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Abstract— Standard formulations of image/signal deconvolu-
tion under wavelet-based priors/regularizers lead to very high
dimensional optimization problems involving the following dif-
ficulties: the non-Gaussian (heavy-tailed) wavelet priors lead
to objective functions which are non-quadratic, usually non-
differentiable and sometimes even non-convex; the presence of the
convolution operator destroys the separability which underlies
the simplicity of wavelet-based denoising. This paper presents a
unified view of several recently proposed algorithms for handling
this class of optimization problems, placing them in a common
majorization-minimization (MM) framework. One of the classes
of algorithms considered (when using quadratic bounds on non-
differentiable log-priors) shares the infamous “singularity issue”
(SI) of “iteratively reweighted least squares” (IRLS) algorithms:
the possibility of having to handle infinite weights, which may
cause both numerical and convergence issues. In this paper,
we prove several new results which strongly support the claim
that the SI does not compromise the usefulness of this class of
algorithms. Exploiting the unified MM perspective, we introduce
a new algorithm, resulting from using ℓ1 bounds for non-convex
regularizers; the experiments confirm the superior performance
of this method, when compared to the one based on quadratic
majorization. Finally, an experimental comparison of the several
algorithms, reveals their relative merits for different standard
types of scenarios.

EDICS: RST-DBLR, ”Image & Video Restoration and
Enhancement: Deblurring”

I. I NTRODUCTION

Wavelet-based methods are the current state-of-the-art in
image denoising, both in terms of performance and compu-
tational efficiency (see,e.g., [26], [42], [43], [45], [47], and
the many references therein). However, image restoration in
general (e.g., deblurring/deconvolution) is much more chal-
lenging than denoising, and applying wavelets turns out to be
a much harder task. Unlike most approaches to wavelet-based
denoising, which lead to thresholding rules, the optimization
problems resulting from the wavelet-based formulations of
deconvolution have no simple closed-form solutions (except
in special circumstances [21]).

Most formulations of image deconvolution under wavelet-
based priors lead to very large scale optimization problems
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where the objective function has two terms: a quadratic log-
likelihood (or data discrepancy) term plus a (usually non
quadratic) log-prior (also known as regularizer of penalty
function). In addition to being of very large dimensionality,
these optimization problems are also difficult for two other
main reasons: the best performing penalty functions are non-
differentiable and sometimes even non-convex; the presence
of a convolution operator (rather than simply additive white
Gaussian noise) destroys the separability which underlies
the simplicity of wavelet-based denoising. These optimiza-
tion problems have been recently addressed via expectation-
maximization (EM) algorithms [7], [27], [28], as well as
by majorization-minimization (MM) methods (also known as
bound optimization or surrogate optimization methods; see
[36] for a tutorial/review on MM algorithms) [18], [29]. Earlier
approaches to wavelet-based image restoration were recently
reviewed in [7] and [28], so we refrain from reviewing them
here, and simply indicate some key references: [5], [6], [21],
[40], [44].

This paper focuses on the class of MM approaches to
wavelet-based image restoration by considering three possible
majorization strategies leading to three different classes of
algorithms, as described in the following three subsections.

A. MM Algorithms via Majorizing the Log-Likelihood

We show that the methods independently introduced by
several authors [18], [27], [28], [23], [24], [40], [49], [50]
can all be seen as MM algorithms based on a separable
quadratic majorizer on the log-likelihood. This class of algo-
rithms involve the iterative application of non-linear shrink-
age/thresholding denoising operators, thus they are termed
iterative shrinkage-thresholding(IST) or iterative denoising
algorithms. Convergence proofs for this class of algorithms
have been recently presented in [16], [18].

B. MM Algorithms via Majorizing the Penalty Function

When a quadratic separable majorizer on the penalty func-
tion is adopted, the resulting MM algorithm has the structure
of an iteratively reweighted shrinkage(IRS) which is related
to the well known reweighted least squares (IRLS) algorithm.
In the context of wavelet-based image restoration, this scheme
was introduced in [7] using an EM framework.

Algorithms of the IRLS type have been often criticized due
to what can be called the “singularity issue”: when using
quadratic majorizers for non-differentiable functions, if, at
some iteration, one of the variables coincides with a point of
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non-differentiability, the corresponding weight is infinity, thus
locking this variable at that point. This effect raises numerical
difficulties (handling infinity) and may prevent convergence of
the algorithm.

In this paper, we show several new results concerning
the infamous “singularity issue”, which strongly suggest that
this issue doesn’t compromise the usefulness of this class of
algorithms. More specifically, we show that

a) the algorithm can be written in such a way that it
dispenses with having to handle infinite values;

b) if initialized with all components different from
zero, then, with probability one, no component will
become zero in a finite number of iterations;

c) if the algorithm converges, it does so to a minimizer
of the objective function (with probability one).

C. MM Algorithms via Majorizing Both the Log-Likelihood
and the Penalty Function

We introduce a new class of MM algorithms, obtained
by combining the separable quadratic majorizer on the log-
likelihood with a majorizer on penalty function, for which we
consider two options: with a quadratic majorizer, we recover
a particular instance of the algorithm introduced in [7]; with
an ℓ1 majorizer, which is well suited for non-convex penalty
functions, we obtain a new class of algorithms which we call
iterative softthresholding (ISoft).

D. Outline of the Paper

The remaining sections of the paper are organized as
follows. Section II reviews the formulation of wavelet-based
image restoration as an optimization problem, analyzes the
sources of the difficulties in handling that optimization prob-
lem, and mentions related work. Section III contains a brief
introduction to MM algorithms. In Section IV, a class of
MM algorithm is derived by considering majorizers on the
log-likelihood term of the objective function. Another class
of algorithms, obtained by using majorizers on the penalty
function, is presented in Section V; that section also contain
new theoretical results concerning the properties of this class
of algorithms. In Section VII, we summarize the algorithms
and analyze their computational cost per iteration. Section VIII
presents an experimental comparison of the several types of
algorithms, showing their relative merits for different types of
scenarios, in terms of: severity of the blur operator; amount
of added noise; nature of the adopted prior. Finally, Section
IX ends the paper with some concluding remarks.

II. PROBLEM FORMULATION

A. Wavelet-Based Image Deconvolution

In this paper, we adopt the standard convention of represent-
ing images as vectors, obtained by stacking all the pixels in
some predetermined order (e.g., lexicographically). In image
reconstruction/restoration problems, the goal is to estimate an
original imagex from an observationy, assumed to have been
produced by the linear-Gaussian observation model

y = Hx + n, (1)

where matrixH represents the observation operator, andn

contains samples of independent zero-mean Gaussian random
variables of varianceσ2. Matrix H can model many types of
linear observations, but this paper will focus on deconvolution
(e.g., deblurring) problems. In this case, matrixH represents a
2D convolution and it is block-circulant with circulant blocks
(assuming periodic boundary conditions for the convolution)
or block Toeplitz with Toeplitz blocks [1]. Multiplying any
vector (image) byH or HT can thus be done using the 2D
fast Fourier transform (FFT) with a cost ofO(N log N), where
N is the number of image pixels.

