (A \in \mathcal{X}^k : \mathbb{B}(f^*, r) \text{ shatters } A)}{r} \\ \tilde{d} &:= \min \left\{ k : P_X^k (A \in \mathcal{X}^k : \mathbb{B}(f^*, r) \text{ shatters } A) \xrightarrow[r \to 0] \right\} \\ \tilde{\theta} &:= \theta^{(\tilde{d})} \\ \hline \tilde{\theta} &:= \theta^{(\tilde{d})} \\ \hline \text{Theorem: For Bounded noise, } R(\hat{f}) \leq R(f^*) + \epsilon \\ \text{with } \# \text{ labels} \\ &\approx C \tilde{\theta} d \log(\frac{1}{\epsilon}) \\ \hline \text{Note: } \tilde{\theta} \ll \frac{1}{\epsilon} \qquad (\text{may depend on } f^*, P_X) \\ \text{In the example: } \tilde{\theta} = 2, \ \theta = \frac{1}{\epsilon} \end{aligned}$$

Up Next: Distribution-free Analysis

 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

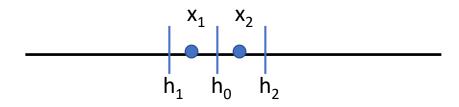


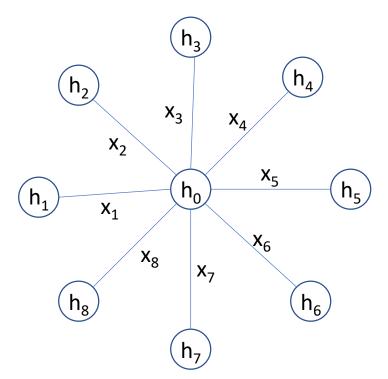
 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

Example: Thresholds: $f(x) = \mathbb{I}[x \ge t]$.



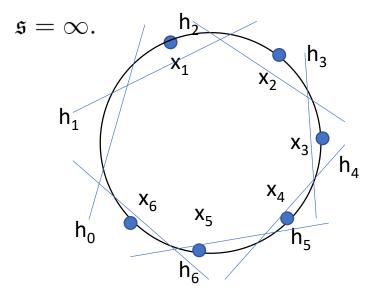


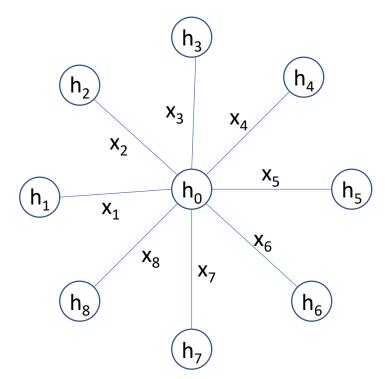
 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

Example: Linear Separators in \mathbb{R}^n , $n \ge 2$:



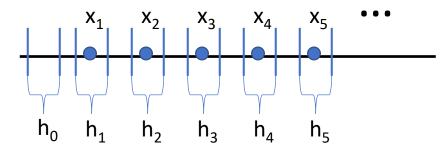


 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

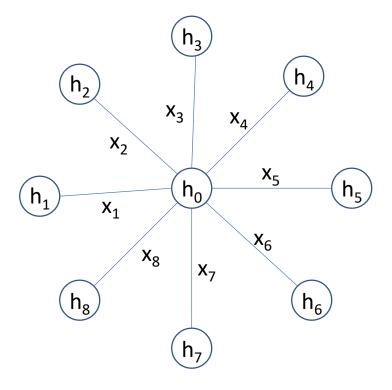
Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

```
Example: Intervals: x \mapsto \mathbb{I}[a \le x \le b]
```

Intervals of width w (b - a = w > 0) on $\mathcal{X} = [0, 1]$: $\mathfrak{s} \approx \lfloor \frac{1}{w} \rfloor$.



