Part 2: Theory of Active Learning General Case

- Disagreement-Based Agnostic Active Learning
- Disagreement Coefficient
- Sample Complexity Bounds

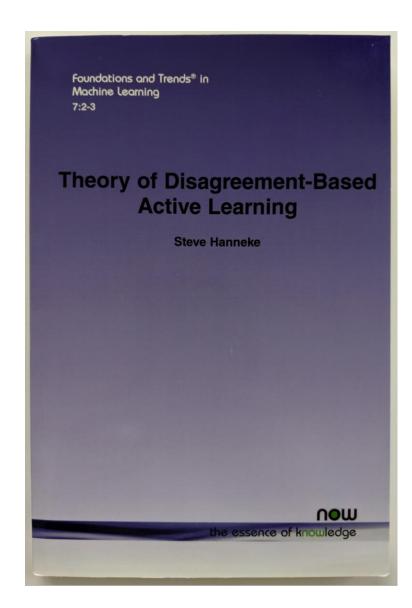
Tutorial on Active Learning: Theory to Practice

Steve Hanneke

Toyota Technological Institute at Chicago steve.hanneke@gmail.com

Robert Nowak

University of Wisconsin - Madison rdnowak@wisc.edu



Uniform Bernstein Inequality

Bernstein's inequality:

For m iid samples $\forall f, f', \text{ w.p. } 1 - \delta,$ $R(f) - R(f') \leq \hat{R}(f) - \hat{R}(f') + c\sqrt{\hat{P}(f \neq f')\frac{\log(1/\delta)}{m}} + \frac{\log(1/\delta)}{m}$

Uniform Bernstein inequality:

w.p.
$$1 - \delta$$
, $\forall f, f' \in \mathcal{H}$,

$$R(f) - R(f') \le \hat{R}(f) - \hat{R}(f') + c\sqrt{\hat{P}(f \ne f') \frac{d \log(m/\delta)}{m}} + \frac{d \log(m/\delta)}{m}$$

VC dimension

Roughly:

$$\forall f, f' \in \mathcal{H},$$

$$R(f) - R(f') \le \hat{R}(f) - \hat{R}(f') + \sqrt{\hat{P}(f \ne f') \frac{d}{m}}$$

Region of disagreement:

$$DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. optimize $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

```
for t = 1, 2, ... (til stopping\text{-}criterion)

1. \mathbf{sample}\ 2^t unlabeled points S

2. \mathbf{label}\ points \ in \ Q = \mathrm{DIS}(\mathcal{H}) \cap S

3. \mathbf{optimize}\ \hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}}\ \hat{R}_Q(f)

4. \mathbf{reduce}\ \mathcal{H}: remove all f with \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}.

\mathbf{output}\ \text{final}\ \hat{f}
```

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

```
for t = 1, 2, ... (til stopping\text{-}criterion)

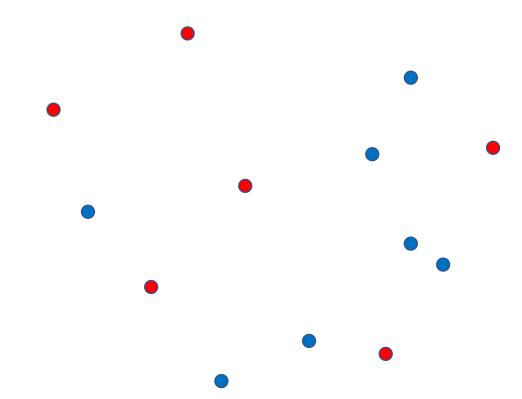
1. \mathbf{sample}\ 2^t unlabeled points S

2. \mathbf{label}\ points\ in\ Q = \mathrm{DIS}(\mathcal{H}) \cap S

3. \mathbf{optimize}\ \hat{f} \leftarrow \operatorname*{argmin}\ \hat{R}_Q(f)

4. \mathbf{reduce}\ \mathcal{H}: remove all f with \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}.

\mathbf{output}\ \text{final}\ \hat{f}
```