To obtain a wavelet-based formulation, consider thatx can
be represented on some wavelet basis asx = Wθ, where
θ is the vector of representation coefficients and the set of
columns ofW is a wavelet basis or dictionary. In the case
of an orthogonal basis,W is a square orthogonal matrix,
whereas for an over-complete dictionary (e.g., a tight frame),
W has more columns than rows. With this wavelet-based
representation, the observation model becomes

y = HWθ + n, (2)

and the resulting log-likelihood function is

log p(y|θ) = −
1

2σ2
‖y − HWθ‖2

2 + K, (3)

where‖ · ‖2
2 denotes the usual squared Euclidean norm andK

is a constant independent ofθ.
The maximum penalized likelihood(MPL) estimate ofθ is

given by
θ̂ = arg min

θ
L(θ), (4)

where
L(θ) =

1

2
‖y − HWθ‖2

2 + λC(θ), (5)

whereC(θ) is a penalty function which has several different
possible interpretations, depending on the framework in which
the problem is formulated. In Bayesian decision theoretic
terms, (4) defines the well-knownmaximum a posteriori
(MAP) estimate, withλC(θ) = −σ2 log p(θ), where p(θ)
is a prior density (usually heavy-tailed), expressing the sparse
nature of the wavelet coefficients of natural images [43]. The
estimation criterion (4) can also be seen in a regularization
perspective as a way to address the ill-posed problem of infer-
ring θ from y; in that setting,C(θ) is called the regularization
function andλ is the regularization parameter [3].

Of course the MAP/MPL criterion is not the only possible
choice for wavelet-based image denoising/restoration, and
several alternatives have been proposed with excellent results
[33], [44], [45], [48]. In this paper, we are solely concerned
with algorithms for solving the MAP/MPL criterion, and will
not discuss the relative merits of this option with respect to
the possible alternatives.

B. Gaussian Priors / Quadratic Penalties

The simplest version of (4) is obtained when a zero-mean
Gaussian prior forθ is adopted:

−σ2 log p(θ) = λ C(θ) =
λ

2
θT Pθ + R,
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whereP is symmetric positive semi-definite andR is a scalar
independent ofθ. In this case, the solution of (4) is

θ̂ =
(
WT HT HW + λP

)−1
WT HT y. (6)

Of course, this estimate can only be obtained via an iterative
algorithm, due to the huge size of the matrix being inverted;in
fact, it’s not even practical to explicitly compute it or store it
(e.g., for 256×256 images, it would be a2562×2562 matrix).

C. Non-Gaussian (Sparseness-Inducing) Priors

It is well accepted that Gaussian densities are not adequate
models for the statistics of wavelet coefficients of natural
images; the sparse nature of wavelet-based representations
(many very small or even zero coefficients together with a few
very large ones) demands heavy-tailed densities [41]. One of
the distributions most often adopted to model the statistics of
wavelet coefficients is the independent generalized Gaussian
density (GGD, see [43])

p(θ) ∝ exp
{

− τ
∑

i

|θi|
p

}
. (7)

The logarithm of this prior is proportional to thep-th power
of an ℓp norm1 plus an irrelevant constantS, that is,

−σ2 log p(θ) = λ C(θ) = λ ‖θ‖p
p + S,

whereλ = σ2 τ . It has been found that good wavelet-based
models of natural images are obtained forp < 1 [43].

Another class of heavy-tailed prior densities which has been
used to model wavelet coefficients (and which contains GGDs
with p ≤ 2 as special cases) is that of Gaussian scale mixtures
(GSM); see [2], [7], [17], [45], for details.

If (4) is hard to solve whenp(θ) is a Gaussian prior, it
becomes much harder whenp(θ) is a heavy-tailed prior, such
as a GGD or GSM. In this case, we no longer even have a
“closed form” expression (such as (6)).

D. The Sources of Difficulties

The difficulty of solving (4) has two main sources:

• Matrix HW, unlike H alone, is not block-circulant (nor
block-Toeplitz), thus cannot be efficiently handled using
FFT-based methods. Even whenW is orthogonal,HW

is not. The presence of this matrix makes solving (4),
even in the Gaussian case examined in II-B, a task that
can only be achieved using iterative algorithms.

• When the penaltyC(θ) (equivalently, the log prior
− log p(θ)) is not a quadratic function ofθ, there is, in
general2, no close-form solution to (4).

1Recall that theℓp norm is defined as‖v‖p =
�P

i |vi|
p
�1/p, thus

‖v‖p
p =

P
i |vi|

p. Although for p < 1, ‖v‖p is not a norm, we will (as is
commonly done) still refer to it as a norm.

2Of course, ifH = I and W is orthogonal, (4) may have closed-form
solution for some choices ofp(θ); however, in this case, we would be in the
presence of a pure denoising problem, not a deconvolution problem.

In this paper, we will describe MM algorithms which are
obtained by addressing each one (or both) of this difficulties;
that is, by using majorizers for the log-likelihood or/and the
penalty function.

E. Related Problems and Approaches

Optimization problems formally close to (4), withHW

replaced by some arbitrary matrixA, have been studied in
other contexts and applications. For example, withA being
the design matrixof some regression problem, the LASSO
(least absolute shrinkage and selection operator) criterion is
similar to (4), withC(θ) = ‖θ‖1 [51]. Notice, however, that
state-of-the-art algorithms which have been proposed to solve
the LASSO (such asleast angle regression[22]) cannot be
used to address (4) because matrixHW can not be explicitly
computed or stored, nor is it possible to access individual rows,
columns, or elements. This fact places (4) beyond the reach
of most general-purpose optimization methods.

Another problem formulation leading to an objective func-
tion with the same form as (4) is the following. Let the
columns ofW contain a redundant (over-complete) dictionary
with respect to which a representation of the observed image
(or signal) is sought [14], [23], [24]. This representationcan
be obtained by solving (4), withH = I andC(θ) being some
penalty function encouraging sparse solutions [23], [24].The
algorithms considered in this paper can be directly appliedto
this scenario. ForC(θ) = ‖θ‖1, this is known as thebasis-
pursuit denoisingproblem [14].