 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

Theorem:
$$\sup_{P_X} \sup_{f^* \in \mathcal{H}} \theta = \sup_{P_X} \sup_{f^* \in \mathcal{H}} \varphi_c = \sup_{P_X} \sup_{f^* \in \mathcal{H}} \tilde{\theta} = \min\{\mathfrak{s}, \frac{1}{\epsilon}\} =: \mathfrak{s}_{\epsilon}$$

Corollary:

Bounded noise # labels $\approx \mathfrak{s}_{\epsilon} d \log(\frac{1}{\epsilon})$ Agnostic ($\beta = R(f^*)$) # labels $\approx \mathfrak{s}_{\beta} d \frac{\beta^2}{\epsilon^2}$

Achieved by A^2

h₃ h₄ h_2 X₃ X₄ X_2 Χ₅ ۰ h₀ , h₅ h₁ ' **X**₁ ×₆ X₈ X_7 h₆ h₈ h_7

(Hanneke & Yang, 2015; Hanneke, 2016)

 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

Theorem:
$$\sup_{P_X} \sup_{f^* \in \mathcal{H}} \theta = \sup_{P_X} \sup_{f^* \in \mathcal{H}} \varphi_c = \sup_{P_X} \sup_{f^* \in \mathcal{H}} \tilde{\theta} = \min\{\mathfrak{s}, \frac{1}{\epsilon}\} =: \mathfrak{s}_{\epsilon}$$

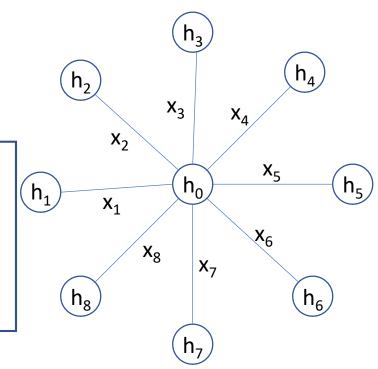
Corollary:

Bounded noise # labels $\approx \mathfrak{s}_{\epsilon} d \log(\frac{1}{\epsilon})$ Agnostic ($\beta = R(f^*)$) # labels $\approx \mathfrak{s}_{\beta} d \frac{\beta^2}{\epsilon^2}$

Achieved by A^2

Different alg., Bounded noise # labels $\approx \mathfrak{s}_{\epsilon/d} \log(\frac{1}{\epsilon})$

Near-matching **lower bound**: $\mathfrak{s}_{\epsilon} + d \log(\frac{1}{\epsilon})$ (Hanneke & Yang, 2015; Hanneke, 2016)



 $\theta, \varphi, \tilde{\theta}$ depend on f^*, P_X .

Can we do sample complexity analysis **without** distribution-dependence?

Definition: The star number \mathfrak{s} is the largest k s.t. $\exists h_0, h_1, \ldots, h_k \in \mathcal{H}$, $\exists x_1, \ldots, x_k \in \mathcal{X}$ s.t. $\forall i \in \{1, \ldots, k\}, \{x_j : h_i(x_j) \neq h_0(x_j)\} = \{x_i\}.$

Theorem: $\sup_{P_X} \sup_{f^* \in \mathcal{H}} \theta = \sup_{P_X} \sup_{f^* \in \mathcal{H}} \varphi_c = \sup_{P_X} \sup_{f^* \in \mathcal{H}} \tilde{\theta} = \min\{\mathfrak{s}, \frac{1}{\epsilon}\} =: \mathfrak{s}_{\epsilon}$

Corollary:

Bounded noise # labels $\approx \mathfrak{s}_{\epsilon} d \log(\frac{1}{\epsilon})$ Agnostic ($\beta = R(f^*)$) # labels $\approx \mathfrak{s}_{\beta} d \frac{\beta^2}{\epsilon^2}$

Achieved by A^2

Different alg., Bounded noise # labels $\approx \mathfrak{s}_{\epsilon/d} \log(\frac{1}{\epsilon})$

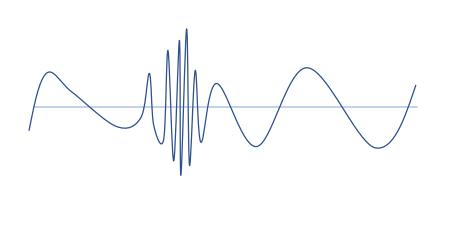
Near-matching **lower bound**: $\mathfrak{s}_{\epsilon} + d \log(\frac{1}{\epsilon})$ $\begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{Open Question:} \\ \hline \text{Agnostic } (\beta = R(f^*)) \\ \# \text{ labels} \\ \approx d \frac{\beta^2}{\epsilon^2} + \mathfrak{s}_{\epsilon/d} \log(\frac{1}{\epsilon}) \end{array} \end{array}$