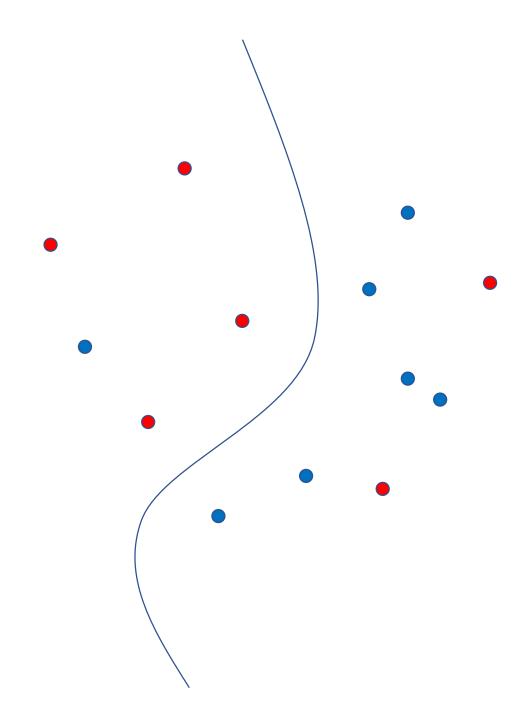


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

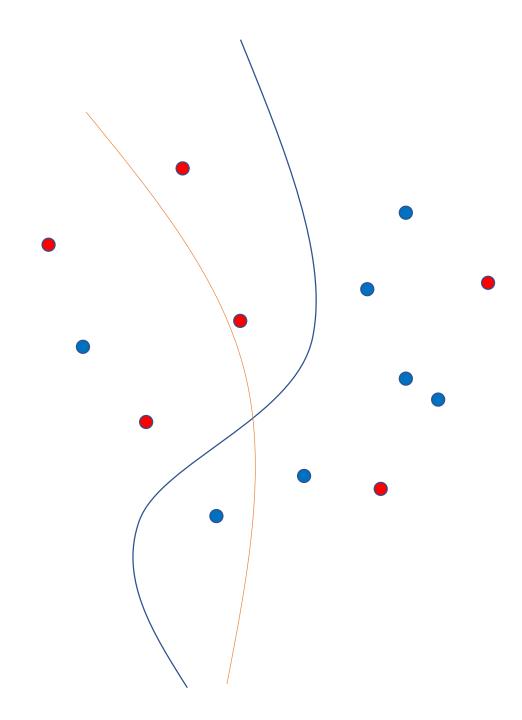


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

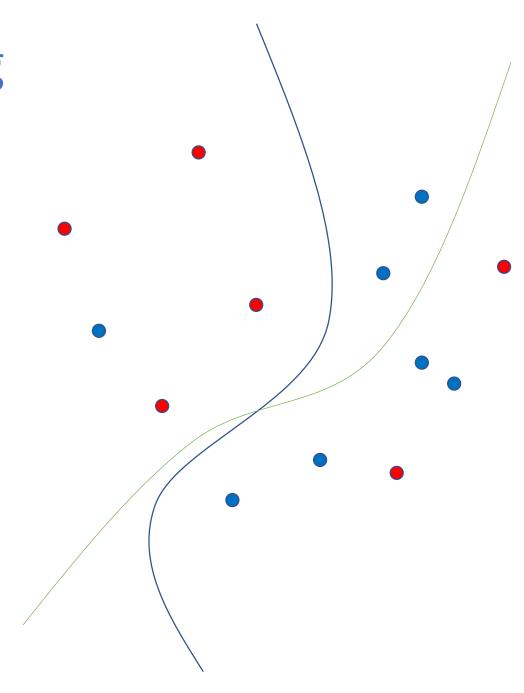


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. optimize $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

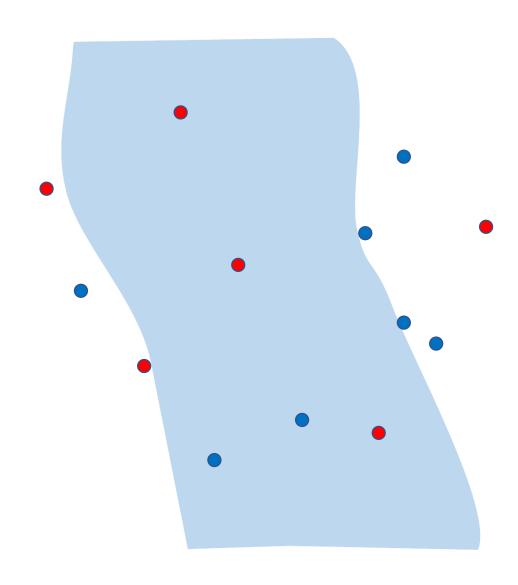


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

$egin{aligned} oldsymbol{A^2 (Agnostic Active)} \ & ext{for } t=1,2,\dots ext{ (til } stopping\text{-}criterion) \ & ext{1. } \mathbf{sample } 2^t ext{ unlabeled points } S \end{aligned}$

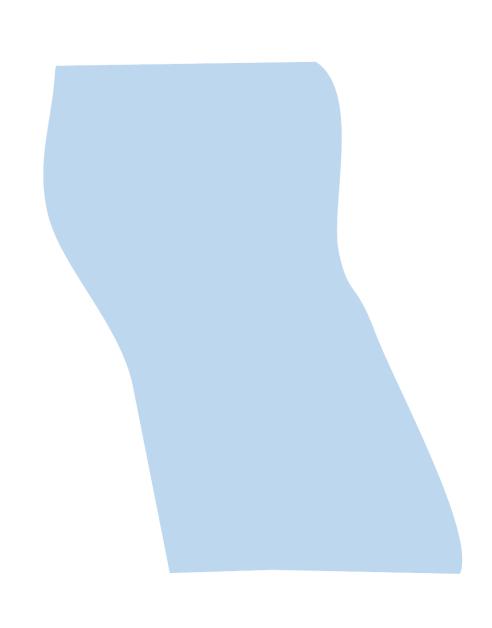
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

 $oldsymbol{ ext{output}}$ final \hat{f}



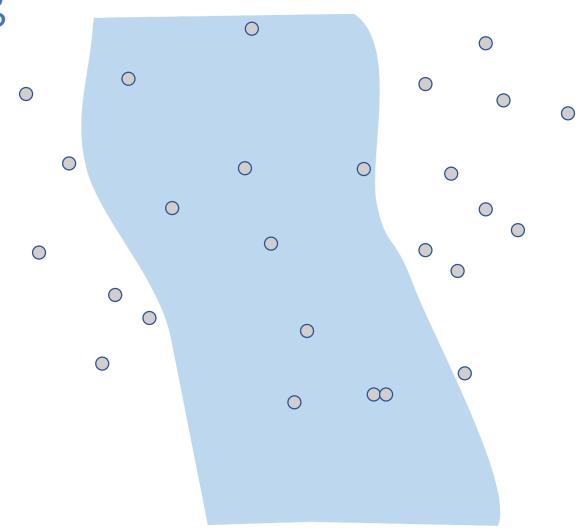
 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

for t = 1, 2, ... (til stopping-criterion) 1. $\mathbf{sample}\ 2^t$ unlabeled points S2. $\mathbf{label}\ points$ in $Q = \mathrm{DIS}(\mathcal{H}) \cap S$ 3. $\mathbf{optimize}\ \hat{f} \leftarrow \operatorname*{argmin} \hat{R}_Q(f)$ 4. $\mathbf{reduce}\ \mathcal{H}$: remove all f with $\hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}$ output final \hat{f}