Finally, we should mention that MM algorithms have been
used for more than a decade in image reconstruction (mainly
in tomographic medical imaging, see,e.g., [20], [25], [39]).
However, to the best of our knowledge, they have only very
recently been used to tackle the optimization problems that
result from wavelet-based approaches to inverse problems
(e.g., deconvolution) [18], [28], [29].

III. M AJORIZATION-M INIMIZATION ALGORITHMS

A majorization-minimization (MM, [36]) iterative algorithm
for solving (4) has the form

θ̂
(t+1)

= arg min
θ

Q(θ; θ̂
(t)

), (8)

whereQ(θ;θ′) ≥ L(θ), for any θ, θ′, andQ(θ;θ) = L(θ),
i.e., Q(θ;θ′) upper bounds (majorizes)L(θ), touching it for
θ = θ′. It’s well known that this property of the Q-function
implies monotonicity of the algorithm, since

L(θ̂
(t+1)

) = L(θ̂
(t+1)

) − Q(θ̂
(t+1)

; θ̂
(t)

) + Q(θ̂
(t+1)

; θ̂
(t)

)

≤ Q(θ̂
(t+1)

; θ̂
(t)

)

≤ Q(θ̂
(t)

; θ̂
(t)

) = L(θ̂
(t)

), (9)

where the first inequality results fromQ(θ;θ′) ≥ L(θ), the

second one from the fact that, according to (8),Q(θ; θ̂
(t)

)

attains its minimum forθ = θ̂
(t+1)

.
The MM approach opens the door to the derivation of EM-

type algorithms [19], where theQ-function (the majorizer)
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doesn’t have to result from a model with missing-data, as in
standard EM. Any convenient inequality and any property of
L(θ) can be invoked to obtain a validQ-function [36].

MM algorithms have three properties (which have trivial
proofs), of which we will make use later:

Property 1: The function Qa(θ;θ′) = AQ(θ;θ′) + B,
whereA > 0 andB are constants independent ofθ

(possibly dependent onθ′) defines exactly the same
iteration asQ(θ;θ′).

Property 2: Let L(θ) = L1(θ) + L2(θ); consider
two majorizers, Q1(θ;θ′) ≥ L1(θ) and
Q2(θ;θ′) ≥ L2(θ), both with equality forθ = θ′.
Then, all the following functions majorizeL(θ)
(with equality for θ = θ′): Q1(θ;θ′) + Q2(θ;θ′),
L1(θ) + Q2(θ;θ′), andQ1(θ;θ′) + L2(θ).

Property 3: The monotonicity property of MM is kept if,

instead of exactly minimizingQ(θ; θ̂
(t)

) (as in (8)),
the following weaker condition is satisfied:

θ̂
(t+1)

is such thatQ(θ̂
(t+1)

; θ̂
(t)

) ≤ Q(θ̂
(t)

; θ̂
(t)

).
(10)

Notice that this is the only property of̂θ
(t+1)

that
was invoked in showing the monotonicity of MM. A
similar reasoning underliesgeneralizedEM (GEM)
algorithms [53]. Algorithms defined by iteration (10),
instead of (8), are thus calledgeneralized MM
(GMM) algorithms.

IV. MM A LGORITHM VIA MAJORIZATION OF THE

LOG-L IKELIHOOD

A. Majorizing the Log-Likelihood

Let us denoteLℓ(θ) = (1/2) ‖y − HWθ‖2, the log-
likelihood term of the objective function in (5). This is
a quadratic function with positive semi-definite Hessian
WT HT HW, thus convex (though not necessarily strictly so),
and gradientWT HT (HWθ−y). We can write a second order
Taylor expansion of this function (which is exact, because the
function is quadratic) about some pointθ′:

Lℓ(θ) = Lℓ(θ
′) + (θ − θ′)T WT HT (HWθ′ − y)︸ ︷︷ ︸

gradient atθ′

+
1

2
(θ − θ′)T WT HT HW︸ ︷︷ ︸

Hessian

(θ − θ′). (11)

Now let D be a symmetric matrix such that

D � WT HT HW, (12)

where� denotes matrix inequality3. SinceA � B ⇒ vT (A−
B)v ≥ 0, for anyv, we can obtain a majorizer forLℓ(θ) as

Lℓ(θ) ≤ Lℓ(θ
′) + (θ − θ′)T WT HT (HWθ′ − y)

+
1

2
(θ − θ′)T D(θ − θ′), (13)

3Recall thatA � B (for two symmetric matrices) means that matrix
A − B is positive semi-definite.

which is, of course, an equality forθ = θ′. This suggests using

the r.h.s. of (13) asQ(θ; θ̂
(t)

), with θ′ = θ̂
(t)

. According
to [36], this quadratic bounding approach to obtaining a
monotonic algorithm was first introduced in [8].

A choice of D leading to a simple algorithm is a matrix
proportional to identity. In fact, as stated by the following
proposition (shown in Appendix A.1)I � WT HT HW,
meaning that we can useD = I in (13).

Proposition 1: Let the set of columns ofW correspond to
a normalized tight frame, that is4, WWT = I and H be
normalized such that‖H‖2 = 1. Then,I � WT HT HW.

InsertingD = I into (13), we can write (after some simple
manipulation)

Lℓ(θ) ≤
1

2
‖θ − φ(t)‖2

2 + K, (14)

whereK is a constant independent ofθ and

φ(t) = θ̂
(t)

+ WT HT

(
y − HWθ̂

(t)
)

. (15)

B. Update Rule

With a majorizer forLℓ in hand, we invokeProperty 1 to
drop K and Property 2 to use (14) to build a majorizer for
the complete objective functionLℓ(θ)+λC(θ). The resulting
update equation is thus

θ̂
(t+1)

= arg min
θ

{
1

2
‖θ − φ(t)‖2

2 + λC(θ)

}
. (16)

Notice that (16) corresponds to a pure denoising problem
(same as (4)-(5), withHW = I), under a penalty/log-prior
C(θ), and with “noisy coefficients”φ(t). Denoting asΨC,λ

the function which returns the solution of (16), which is a
so-called “denoising rule”, we can write (16) as

θ̂
(t+1)

= ΨC,λ

(
φ(t)

)

= ΨC,λ

(
θ̂

(t)
+ WT HT

(
y − HWθ̂

(t)
))

. (17)

The algorithm defined by (17), termediterative shrinkage-
thresholding(IST), coincides with those previously presented
in [18], [28], and [29]. Theoretical results concerning the
convergence of this iterative procedure can be found in [18],
for the case of convex GGD priors, that is, forC(θ) = ‖θ‖p

p,
with 1 ≤ p ≤ 2. The results in [18] were recently extended and
generalized in [16]. Similar algorithms were also proposedin
[49] and [50], without any formal support or analysis, but with
excellent practical results. Algorithms of the same class were
also proposed in [23] and [24], to find sparse representations
on redundant dictionaries.