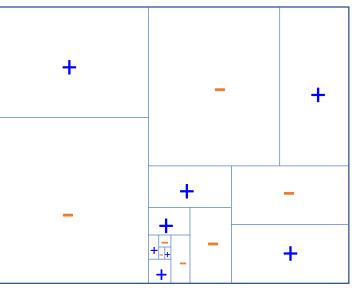
lower bound: $d\frac{\beta^2}{\epsilon^2} + \mathfrak{s}_{\epsilon} + d\log(\frac{1}{\epsilon})$

(Hanneke & Yang, 2015; Hanneke, 2016)

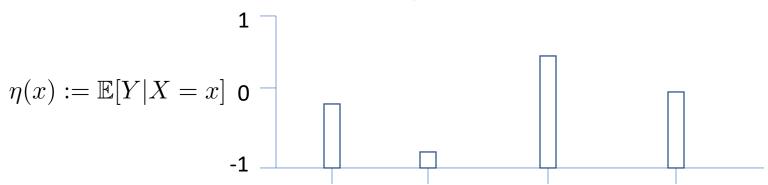
Adapting to Heterogeneous Noise

So far: Active learning for spatial heterogeneity of **opt function**:



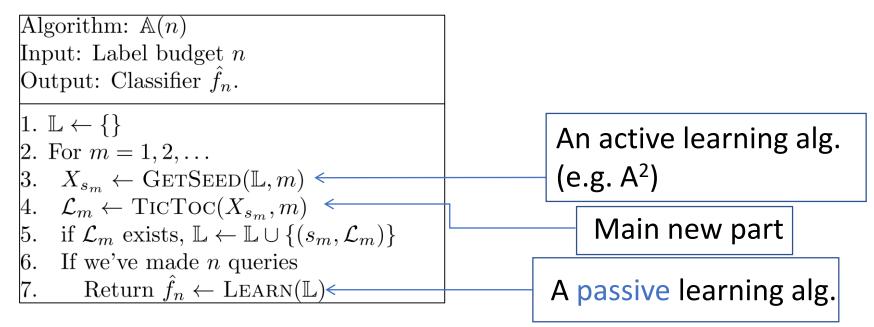


Also consider: Spatial heterogeneity of **noise**:



(Hanneke & Yang, 2015)

Active Learning with TicToc



Active Learning with TicToc

Algorithm: $\mathbb{A}(n)$ Input: Label budget nOutput: Classifier \hat{f}_n .

1. $\mathbb{L} \leftarrow \{\}$ 2. For m = 1, 2, ...3. $X_{s_m} \leftarrow \text{GETSEED}(\mathbb{L}, m)$ 4. $\mathcal{L}_m \leftarrow \text{TICTOC}(X_{s_m}, m)$ 5. if \mathcal{L}_m exists, $\mathbb{L} \leftarrow \mathbb{L} \cup \{(s_m, \mathcal{L}_m)\}$ 6. If we've made n queries 7. Return $\hat{f}_n \leftarrow \text{LEARN}(\mathbb{L})$ Denote $\eta(x) = \mathbb{E}[Y|X = x]$ Suppose f^* is the **global** optimal function: $f^*(x) = \operatorname{sign}(\eta(x))$

 $\frac{\text{TicToc}(X, m)}{\text{Query } X \text{ (or nearby) to try to guess } f^*(X)}$ If can figure it out, return that label If can't figure it out by τ_m queries give up (don't return a label)

Focus queries on less-noisy points.

Double advantage:

• Focusing on the points we actually care about:

 $R(f|x) - R(f^{\star}|x) = |\eta(x)|\mathbb{I}[f(x) \neq f^{\star}(x)]$

(small $|\eta(x)| \Rightarrow$ not much effect on R(f|x) if $f(x) = f^*(x)$ or not).

• And those points require fewer queries to determine $f^{\star}(X_i)!$

 $\sim \frac{1}{\eta(X_i)^2}$ queries to determine $f^*(X_i)$.

Active Learning with TicToc

Algorithm: $\mathbb{A}(n)$ Input: Label budget nOutput: Classifier \hat{f}_n .