 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

for t = 1, 2, ... (til stopping-criterion) 1. $\mathbf{sample}\ 2^t$ unlabeled points S2. $\mathbf{label}\ points\ in\ Q = \mathrm{DIS}(\mathcal{H}) \cap S$ 3. $\mathbf{optimize}\ \hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}}\ \hat{R}_Q(f)$ 4. $\mathbf{reduce}\ \mathcal{H}$: remove all f with $\hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}$. $\mathbf{output}\ final\ \hat{f}$

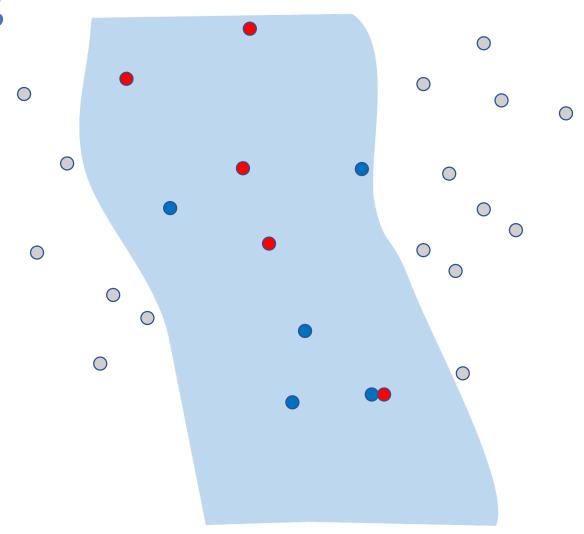


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

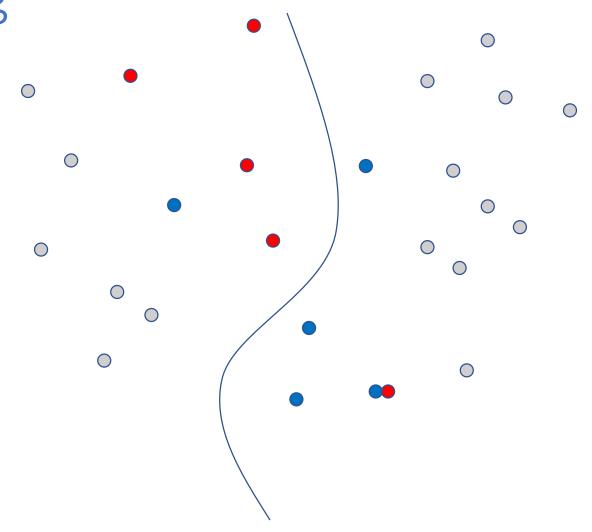


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

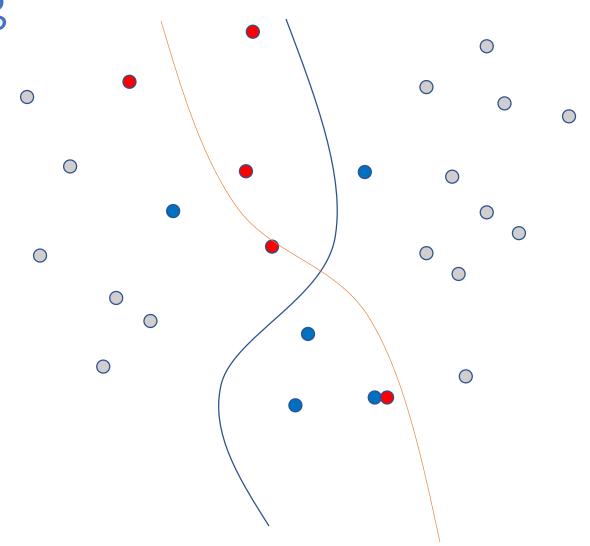
- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$



 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active) for t = 1, 2, ... (til stopping-criterion) 1. sample 2^t unlabeled points S2. label points in $Q = DIS(\mathcal{H}) \cap S$