For a few choices ofC(θ), there are closed-form expres-
sions forΨC,λ. We focus only on decoupled penalty functions
of the formC(θ) =

∑
i C(θi). In this case, (16) can be solved

separately w.r.t. each component:

θ̂
(t+1)

i = arg min
θi

{
1

2
(θi − φi)

2 + λC(θi)

}
, (18)

4If the columns of a matrix correspond to a normalized tight frame,then
WWT = I, but WT W may be different from identity, becauseW may
not be orthogonal; see [10], [41], for an introduction to frames.



SUBMITTED FOR PUBLICATION; 2007. 5

where φi denotes thei-th component ofφ(t). There are
two standard cases for which (18) has simple closed-form
solutions. For a zero-mean Gaussian prior,C(θi) = (1/2)θ2

i ,
the solution is simply

θ̂
(t+1)

i =
φi

1 + λ
. (19)

For a Laplacian prior (i.e., C(θi) = |θi|
p with p = 1), we have

θ̂
(t+1)

i = soft(φi, λ) = sign(φi)max{0, |φi| − λ},

the well-known soft threshold(ST) function [43]. Closed
form solution of (18), withC(θi) = |θi|

p, also exist for
p ∈ {4/3, 3/2, 3, 4} [13]. Finally, the also popular hard-
threshold (HT) function can be seen as the limit of (18), with
C(θi) = |θi|

p, whenp goes to zero (see [43] for details).
A shrinkage/thresholding function which was shown in [7]

and [28] to be very effective for wavelet-based deconvolution
is thenon-negative garrote(NNG),

θ̂
(t+1)

i = garrote(φi, λ) =
max

{
0, φ2

i − λ2
}

φi + 1φi=0
, (20)

where1a=0 is the indicator function of the conditiona = 0.
As shown in [7], the NNG corresponds to the solution of (18)
under a prior which does belong to the GSM family.

V. MM A LGORITHM VIA MAJORIZATION OF THEPENALTY

A. Majorizing the Penalty/Log-Prior

In this section we derive MM algorithms by considering
majorizers for GGD (for0 < p ≤ 2) and GSM log-priors.
We consider only independent priors, wherep(θ) =

∏
i p(θi)

(equivalently,C(θ) =
∑

i C(θi)), where the marginal densi-
ties p(θi) belong to a GSM family (of which GGDs are a
particular case). Even in denoising problems (whereH = I)
with an orthogonal wavelet basis (WT W = WWT = I),
which allows decoupling the solution of (4), most priors in
this class do not lead to closed-form solutions (except in a
few cases mentioned in Subsection IV-B).

Let us take note of some properties of GSMs which will
be needed below. Any (univariate) GSM densityp(θ) is
necessarily even, since it’s a convex combination (maybe
infinite) of even functions (zero-mean Gaussian densities).
For the same reason, any (univariate) GSM densityp(θ) is a
decreasing function of|θ|, thusλC(θ) = −σ2 log p(θ) is an
increasing function of|θ|, of course also even. Since GSMs
have heavier tails than a pure Gaussian, the corresponding
penaltyλC(θ) = −σ2 log p(θ) necessarily grows slower than
a quadratic function. Finally, sincep(θ) is a GSM, bothp(θ)
andC(θ) areC∞, except maybe at the origin [32], [46].

SinceC(θ) is even and subquadratic, it is majorized by an
even quadratic function;i.e., we seekη andν such that

λC(θ) ≤
η

2
θ2 + ν, (21)

with equality forθ = θ′, whereθ′ = θ̂
(t)

denotes the previous
iterate, all throughout this section. This requires(η/2) θ2 + ν

to be tangent toλC(θ) at θ′, that is, their derivatives atθ′

must coincide. This condition leads to

η = λ
C ′(θ′)

θ′
≡ Υ(θ′), (22)

whereC ′(θ) is the derivative ofC(·) at θ. Of course, we could
also solve forν to have the majorizer touchλC(θ) at θ′, but
this value is irrelevant for the algorithm (seeProperty 1).

Notice that when the penalty corresponds to a log-prior,
λC(θ) = −σ2 log p(θ), equation (22) can be written as

Υ(θ′) = −σ2 1

θ′
d log p(θ)

d θ

∣∣∣∣
θ′

= −σ2 p′(θ′)

θ′ p(θ′)
,

which coincides with equation (18) in [7]; this shows the
method therein derived under an EM framework, also has an
MM interpretation, based on quadratic majorizers for GSM
log-priors. This quadratic bounding technique is well known
in robust regression, where it is used to derive the iteratively
reweighted least squares (IRLS) method [35].

Notice thatΥ(θ′) in (22) is not defined forθ′ = 0. If C(θ)
has finite second derivative at the origin, we can defineΥ(0)
by continuity. Noticing that, in this case,C ′(0) = 0, we have

lim
θ→ 0

C ′(θ)

θ
= lim

θ→ 0

C ′(θ) − C ′(0)

θ − 0
= C ′′(0),

by definition of second derivative, which is by hypothesis
finite. In this case, the objective function is strictly convex
and twice differentiable, and the Q-function

Q(θ; θ′) = ‖y − HWθ‖2 + θT D(θ′)θ, (23)

where D(θ′) = diag(Υ(θ′i), i = 1, 2, ...), is smooth. Thus,
convergence of the resulting MM algorithm can be easily
shown, following the same line of reasoning used to show
convergence of EM [53].

However, the most often used penalties in wavelet-based
image restoration are non-differentiable at the origin, which
is a sufficient condition for leading to sparse estimates [43].
For these penalties, we have to follow a different route. The
function q( · ; ·) : R

2 → R = R ∪ {−∞,+∞}, given by

q(θ; θ′) =





θ2 Υ(θ′)/2 + ν ⇐ θ′ 6= 0
+∞ ⇐ θ′ = 0 ∧ θ 6= 0
0 ⇐ θ′ = 0 ∧ θ = 0

(24)

is well defined for allθ andθ′, and is a valid majorizer because
it satisfiesq(θ, θ′) ≥ λC(θ), with equality forθ = θ′. Finally,
since C(θ) =

∑
i C(θi), we invokeProperty 2 to add the

individual majorizers yielding the majorizer
∑

i

q(θi ; θ′i) ≥ λC(θ) (25)

with equality for θ = θ′. Adding this majorizer to the log-
likelihood termLℓ(θ) = (1/2) ‖y−Aθ‖2, whereA = HW,
yields theQ-function

Q(θ; θ′) = ‖y − Aθ‖2 +
∑

i

q(θi; θ′i). (26)
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B. Update Rule

The updated iteratêθ
(t+1)