1. $\mathbb{L} \leftarrow \{\}$ 2. For m = 1, 2, ...3. $X_{s_m} \leftarrow \text{GETSEED}(\mathbb{L}, m)$ 4. $\mathcal{L}_m \leftarrow \text{TICTOC}(X_{s_m}, m)$ 5. if \mathcal{L}_m exists, $\mathbb{L} \leftarrow \mathbb{L} \cup \{(s_m, \mathcal{L}_m)\}$ 6. If we've made n queries 7. Return $\hat{f}_n \leftarrow \text{LEARN}(\mathbb{L})$

Theorem: Bounded noise: # labels $\approx \mathfrak{s}_{\epsilon/d} \log(\frac{1}{\epsilon})$ Denote $\eta(x) = \mathbb{E}[Y|X = x]$ Suppose f^* is the global optimal function: $f^*(x) = \operatorname{sign}(\eta(x))$

 $\frac{\text{TicToc}(X, m)}{\text{Query } X \text{ (or nearby) to try to guess } f^*(X)}$ If can figure it out, return that label If can't figure it out by τ_m queries give up (don't return a label)

Focus queries on less-noisy points.

Double advantage:

• Focusing on the points we actually care about:

 $R(f|x) - R(f^{\star}|x) = |\eta(x)|\mathbb{I}[f(x) \neq f^{\star}(x)]$

(small $|\eta(x)| \Rightarrow$ not much effect on R(f|x) if $f(x) = f^*(x)$ or not).

• And those points require fewer queries to determine $f^{\star}(X_i)!$

 $\sim \frac{1}{\eta(X_i)^2}$ queries to determine $f^*(X_i)$.

Active Learning with TicToc

Algorithm: $\mathbb{A}(n)$ Input: Label budget nOutput: Classifier \hat{f}_n .

1. $\mathbb{L} \leftarrow \{\}$ 2. For m = 1, 2, ...3. $X_{s_m} \leftarrow \text{GETSEED}(\mathbb{L}, m)$ 4. $\mathcal{L}_m \leftarrow \text{TICTOC}(X_{s_m}, m)$ 5. if \mathcal{L}_m exists, $\mathbb{L} \leftarrow \mathbb{L} \cup \{(s_m, \mathcal{L}_m)\}$ 6. If we've made n queries 7. Return $\hat{f}_n \leftarrow \text{LEARN}(\mathbb{L})$

<u>Theorem</u>: Agnostic $(\beta = R(f^*))$ and suppose $f^* =$ global best: # labels $\approx d\frac{\beta^2}{\epsilon^2} + \mathfrak{s}_{\epsilon/d} \log(\frac{1}{\epsilon})$

Confirms agnostic sample complexity conjecture but with extra assumption $f^* =$ global opt.

Near-match lower bound: $d\frac{\beta^2}{\epsilon^2} + \mathfrak{s}_{\epsilon} + d\log(\frac{1}{\epsilon})$

Denote $\eta(x) = \mathbb{E}[Y|X = x]$ Suppose f^* is the **global** optimal function: $f^*(x) = \operatorname{sign}(\eta(x))$

 $\frac{\text{TicToc}(X, m)}{\text{Query } X \text{ (or nearby) to try to guess } f^*(X)}$ If can figure it out, return that label If can't figure it out by τ_m queries give up (don't return a label)

Focus queries on less-noisy points.

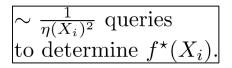
Double advantage:

• Focusing on the points we actually care about:

 $R(f|x) - R(f^{\star}|x) = |\eta(x)|\mathbb{I}[f(x) \neq f^{\star}(x)]$

(small $|\eta(x)| \Rightarrow$ not much effect on R(f|x) if $f(x) = f^*(x)$ or not).

• And those points require fewer queries to determine $f^*(X_i)!$



Principles of Active Learning

1. Query in dense regions where \hat{f} could disagree a lot with f^*

2. Query in regions with low noise

Tsybakov Noise

The alg. adapts to heterogeneity in the noise.