- 3. **optimize** $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

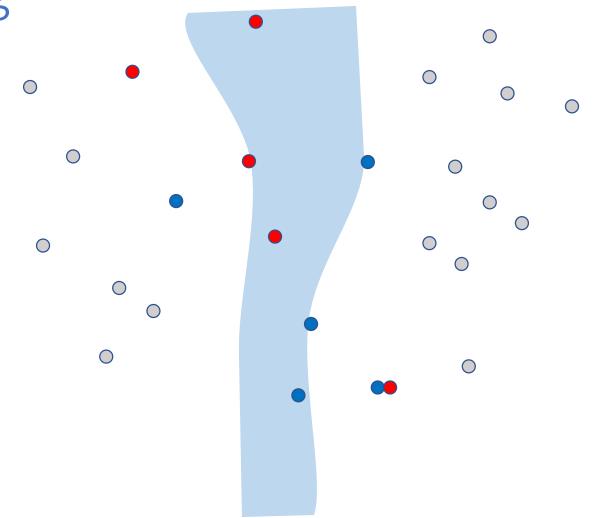


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$

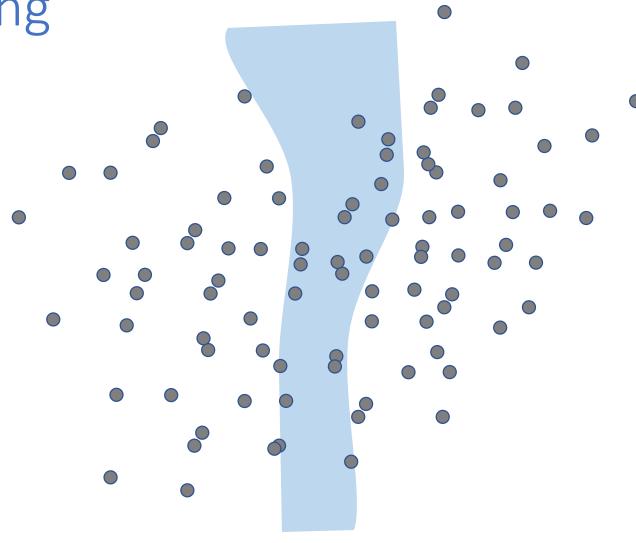


 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}$



 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

```
for t = 1, 2, ... (til stopping\text{-}criterion)

1. \mathbf{sample}\ 2^t unlabeled points S

2. \mathbf{label}\ points in Q = \mathrm{DIS}(\mathcal{H}) \cap S

3. \mathbf{optimize}\ \hat{f} \leftarrow \operatorname*{argmin} \hat{R}_Q(f)

4. \mathbf{reduce}\ \mathcal{H}: remove all f with \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}

output final \hat{f}
```

The point:

Any t with $f^* \in \mathcal{H}$ still, $R(f^*|\mathrm{DIS}(\mathcal{H}))$ still **minimal** in \mathcal{H}

$$\Rightarrow \hat{R}_{Q}(f^{*}) - \hat{R}_{Q}(\hat{f})$$

$$\leq R(f^{*}|\mathrm{DIS}(\mathcal{H})) - R(\hat{f}|\mathrm{DIS}(\mathcal{H})) + \sqrt{\hat{P}_{Q}(f^{*} \neq \hat{f})\frac{d}{|Q|}}$$

$$\leq \sqrt{\hat{P}_{Q}(f^{*} \neq \hat{f})\frac{d}{|Q|}}$$

 $\Rightarrow f^*$ never removed.

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

```
for t = 1, 2, ... (til stopping\text{-}criterion)

1. \mathbf{sample}\ 2^t unlabeled points S

2. \mathbf{label}\ points \ in \ Q = \mathrm{DIS}(\mathcal{H}) \cap S

3. \mathbf{optimize}\ \hat{f} \leftarrow \operatorname*{argmin}\ \hat{R}_Q(f)

4. \mathbf{reduce}\ \mathcal{H}: remove all f with \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}

output final \hat{f}
```

The point:

Any t with $f^* \in \mathcal{H}$ still, $R(f^*|\mathrm{DIS}(\mathcal{H}))$ still **minimal** in \mathcal{H}

$$\Rightarrow \hat{R}_{Q}(f^{*}) - \hat{R}_{Q}(\hat{f})$$

$$\leq R(f^{*}|\mathrm{DIS}(\mathcal{H})) - R(\hat{f}|\mathrm{DIS}(\mathcal{H})) + \sqrt{\hat{P}_{Q}(f^{*} \neq \hat{f})\frac{d}{|Q|}}$$

$$\leq \sqrt{\hat{P}_{Q}(f^{*} \neq \hat{f})\frac{d}{|Q|}}$$

 $\Rightarrow \underline{f^* \text{ never removed.}}$

Next: How many labels does it use?

Hanneke (2007,...)

Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

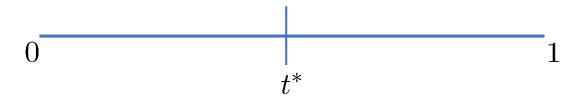
Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{ x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x) \}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

Example: Thresholds, P_X Uniform(0,1) $f(x) = \mathbb{I}[x \ge t]$



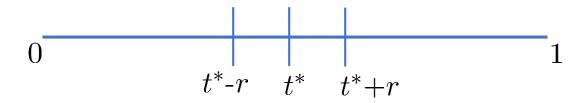
Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$

Example: Thresholds, P_X Uniform(0,1) $f(x) = \mathbb{I}[x \ge t]$



$$DIS(B(f^*, r)) = [t^* - r, t^* + r)$$

$$P_X(DIS(B(f^*,r))) = 2r$$

$$\theta = 2$$

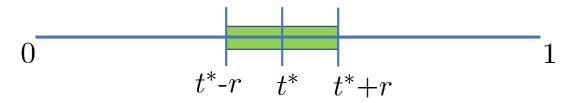
Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$

Example: Thresholds, P_X Uniform(0,1) $f(x) = \mathbb{I}[x \ge t]$



$$DIS(B(f^*, r)) = [t^* - r, t^* + r)$$

$$P_X(DIS(B(f^*, r))) = 2r$$

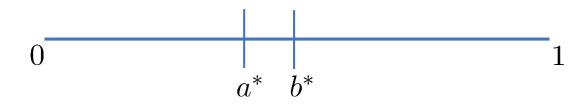
$$\Rightarrow \theta = 2$$

Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{ x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x) \}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