, denoted simply asθ′′, is the
minimizer of Q(θ; θ′). The bound defined in (24) implies
that the updating rule satisfies

(θ′′i = 0) ⇐ (θ′i = 0), (27)

meaning that it can be stated as the constrained problem

θ′′ = arg min
θ

{
‖y − Aθ‖2 + 2

∑

i

q(θi ; θ′i)
}

subject toθZ = 0, (28)

where Z = {i : θ′i = 0}, and θZ is the subvector ofθ
corresponding to the indices inZ. Letting Z̃ = {i : θ′i 6= 0},
we denote asAeZ the matrix formed by the columns ofA with
indices inZ̃. Problem (28) is equivalent to

θ′′

Z = 0 (29)

θ′′eZ = arg min
θ

{
‖y − AeZ θ‖2 + θT DeZθ

}
, (30)

whereDeZ = diag(Υ(θ′i), i ∈ Z̃). Since (30) is quadratic, the
minimizer is simply given by

θ′′eZ =
(
ATeZ AeZ + DeZ)

−1

ATeZ y. (31)

As shown Appendix A.1, the update rule which combines (29)
and (31) can be written compactly as

θ′′ = EAT
(
AEAT + I

)−1
y, (32)

whereE is a diagonal matrix with theEi,i entry given by

Ei,i =

{ (
Υ(θ′i)

)
−1

⇐ θ′i 6= 0
0 ⇐ θ′i = 0.

(33)

This form of the update equation shows that it is never
necessary to handle infinite values, which is usually pointed
out as a weakness of IRLS type algorithms. If a component
becomes zero, the corresponding element ofE also simply
becomes zero. Of course, this will lock this component at zero
forever, which may impact the convergence of the algorithm
to a minimizer of the objective function. This issue will be
analyzed in detail below, in Subsection V-D.

C. Solving the Update Equation

To implement each update step, one can simply keep at
zero the components that were zero and compute the remain-
ing ones by solving (31). Of course this does not require
inverting the matrix, but just solving the corresponding system
(ATeZ AeZ + DeZ)θ = ATeZ y. Due to its size, this system
can only be solved iteratively. The approach proposed in [7]
consists in using asecond-order(also known astwo-step)
stationary iterative method(SOSIM) [4], which is defined by

θ
(i+1)eZ = (α − β)θ

(i)eZ + (1 − α)θ
(i−1)eZ + (34)

β
[
DeZ + I

]
−1

[
θ

(i)eZ + ATeZ (
y − AeZθ

(i)eZ )]
.

Notice that the iteration counteri in (34) defines an inner loop
(the SOSIM scheme) which is nested inside the MM iteration.

Finally, the pair of update equationsθ(i+1)
Z = 0 and(34) can

be written compactly as

θ(i+1) = (α − β)θ(i) + (1 − α)θ(i−1) + (35)

β E [E+ I]
−1

[
θ(i)+ AT

(
y − Aθ(i)

)]
,

which is the form used in [7]. Parametersα and β can be
adjusted to maximize the speed of the SOSIM (see [7]).

In summary, the resulting method is a GMM algorithm
where each step consists of computing matrixE, followed
by a number of SOSIM steps, large enough to guarantee the
decrease of theQ-function.

D. Singularities and Convergence

The main difficulty in studying convergence of the algo-
rithm defined by (29) and (30) is caused by the following
feature: if a component reaches zero, it stays zero forever (see
(21)), possibly preventing convergence to a minimizer of the
objective function.

A similar difficulty appears in the IRLS algorithm for robust
regression and has caused serious problems in characterizing
its convergence behavior;e.g., the convergence proof in [11]
includes a finiteness condition on the weights which, in
our problem, would require using a penalty function with
second derivative at the origin. As noted above, this would
rule out most sparseness inducing penalties, which are not
differentiable at the origin.

A related issue occurs in the so-called Weiszfeld algorithm
(WA, [52]) for the Fermat-Weber problem, which consists in
finding the point minimizing the sum of the distances to a set
of given points (see [9] for recent results and references).The
WA can also be seen as an MM algorithm based on quadratic
majorization and also has an IRLS flavor [12]. The proof of
convergence of that algorithm requires that all weights are
always finite, and most of the work thereafter was focused on
studying conditions under which this is true.

The observations in the previous paragraph clearly beg
the following question: if the algorithm is initialized with
all components different from zero, does it converge to a
minimizer of the objective function? Although we do not have
a proof of convergence, we will next present results (the proofs
of which can be found in Appendix A) which strongly suggest
that this IRLS-type zero locking behavior does not seem to
compromise the convergence of the algorithm.

Definition 1: Let Z(θ) = {i : θi = 0} and Z̃(θ) = {i :
θi 6= 0} be two functions that return the sets of indices of the,
respectively, zero and nonzero components of a vector.

Proposition 2: Consider thaty is generated according to
(2), i.e., y = Aθ + n, with θ an arbitrary fixed parameter
vector, and the update equation is given by (32). Then

Z(θ′) = ∅ ⇒ P
(
{y : Z(θ′′) 6= ∅}

)
= 0, (36)

that is, with probability one with respect to the (Gaussian)
density governing the generation ofy, if the algorithm is

initialized such thatZ(θ̂
(1)

) = ∅, then,Z(θ̂
(t)

) = ∅, for any
finite t.
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The following proposition characterizes the minima of the
objective function (5) and extends to arbitrary convex GSM
priors recent results shown in [30], [31] forC(θ) = ‖θ‖1.

Proposition 3: Consider the objective functionL(θ) =
‖y − Aθ‖2/2 + λC(θ) where C(θ) =

∑
i C(θi) is a

sum of convex (not necessarily strictly so) even functions,
continuously differentiable everywhere except maybe at the
origin. Then,θ∗ is a global minimum ofL(θ) if and only if
its components satisfy the following set of conditions:

aT
j (y − Aθ∗) = λC ′(θ∗j ), if θ∗j 6= 0 (37)

|aT
j (y − Aθ∗) | ≤ λ δ, if θ∗j = 0 (38)

whereaj is the j-th column of matrixA and δ = C ′(0+) ≡
limθ→0+ C ′(θ).

Finally, the following proposition uses the previous one to
characterize the points to which the algorithm may converge.

Proposition 4: Let the iterative algorithm defined by the
update equation (32) be initialized with all nonzero compo-

nents,i.e., Z(θ̂
(1)

) = ∅. If the algorithm converges to some
point θ×, then, with probability one, this point satisfies the
necessary and sufficient conditions (NSC) of optimality (37)-
(38), thus is a global optimum.