Let's try it with a model that explicitly describes heterogeneous noise:

Tsybakov Noise

Tsybakov Noise

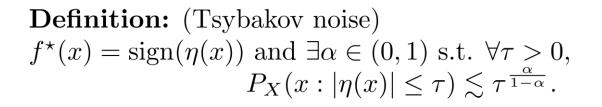
Denote $\eta(x) = \mathbb{E}[Y|X = x]$

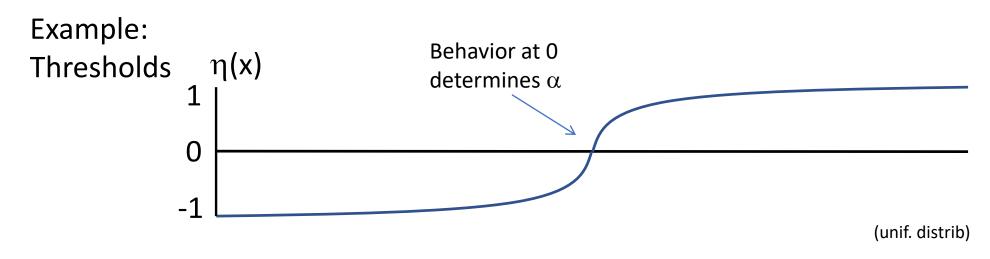
Definition: (Tsybakov noise) $f^{\star}(x) = \operatorname{sign}(\eta(x)) \text{ and } \exists \alpha \in (0,1) \text{ s.t. } \forall \tau > 0,$ $P_X(x : |\eta(x)| \le \tau) \lesssim \tau^{\frac{\alpha}{1-\alpha}}.$ (Tsybakov, 2004; Mammen & Tsybakov 1999)

(Tsybakov, 2004; Mammen & Tsybakov 1999)

Tsybakov Noise

Denote $\eta(x) = \mathbb{E}[Y|X = x]$





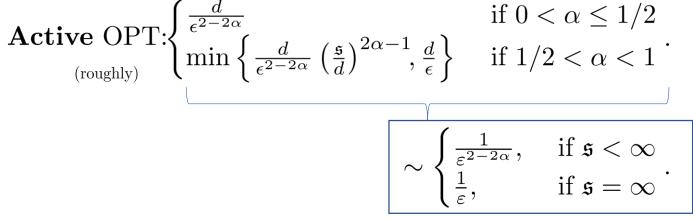
Tsybakov Noise

Denote $\eta(x) = \mathbb{E}[Y|X = x]$

Definition: (Tsybakov noise) $f^{\star}(x) = \operatorname{sign}(\eta(x)) \text{ and } \exists \alpha \in (0,1) \text{ s.t. } \forall \tau > 0,$ $P_X(x : |\eta(x)| \le \tau) \lesssim \tau^{\frac{\alpha}{1-\alpha}}.$

Passive OPT: $\tilde{\Theta}\left(\frac{d}{\epsilon^{2-\alpha}}\right)$.

(Massart & Nédélec, 2006)



(Hanneke & Yang, 2015)

Active Opt \ll Passive Opt. (always)

Conclusions

- Many proposals for going beyond Disagreement-based Active Learning
- Each exhibits improvements in certain cases
- We still don't know the **optimal agnostic active learning algorithm**

$$d\frac{\beta^2}{\epsilon^2} + \mathfrak{s}_{\epsilon/d}\log(\frac{1}{\epsilon})$$

Questions?

Further reading:

- S. Dasgupta, A. Kalai, C. Monteleoni. Analysis of perceptron-based active learning. COLT 2005.
- M. F. Balcan, A. Broder, T. Zhang. Margin based active learning. COLT 2007.
- P. Awasthi, M. F. Balcan, P. Long. Journal of the ACM, 2017.
- S. Hanneke. Theoretical Foundations of Active Learning. PhD Thesis, CMU, 2009.
- S. Hanneke. Activized learning: Transforming passive to active with improved label complexity. *Journal of Machine Learning Research*, 2012.
- C. Zhang, K. Chaudhuri. Beyond disagreement-based agnostic active learning. NeurIPS 2014.
- R. M. Castro, R. D. Nowak. Minimax bounds for active learning. IEEE Transactions on Information Theory, 2008.
- R. M. Castro, R.D. Nowak. Upper and lower error bounds for active learning. Allerton 2006.
- S. Dasgupta. Coarse sample complexity bounds for active learning. NeurIPS 2005.
- S. Hanneke, L. Yang. Minimax analysis of active learning. Journal of Machine Learning Research, 2015.
- S. Hanneke. Refined error bounds for several learning algorithms. Journal of Machine Learning Research, 2016.
- M. F. Balcan, S. Hanneke, J. Wortman Vaughan. The true sample complexity of active learning. Machine Learning, 2010.