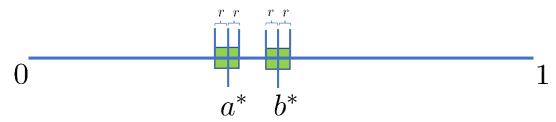


Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$



$$w^* := b^* - a^*$$

If
$$r < w^*$$
,

$$DIS(B(f^*, r)) = [a^* - r, a^* + r) \cup (b^* - r, b^* + r]$$

$$P_X(DIS(B(f^*,r))) = 4r$$

Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

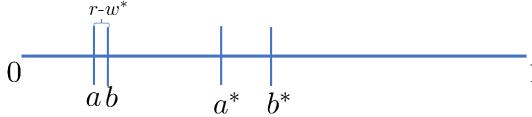
$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

Example: Intervals, P_X Uniform(0,1)

$$f(x) = \mathbb{I}[a \le x \le b]$$



$$w^* := b^* - a^*$$

If
$$r > w^*$$
,

$$DIS(B(f^*, r)) = \mathcal{X}$$

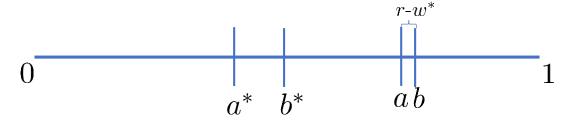
$$P_X(\mathrm{DIS}(\mathrm{B}(f^*,r)))=1$$

Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$



$$w^* := b^* - a^*$$

If
$$r > w^*$$
,

$$DIS(B(f^*, r)) = \mathcal{X}$$

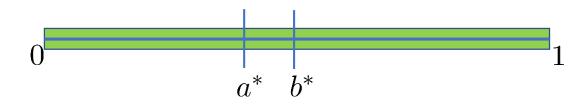
$$P_X(DIS(B(f^*,r))) = 1$$

Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$



$$w^* := b^* - a^*$$

If
$$r > w^*$$
,

$$DIS(B(f^*, r)) = \mathcal{X}$$

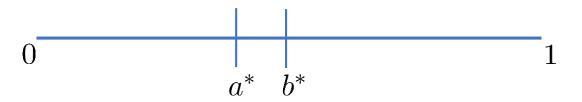
$$P_X(\mathrm{DIS}(\mathrm{B}(f^*,r)))=1$$

Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$



$$w^* := b^* - a^*$$

If
$$r < w^*$$
, $P_X(DIS(B(f^*, r))) = 4r$

If
$$r > w^*$$
, $P_X(DIS(B(f^*, r))) = 1$

$$\Rightarrow \theta \leq \max\{4, \frac{1}{w^*}\}$$

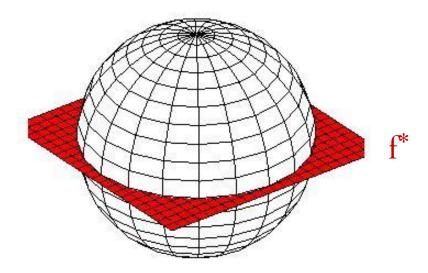
Ball: $B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$

 $DIS(B(f^*, r)) := \{ x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x) \}$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

Example: homog. linear separators (bias 0), n dimensions, uniform P_X on sphere.



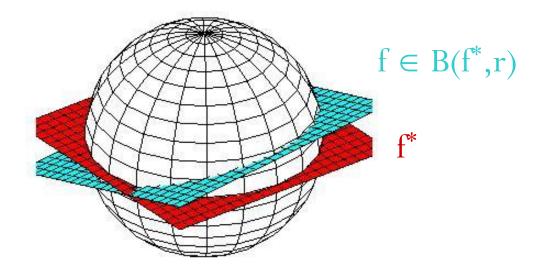
Ball: $B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$

 $DIS(B(f^*, r)) := \{x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x)\}$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

Example: homog. linear separators (bias 0), n dimensions, uniform P_X on sphere.



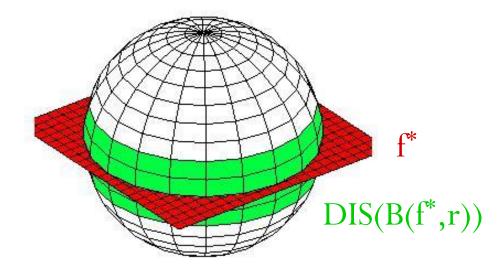
Ball:
$$B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$$

$$DIS(B(f^*, r)) := \{ x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x) \}$$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\mathrm{DIS}(\mathrm{B}(f^*, r)))}{r}$$

Example: homog. linear separators (bias 0), n dimensions, uniform P_X on sphere.



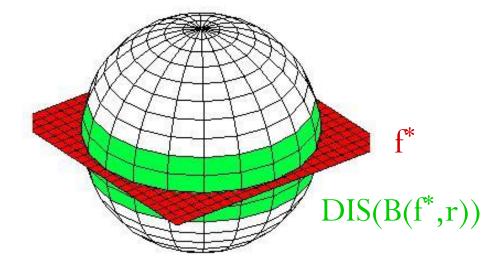
Ball: $B(f^*, r) := \{ f \in \mathcal{H} : P_X(f \neq f^*) \le r \}$

 $DIS(B(f^*, r)) := \{ x \in \mathcal{X} : \exists f, f' \in B(f^*, r), f(x) \neq f'(x) \}$

Disagreement coefficient:

$$\theta = \sup_{r > \epsilon} \frac{P_X(\text{DIS}(B(f^*, r)))}{r}$$

Example: homog. linear separators (bias 0), n dimensions, uniform P_X on sphere.



Some geometry \Rightarrow for small r,

$$P_X(DIS(B(f^*,r))) \propto \sqrt{n}r.$$

$$\Rightarrow \qquad \theta \propto \sqrt{n}$$
.