In summary, we have shown that if the algorithm is ini-
tialized with all components different from zero, then (with
probability one) no component will become zero in a finite
number of steps; moreover, if the algorithm converges, then
(also with probability one) it does so to a global optimum
of the convex objective function. Notice that these resultssay
nothing about rates of convergence, and it is not clear how the
proximity of singularities affects the speed of the algorithm;
this is left as a topic of future research.

VI. MM A LGORITHMS BY MAJORIZING BOTH THE

LOG-L IKELIHOOD AND THE PENALTY

A. Quadratic Majorizers

It is clear fromProperty 2 (see Section III) that a third class
of MM algorithms can be obtained by combining (i.e., adding)
the majorizers (13) and (25) derived in the two previous
sections, yielding theQ-function

Q(θ;θ′) = ‖θ − φ‖2
2 +

∑

i

q(θi ; θ′i) (39)

Notice thatQ(θ;θ′) can be minimized separately w.r.t. each
componentθi, leading to a simple shrinkage operation,

θ′′i =
Ei,i φi

1 + Ei,i

, (40)

whereEi,i depends on the previous estimate according to (33).
Observe (see (35)) that this update rule coincides with a single
SOSIM iteration forα = β = 1 (with α = 1, the SOSIM is
in fact a first-order method).

B. Non-Quadratic Majorizer for the Penalty

The fact that the majorizer on the log-likelihood makes this
term separable opens the door to the use of majorizers on the
penalty which need not be quadratic. In fact, what is desirable
is that the penalty majorizer, when added to a separable log-
likelihood majorizer, yields aQ-function with a closed-form
minimizer. In view of this, anℓ1 majorizer is a natural choice
for ℓp penalties with0 < p < 1, for two reasons: it’s tighter
than a quadratic majorizer; the minimizer of the resulting Q-
function is given by a simple soft thresholding rule.

The penalty|θ|p, for 0 < p < 1 and θ′ 6= 0, satisfies the
inequality

|θ|p ≤ |θ| p |θ′|p−1 + (1 − p) |θ′|p, (41)

with equality for θ = θ′. Of course, forp < 1, the majorizer
(41) is undefined forθ′ = 0. Proceeding as for the quadratic
majorizer, we define the functionr(·, ·) : R

2 → R as

r(θ; θ′) =





Γ(θ′) |θ| + ζ ⇐ θ′ 6= 0
+∞ ⇐ θ′ = 0 ∧ θ 6= 0
0 ⇐ θ′ = 0 ∧ θ = 0,

(42)

whereΓ(θ′) ≡ λ p |θ′|p−1, while ζ = (1−p) |θ′|p is a constant
irrelevant for the resulting algorithm. UsingProperty 2, we
finally have the following bound for a GGD penalty

λ ‖θ‖p
p ≤

∑

i

r(θi, θ′i). (43)

Combining (43) with the majorizer in (13), finally leads to the
Q-function

Q(θ; θ′) =
1

2
‖θ − φ‖2

2 +
∑

i

r(θi, θ′i). (44)

Minimizing with respect to eachθi, leads to the update rule

θ′′i = soft
(
φi,Γ(θ′i)

)
, (45)

where

Γ(θ′i) =

{
+∞ ⇐ θ′i = 0
Γ(θ′i). ⇐ θ′i 6= 0.

(46)

Notice that soft(x,+∞) = 0, for any x.
As with the quadratic penalty majorizer, if a component

becomes zero, it will be stuck at zero forever, which may
prevent convergence to a minimizer. It isn’t possible to extend
to this majorizer the results presented in Section V-D for the
quadratic majorizer. Furthermore, notice that whenp < 1, the
objective function is non-convex, thus no monotonic algorithm
can be guaranteed to converge to a global optimum. Never-
theless, in practice, we have never observed any convergence
problems: as long as all components are initialized far away
enough from zero, the algorithm always yields high quality
image restorations.

VII. SUMMARY OF ALGORITHMS AND COMPUTATIONAL

COST ANALYSIS

In this section, we briefly summarize all the algorithms
presented in this paper. The algorithm presented in Section
IV (Equation (17)) is callediterative shrinkage-thresholding
(IST), since it proceeds by iteratively applying a non-linear
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shrinkage-thresholding functionΨC,λ. The class of algorithms
defined in Section V are termediteratively reweighted shrink-
age (IRS), because Equation (32) can be seen as a shrinkage
operation, in which the shrinkage weights inE are updated
at each iteration. When asecond-order stationary iterative
method(SOSIM), defined in (35), is used to solve (31), we
refer to the resulting algorithm as IRS-2. When we take a
single step of a first-order method to solve (31), the result-
ing update equation is given by (40) and the corresponding
algorithm is called IRS-1. Finally, the algorithm introduced in
Section VI-B, defined by (45), is designated as ISoft (standing
for iterative softthresholding).

It worth pointing out that all the algorithms involve com-
puting φ(t), as given by (15), which is nothing more than the

current estimatêθ
(t)

minus the gradient of the log-likelihood
term. Defining the function

Φ(θ) = θ + WT HT (y − HWθ) (47)

we can writeφ(t) = Φ(θ̂
(t)

). With this function in hand, we
summarize the algorithms considered in this paper in Table I.

TABLE I

SUMMARY OF THE ALGORITHMS: FOR EACH ALGORITHM, THE

COMPUTATIONS INVOLVED IN EACH ITERATION ARE SHOWN.

IST bθ(t+1)
= ΨC,λ

�
Φ

�bθ(t)
��

IRS-1 ComputeE by equation (33) andF = E [E + I]−1;bθ(t+1)
= FΦ

�bθ(t)
�

IRS-2 If t is multiple of M , computeF as in IRS-1;bθ(t+1)
= (α−β) bθ(t)

+ (1−α) bθ(t−1)
+ β FΦ

�bθ(t)
�

ISoft Computeγ = [Γ(θ
(t)
1 ), ..., Γ(θ

(t)
i ), ...];bθ(t+1)

= soft
�
Φ

�
θ(t)

�
, γ
�

In each iteration, the costs of computingΨC,λ in IST, the
vector additions, the diagonal product and inversionE[E+I]−1

in IRS-1 and IRS-2, all the multiplications by scalars and
sums in IRS-2, and the soft threshold function in ISoft, are
all O(N), i.e., they grow linearly with the dimension ofθ.
Therefore, the leading term of the cost per iteration of all the
algorithms comes from computingΦ. The multiplications by
H and HT , in (47), can be done efficiently via FFT, with
O(N log N) cost, since these matrices represent convolutions.
For the multiplications byW andWT, when these matrices
correspond to orthogonal or redundant wavelet bases, there
are efficient algorithms withO(N) and O(N log N) cost,
respectively [41]. Consequently, the global cost per iteration
of all the algorithms isO(N log N).

VIII. E XPERIMENTS

The goal of the experiments reported in this section is not to
assess the performance of the image restoration criteria ofthe
form (4). This has been carried out in several other publica-
tions, in comparison with other state of the art criteria, namely

in [7], [24], [28], [29], [33], [37]. In those papers, the reader
can also find examples where the visual quality of the restored
images may be assessed. It’s clear that the performance of
such criteria (e.g., in terms of SNR improvement) does not
depend on the optimization algorithm used to implement it,
but only on the type of wavelets and of the penaltyC(θ). On
the other hand, the relative convergence speed the algorithms
is essentially independent of these choices. In this paper,
we use GGD priors,i.e., C(θ) = ‖θ‖p

p, and simple Haar
wavelets. We are well aware that this does not lead to state-of-
the-art performance in terms of SNR improvement; however,
the conclusions obtained concerning the relative speed of the
algorithms are valid for other wavelets and penalty functions.

The experiments reported in this section were designed
to evaluate the algorithms considered in this paper in three
typical image restoration scenarios: strong blur with low noise
(experiment 1), mild blur with medium noise (experiment 2),
and no blur with strong noise (experiment 3). The details
of each of these scenarios are shown in Table II. All the
algorithms were initialized with allθ̂i equal to a small
constant (notice that this does not correspond to a constant
image) and parameterλ was hand tuned for the best SNR
improvement.

TABLE II

EXPERIMENTAL SETTING.

Experiment image blur kernel C(θ) BSNR

1 Cameraman 9 × 9 uniform ‖θ‖1 40 dB

2 Lena [1,4,6,4,1]T [1,4,6,4,1]
256

‖θ‖1 17 dB

3 Cameraman [1] (no blur) ‖θ‖0.5
0.5 10 dB

Experiment 1: In this case we consider a strong blur,
corresponding to a very ill-conditioned matrixH. The
objective functionL(θ(t)) is plotted in Figure 1. IRS-2 is
clearly faster than IRS-1 and IST: IRS-1 and IST require
roughly 3700 iterations to reach the objective function values
that IRS-2 reaches after 300 iterations. This was already
illustrated in [7] and is due to the ability of the SOSIM to
handle ill-conditioned systems. The slowness of IST in this
problem can be traced to the matrix bound in (12), with
D = I, which is very loose becauseH is very ill-conditioned.
In this problem, ISoft coincides with IST, because the penalty
is C(θ) = ‖θ‖1. In conclusion, of the algorithms described
in this paper, IRS-2 should be chosen for problems involving
severely ill-conditioned blurs.

Experiment 2: This experiment is targeted at assessing
the behavior of the algorithms for mild blur and medium
noise. The evolution of the objective function (in Figure
2) shows that IST is faster than both IRS-1 and IRS-2.
This is again a understandable result: with mild blur and
medium noise, the problem is closer to denoising than to
deblurring, and IST takes advantage of the fact that, in each
iteration, it uses an exact denoising rule. Again, in this case,
ISoft coincides with IST, because the adopted penalty is
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Fig. 1. Evolution of the objective functionL(bθ(t)
) produced by the

algorithms IST, IRS-1, and IRS-2 in experiment 1 (see text and Table II
for details).

C(θ) = ‖θ‖1. In conclusion, in problems involving mild blur
and medium to strong noise, IST should be the chosen method.

Experiment 3: Finally, the third experiment aims at assessing
the speed of the ISoft algorithm. Because ISoft only differs
from IRS-1 and IST in the way it handles the penalty (not
the likelihood), we consider a simple denoising problem,i.e.,
with H = I, with the penaltyC(θ) = ‖θ‖p

p with p = 1/2.
Notice that, in this case, the denoising ruleΨC,λ (see (16)-
(17)) of IST does not have a closed-form; thus, we have
implementedΨC,λ via a numerical solution of (16). Of course,
each iteration of the resulting IST scheme is computationally
much heavier than each iteration of ISoft or ISR-1. Given the
absence of blur, and the fact that we are using orthogonal
wavelets,α = β = 1 is the optimal parametrization of IRS-2,
making it similar to IRS-1. The results in Figure 3 show that
ISoft is almost as fast as IST (which converges in one iteration,
because this is a denoising problem) without involving the
expensive numerical implementation ofΨC,λ. ISoft is faster
than IRS-1 because the quadratic bound used by the latter
algorithm is not as tight as theℓ1 majorizer used by ISoft.

IX. CONCLUDING REMARKS

In this paper, we have shown that several recently pro-
posed algorithms for wavelet-based image deconvolution can
all be seen as members of the MM family, resulting from
different choices of majorizers. The IST class of algorithms
(recently proposed by several authors) results from bounding
the Hessian of the log-likelihood term with an identity matrix.

By using a quadratic majorizer on the penalty function, we
obtain IRS methods. This class is further divided into IRS-1
and IRS-2, when first- or second-order iterative algorithms,
respectively, are used to address the linear system that needs
to be solved at each iteration. These algorithms share some
features with the IRLS family, namely in that both involve
weights which, in principle, and if handled naı̈vely, can
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Fig. 2. Evolution of the objective functionL(bθ(t)
) produced by the

algorithms IST, IRS-1, and IRS-2 in experiment 2 (see text and Table II
for details).
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Fig. 3. Evolution of the objective functionL(bθ(t)
) produced by the

algorithms IST, IRS-1, and ISoft in experiment 3 (see text and Table II for
details).

become infinite if some component(s) of the iterate becomes
zero. Moreover, once a component becomes zero, it remains
there forever, possible compromising the convergence of the
algorithm to a minimizer of the objective function. We have
shown several results which strongly suggest that this feature
of IRS algorithms does not destroy their usefulness: if properly
initialized, the algorithm never (i.e., with probability zero)
produces zeros in a finite number of steps; if the algorithm
converges, then it does so to a minimum of the objective
function. We have also shown how to write the algorithm in
such a way that, even if some components become zero, no
infinite weights have to be handled.

Finally, we have introduced a new class of methods, ob-
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tained by combining a bound on the log-likelihood with an
ℓ1 majorizer on the penalty. For non-convex penalties, theℓ1
majorizer is tighter than the quadratic one, leading to faster
algorithms.

We have experimentally compared these algorithms in typ-
ical image restoration benchmark scenarios. The conclusions
of this comparison can be summarized as follows: algorithm
IRS-2 is the best for problems involving severe blurs; in
problems involving mild blur and medium to large noise, IST
outperforms the other methods; in problems with GGD priors
with exponent less than one, ISoft performs better than IRS,
while IST can not be directly used because the necessary
denoising rule does not have a closed-form expression.