Bounded Noise assumption: (aka Massart noise)

$$\exists \beta < 1/2 \text{ s.t. } P(Y \neq f^*(X)|X) \leq \beta \text{ everywhere}$$

	Sample Complexity: $R(\hat{f}) \leq R(f^*) + \epsilon$	Excess Error: n labels
Passive	$rac{d}{\epsilon}$	$\frac{d}{n}$
Active	$d\theta \log(\frac{1}{\epsilon})$	$e^{-n/d\theta}$

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

```
for t = 1, 2, ... (til stopping\text{-}criterion)

1. \mathbf{sample}\ 2^t unlabeled points S

2. \mathbf{label}\ points in Q = \mathrm{DIS}(\mathcal{H}) \cap S

3. \mathbf{optimize}\ \hat{f} \leftarrow \operatorname*{argmin} \hat{R}_Q(f)

4. \mathbf{reduce}\ \mathcal{H}: remove all f with \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}

output final \hat{f}
```

Theorem: $P(Y \neq f^*(X)|X) \leq \beta$. $R(\hat{f}) \leq R(f^*) + \epsilon$ with $\# \text{ labels} \approx d\theta \log(\frac{1}{\epsilon})$.

Proof Sketch:

Round t, all $f \in \mathcal{H}$ agree on pts in $S \setminus Q$

Roughly, that means Step 4 only keeps f with $R(f) - R(f^*) \lesssim \sqrt{P_X(f \neq f^*) \frac{d}{2^t}}$

 \Rightarrow surviving f after round t have $R(f) - R(f^*) \lesssim \frac{d}{2^t}$ $\Rightarrow t \gtrsim \log(\frac{d}{\epsilon})$ suffices

Also \Rightarrow after round t-1, $\mathcal{H} \subseteq B(f^*, d/2^{t-1})$

$$\Rightarrow |Q| \lesssim P_X(\mathrm{DIS}(\mathrm{B}(f^*,d/2^{t-1})))|S| \leq \theta \frac{d}{2^{t-1}}|S| = \theta d2$$

$$\sum_{t=1}^{\log(d/\epsilon)} \theta d = \theta d \log(\frac{d}{\epsilon})$$

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}$

output final \hat{f}

Bounded noise:

$$R(f) - R(f^*) = \int_{f \neq f^*} (P(Y = f^*(X)|X) - P(Y \neq f^*(X)|X)) dP_X$$

$$\geq (1 - 2\beta)P_X(f \neq f^*)$$

Theorem: $P(Y \neq f^*(X)|X) \leq \beta$. $R(\hat{f}) \leq R(f^*) + \epsilon$ with $\# \text{ labels} \approx d\theta \log(\frac{1}{\epsilon})$.

Proof Sketch:

Round t, all $f \in \mathcal{H}$ agree on pts in $S \setminus Q$

Roughly, that means Step 4 only keeps f with $R(f) - R(f^*) \lesssim \sqrt{P_X(f \neq f^*) \frac{d}{2^t}}$

 \Rightarrow surviving f after round t have $R(f) - R(f^*) \lesssim \frac{d}{2^t}$ $\Rightarrow t \gtrsim \log(\frac{d}{\epsilon})$ suffices

Also \Rightarrow after round t-1, $\mathcal{H} \subseteq B(f^*, d/2^{t-1})$

$$\Rightarrow |Q| \lesssim P_X(\mathrm{DIS}(\mathrm{B}(f^*,d/2^{t-1})))|S| \leq \theta \frac{d}{2^{t-1}}|S| = \theta d2$$

$$\sum_{t=1}^{\log(d/\epsilon)} \theta d = \theta d \log(\frac{d}{\epsilon})$$

Agnostic Learning: (no assumptions)

Denote $\beta = R(f^*)$

	Sample Complexity: $R(\hat{f}) \leq R(f^*) + \epsilon$	Excess Error: n labels
Passive	$drac{eta}{\epsilon^2}$	$\sqrt{rac{deta}{n}}$
Active	$d\theta \frac{\beta^2}{\epsilon^2}$	$\sqrt{rac{deta^2 heta}{n}}$

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

for t = 1, 2, ... (til stopping-criterion) 1. $\mathbf{sample}\ 2^t$ unlabeled points S2. $\mathbf{label}\ points$ in $Q = \mathrm{DIS}(\mathcal{H}) \cap S$ 3. $\mathbf{optimize}\ \hat{f} \leftarrow \underset{f \in \mathcal{H}}{\operatorname{argmin}}\ \hat{R}_Q(f)$ 4. $\mathbf{reduce}\ \mathcal{H}$: remove all f with $\hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}$ output final \hat{f}

Theorem:
$$\beta = R(f^*)$$
. $R(\hat{f}) \leq R(f^*) + \epsilon$ with $\# \text{ labels} \approx d\theta \frac{\beta^2}{\epsilon^2}$.

Proof Sketch:

Round t, all $f \in \mathcal{H}$ agree on pts in $S \setminus Q$

Roughly, that means Step 4 only keeps f with $R(f) - R(f^*) \lesssim \sqrt{P_X(f \neq f^*) \frac{d}{2^t}}$

$$\Rightarrow$$
 surviving f after round t have $R(f) - R(f^*) \lesssim \sqrt{\beta \frac{d}{2^t}} + \frac{d}{2^t}$ (Roughly) $\sqrt{\beta \frac{d}{2^t}}$

 $\Rightarrow t \gtrsim \log(d\frac{\beta}{\epsilon^2})$ suffices

Also
$$\Rightarrow$$
 after round $t-1$, $\mathcal{H} \subseteq \mathbf{B}\left(f^*, 2\beta + \sqrt{\beta \frac{d}{2^{t-1}}}\right) \subseteq \mathbf{B}(f^*, 3\beta)$ (for large t)
 $\Rightarrow |Q| \lesssim P_X(\mathrm{DIS}(\mathbf{B}(f^*, 3\beta)))|S| \lesssim \theta \beta |S| = \theta \beta 2^t$

$$\sum_{t=1}^{\log(d\beta/\epsilon^2)} \theta \beta 2^t \sim \theta d \frac{\beta^2}{\epsilon^2}$$

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

A^2 (Agnostic Active)

for $t = 1, 2, \dots$ (til stopping-criterion)

- 1. sample 2^t unlabeled points S
- 2. label points in $Q = DIS(\mathcal{H}) \cap S$
- 3. **optimize** $\hat{f} \leftarrow \operatorname*{argmin}_{f \in \mathcal{H}} \hat{R}_Q(f)$
- 4. **reduce** \mathcal{H} : remove all f with $\hat{R}_Q(f) \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f})} \frac{d}{|Q|}$

output final \hat{f}

$$P_X(f \neq f^*) \le R(f) + R(f^*) = 2\beta + R(f) - R(f^*)$$

Theorem:
$$\beta = R(f^*)$$
. $R(\hat{f}) \leq R(f^*) + \epsilon$ with

labels
$$\approx d\theta \frac{\beta^2}{\epsilon^2}$$
.

Proof Sketch:

Round t, all $f \in \mathcal{H}$ agree on pts in $S \setminus Q$

Roughly, that means Step 4 only keeps f with

$$R(f) - R(f^*) \lesssim \sqrt{P_X(f \neq f^*) \frac{d}{2^t}}$$

 \Rightarrow surviving f after round t have $R(f) - R(f^*) \lesssim \sqrt{\beta \frac{d}{2^t}} + \frac{d}{2^t}$ (Roughly) $\sqrt{\beta \frac{d}{2^t}}$

$$\Rightarrow t \gtrsim \log(d\frac{\beta}{\epsilon^2})$$
 suffices

Also
$$\Rightarrow$$
 after round $t-1$, $\mathcal{H} \subseteq B\left(f^*, 2\beta + \sqrt{\beta \frac{d}{2^{t-1}}}\right) \subseteq B(f^*, 3\beta)$ (for large t)

$$\Rightarrow |Q| \lesssim P_X(\mathrm{DIS}(\mathrm{B}(f^*, 3\beta)))|S| \lesssim \theta\beta|S| = \theta\beta 2^t$$

$$\sum_{t=1}^{\log(d\beta/\epsilon^2)} \theta \beta 2^t \sim \theta d \frac{\beta^2}{\epsilon^2}$$

When is θ small?

- Linear separators, P_X has a density, f^* boundary intersects interior of support $\Rightarrow \theta$ bounded
- Linear separators, P_X has a density $\Rightarrow \theta \ll \frac{1}{\epsilon}$
- \mathcal{H} smoothly-parametrized model, P_X "regular" density w/ compact support, other technical conditions on \mathcal{H} $\Rightarrow \theta \propto \#$ parameters for \mathcal{H}

• • • •

When is θ small?

- Linear separators, P_X has a density, f^* boundary intersects interior of support $\Rightarrow \theta$ bounded
- Linear separators, P_X has a density $\Rightarrow \theta \ll \frac{1}{\epsilon}$
- \mathcal{H} smoothly-parametrized model, P_X "regular" density w/ compact support, other technical conditions on \mathcal{H} $\Rightarrow \theta \propto \#$ parameters for \mathcal{H}

• • •

Lots more

Stopping Criterion

 $DIS(\mathcal{H}) := \{ x \in \mathcal{X} : \exists f, f' \in \mathcal{H}, f(x) \neq f'(x) \}$

```
for t = 1, 2, ... (til stopping\text{-}criterion)

1. \mathbf{sample}\ 2^t unlabeled points S

2. \mathbf{label}\ points in Q = \mathrm{DIS}(\mathcal{H}) \cap S

3. \mathbf{optimize}\ \hat{f} \leftarrow \operatorname*{argmin}\ \hat{R}_Q(f)

4. \mathbf{reduce}\ \mathcal{H}: remove all f with \hat{R}_Q(f) - \hat{R}_Q(\hat{f}) > \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}}.

\mathbf{output}\ \text{final}\ \hat{f}
```

Stopping criteria:

- Any-time
- Label budget
- Run out of unlabeled data
- Check $\max_{f \in \mathcal{H}} \sqrt{\hat{P}_Q(f \neq \hat{f}) \frac{d}{|Q|}} < \epsilon$

Simpler Agnostic Active Learning

Hsu (2010,...)

```
Q \leftarrow \{\}
for m = 1, 2, \dots (til stopping-criterion)
      1. sample a random point x
      2. optimize \forall y, \hat{f}_y \leftarrow \underset{f \in \mathcal{H}: f(x) = y}{\operatorname{argmin}} \hat{R}_Q(f)
      3. if |\hat{R}_Q(\hat{f}_+) - \hat{R}_Q(\hat{f}_-)| \le \sqrt{\hat{P}_Q(\hat{f}_- \ne \hat{f}_+) \frac{d}{|Q|}}
           then label x, add it to Q
output \hat{f} = \operatorname{argmin} \hat{R}_O(f)
```

- Roughly same sample complexity as A^2 .
- Can implement as a **reduction** to ERM.
- In practice, replace ERM with any passive learner.