Current research work is aimed at obtaining methods which
perform as well as IRS-2 under strong blur and as well as IST
in weak blur and medium to high noise situations.

APPENDIX A: PROOFS

A. A.1. Proof of Proposition 1

Proof: The spectral norm of a symmetric matrixB,
denoted‖B‖2, is its largest absolute eigenvalue. If{ǫi} are
the eigenvalues ofB, the eigenvalues ofI − B are{1 − ǫi},
thus‖B‖2 ≤ 1 implies thatI � B. It turns out that

‖WT HT HW‖2 = ‖HW(HW)T ‖2

= ‖HWWT HT ‖2

= ‖H‖2
2 = 1, (48)

because: by hypothesis, the convolution operator is normal-
ized, i.e., ‖H‖2

2 = 1; by hypothesis, the columns of matrix
W correspond to a normalized tight frame,i.e., WWT = I,
[10], [41]; for any matrixB, ‖BBT ‖2 = ‖BT B‖2.

A.2. Proof of Equation (32)

Proof: Applying the matrix inversion lemma to (31), as
well as the fact that all elements ofDeZ are nonzero,

θ′′eZ =
(
ATeZAeZ + DeZ)

−1

ATeZy

=

[
D−1eZ ATeZ − D−1eZ ATeZ (

AeZD−1eZ ATeZ + I
)
−1

AeZD−1eZ ATeZ]
y.

Putting the factorD−1eZ ATeZ in evidence on the left, and adding
and subtracting(AeZD−1eZ ATeZ + I) inside the square brackets,

θ′′eZ = D−1eZ ATeZ [
I−

(
AeZD−1eZ ATeZ + I

)
−1(

AeZD−1eZ ATeZ + I
)

+
(
AeZD−1eZ ATeZ + I

)
−1

]
y

= EeZ ATeZ(
AeZEeZATeZ + I

)
−1

y, (49)

whereEeZ = D−1eZ is a diagonal matrix. Notice now that matrix
EeZ is simply obtained fromE (defined in (33)) by keeping
only the nonzero elements; thus

AeZEeZATeZ = AEAT .

Finally, it’s clear that combiningθ′′

Z = 0 and the definition of
θ′′eZ given by (49) into a single equation yields (32).

A.3. Proof of Proposition 2

Proof: Without loss of generality, consider one particular
component ofθ′′, say θ′′j . Since all diagonal elements ofE
are nonzero (because, by hypothesis,Z(θ′) = ∅) for θ′′j to be
zero it is necessary that

aT
j

(
AEAT + I

)
−1

y = 0, (50)

whereaj denotes thej-th column of matrixA. This condition
means that the vector(AEAT + I)−1y must belong to the
subspace orthogonal toaj . But matrix(AEAT +I) is positive
definite (becauseAEAT is positive semi-definite), so it maps
a subspace into a subspace, meaning that the condition in (50)
is equivalent toy belonging to some subspace, which has
zero measure, thus zero probability under the Gaussian density
assumed in (4). Finally, this conclusion can be extended to
the complete vectorθ′′, and to any finite number of iterations,
since any finite union of subspaces has zero measure.

A.4. Proof of Proposition 3

Proof: Recall that the subgradient5, at x, of a convex
function f : R

n → R, denoted as∂f(x), is a set of vectors
defined by

v ∈ ∂f(x) ⇔ f(y) ≥ f(x) + vT (y − x), ∀y ∈ R
n.

If f is differentiable atx, then ∂f(x) = {∇f(x)}. A
necessary and sufficient condition (NSC) forL(θ) to have a
global minimum atθ∗ is for zero to belong to the subgradient
at θ∗, i.e.

0 ∈ ∂L(θ∗) ⇔ L(θ) ≥ L(θ∗),∀θ 6= θ∗. (51)

For our objective function,

∂L(θ) = −AT (y − Aθ) + λ
∑

i

∂C(θi),

thus the NSC in (51) can be written in a coordinate-wise
manner as

∃uj ∈ ∂C(θ∗j ) : aT
j (y − Aθ) − λuj = 0, for all j. (52)

For those coordinatesθ∗j 6= 0, since away from the ori-
gin C(θ) is continuously differentiable, we have∂C(θ∗j ) =
{C ′(θ∗j )} and the NSC condition have the form (37).

The subgradient at zero is∂C(0) = [−δ, δ]; this is true
both if C(θ) is differentiable at the origin, in which case
δ = 0, or otherwise, because sinceC(θ) is an even function
limθ→0− C(θ) = − limθ→0+ C(θ) = − δ. Thus, for zero
coordinates,θ∗j = 0, (52) can be written as in (38).

A.5. Proof of Proposition 4

Proof: From Proposition 2, with probability one,

Z(θ̂
(t)

) = ∅, for any finite t. Under this condition,AeZ = A

and (31) can be written as
(
AT A + D

)
θ̂

(t+1)
= AT y. (53)

5See [34] for a comprehensive coverage of convex analysis.
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Since D is diagonal andDi,i = λC ′(θ̂
(t)

i )/θ̂
(t)

i , (53) is
equivalent to

λ
C ′(θ̂

(t)

i )

θ̂
(t)

i

θ̂
(t+1)

i = aT
i (y − Aθ̂

(t+1)
), for all i. (54)

If the algorithm converges toθ×, the non-zero components
of θ× must be fixed points of (54). Inserting this fixed point

condition θ̂
(t+1)

i = θ̂
(t)

i = θ×i (for θ×i 6= 0) into (54) shows that
these components satisfy the NSC (37).

For components that converge to zero,θ×i = 0, a fixed point
argument can’t be used, because zero components are neces-
sarily fixed by construction of the algorithm (see (27)). For
these components, we have to explicitly study the conditions

under whichlimt→∞ θ̂
(t)

i = 0. Given that̂θ
(t)

i is different from
zero, we can rewrite the update equation (54), as

θ̂
(t+1)

i = θ̂
(t)

i


aT

i (y − Aθ̂
(t)

)

C ′(θ̂
(t)

i ) λ




︸ ︷︷ ︸
T (θ̂

(t)

i
)

. (55)

Under the hypothesis thatlimt→∞ θ̂
(t)

= θ×, then|T (θ̂
(t)

i )|
converges inR: in fact, the numerator converges to some finite

numberaT
i (y−Aθ×) andλ |C ′(θ̂

(t)

i )| converges toδ λ (recall

that δ = limθ→0+ C ′(θ)). If δ > 0, then |T (θ̂
(t)

i )| converges

to a finite quantity, while ifδ = 0, |T (θ̂
(t)

i )| goes to+∞. For
θ
(t)
i to converge to zero it is thus necessary that|T (θ×i )| < 1.

Finally, notice that this condition is the same as (38).
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