Surrogate Loss

```
Q \leftarrow \{\}
for m = 1, 2, \dots (til stopping-criterion)
      1. sample a random point x
      2. optimize \forall y, \hat{f}_y \leftarrow \underset{f \in \mathcal{H}: f(x) = y}{\operatorname{argmin}} \hat{R}_Q^{\ell}(f)
      3. if |\hat{R}_Q(\hat{f}_+) - \hat{R}_Q(\hat{f}_-)| \le \sqrt{\hat{P}_Q(\hat{f}_- \ne \hat{f}_+) \frac{d}{|Q|}}
           then label x, add it to Q
output \hat{f} = \operatorname{argmin} \hat{R}_O(f)
```

- Roughly same sample complexity as A^2 .
- Can implement as a **reduction** to ERM.
- In practice, replace ERM with any passive learner.

Consider learner that minimizes a surrogate loss $\ell : \mathbb{R} \times \{-1, +1\} \to \mathbb{R}_+$ (e.g., hinge loss, squared loss, exponential loss, ...)

Now \mathcal{H} is **real-valued** functions

$$\hat{R}_Q^{\ell}(f) = \frac{1}{|Q|} \sum_{(x,y)\in Q} \ell(f(x), y)$$

Theorem: Bounded noise, plus strong assumptions on \mathcal{H}, ℓ, P still get $R(\hat{f}) \leq R(f^*) + \epsilon$ with # labels

$$\approx \theta d \log(\frac{1}{\epsilon})$$

Importance-Weighted Active Learning

Beygelzimer, Dasgupta, Langford (2009)

```
Q \leftarrow \{\} for m = 1, 2, \dots (til stopping-criterion)
```

- 1. sample a random point x
- 2. **set** sampling probability p_x
- 3. flip coin with prob p_x of heads
- 4. if heads, label x, add to Q with weight $1/p_x$

output
$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$$
 (weighted loss)

Use importance weights to stay **unbiased**: $\mathbb{E}[\hat{R}_Q(f)] = R(f)$

Now Q set of triples (x, y, w)

$$\hat{R}_Q(f) = \frac{1}{|Q|} \sum_{(x,y,w)\in Q} w\mathbb{I}[f(x) \neq y]$$

- Any choice of Step 2 (setting p_x) is fine (just p_x not too small, else high variance)
- Can set p_x in a way to recover A^2 sample complexity $p_x = \mathbb{I}\left[|\hat{R}_Q(\hat{f}_+) \hat{R}_Q(\hat{f}_-)| \le \sqrt{\hat{P}_Q(\hat{f}_+ \ne \hat{f}_-) \frac{d}{|Q|}} \right]$

Importance-Weighted Active Learning

Beygelzimer, Dasgupta, Langford (2009)

```
Q \leftarrow \{\} for m = 1, 2, \dots (til stopping-criterion)
```

- 1. sample a random point x
- 2. **set** sampling probability p_x
- 3. flip coin with prob p_x of heads
- 4. if heads, label x, add to Q with weight $1/p_x$

output
$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_Q(f)$$
 (weighted loss)

Use importance weights to stay **unbiased**: $\mathbb{E}[\hat{R}_Q(f)] = R(f)$

Now Q set of triples (x, y, w)

$$\hat{R}_Q(f) = \frac{1}{|Q|} \sum_{(x,y,w)\in Q} w \mathbb{I}[f(x) \neq y]$$

- Any choice of Step 2 (setting p_x) is fine (just p_x not too small, else high variance)
- Can set p_x in a way to recover A^2 sample complexity $p_x = \mathbb{I}\left[|\hat{R}_Q(\hat{f}_+) \hat{R}_Q(\hat{f}_-)| \le \sqrt{\hat{P}_Q(\hat{f}_+ \ne \hat{f}_-) \frac{d}{|Q|}} \right]$
- In practice, replace ERM with any passive learner (e.g., ERM with a surrogate loss)
- (approx) implementation in **Vowpal Wabbit** library

Questions?

Further reading:

- D. Cohn, L. Atlas, R. Ladner. Improving generalization with active learning. Machine Learning, 1994
- M. F. Balcan, A. Beygelzimer, J. Langford. Agnostic active learning. Journal of Computer and System Sciences, 2009.
- S. Hanneke. A bound on the label complexity of agnostic active learning. ICML 2007.
- S. Dasgupta, D. Hsu, C. Monteleoni. A general agnostic active learning algorithm. NeurIPS 2007.
- S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 2011.
- A. Beygelzimer, S. Dasgupta, J. Langford. Importance weighted active learning. ICML 2009.
- A. Beygelzimer, D. Hsu, J. Langford, T. Zhang. Agnostic active learning without constraints. NeurIPS 2010.
- S. Hanneke. Theoretical Foundations of Active Learning. PhD Thesis, CMU, 2009.
- D. Hsu. Algorithms for Active Learning. PhD Thesis, UCSD, 2010.
- Y. Wiener, S. Hanneke, R. El-Yaniv. A compression technique for analyzing disagreement-based active learning. *Journal of Machine Learning Research*, 2015.
- S. Hanneke. Refined error bounds for several learning algorithms. Journal of Machine Learning Research, 2016.
- E. Friedman. Active learning for smooth problems. COLT 2009.
- S. Mahalanabis. Subset and Sample Selection for Graphical Models: Gaussian Processes, Ising Models and Gaussian Mixture Models. PhD Thesis, University of Rochester, 2012.
- S. Hanneke. Theory of Disagreement-Based Active Learning. Foundations and Trends in Machine Learning, 2014.
- S. Hanneke, L. Yang. Surrogate losses in passive and active learning. arXiv:1207.3772.