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Abstract— Standard formulations of image/signal deconvolu- where the objective function has two terms: a quadratic log-
tion under wavelet-based priors/regularizers lead to very high |ikelihood (or data discrepancy) term plus a (usually non
dimensional optimization problems involving the following dif- quadratic) log-prior (also known as regularizer of penalty

ficulties: the non-Gaussian (heavy-tailed) wavelet priors lead functi | ddition to bei f | di . lit
to objective functions which are non-quadratic, usually non- unction). In addition to being of very large dimensiorgli

differentiable and sometimes even non-convex; the presence bt the_se optimization problems are also difficult er two other
convolution operator destroys the separability which underlies main reasons: the best performing penalty functions are non

the simplicity of wavelet-based denoising. This paper presents a differentiable and sometimes even non-convex; the presenc
unified view of several recently proposed algorithms for handling ¢ 5 onvolution operator (rather than simply additive whit

this class of optimization problems, placing them in a common G . . dest th bilit hich derli
majorization-minimization (MM) framework. One of the classes aussian noise) destroys the separability which underlies

of algorithms considered (when using quadratic bounds on non- the simplicity of wavelet-based denoising. These optimiza
differentiable log-priors) shares the infamous “singularity issue” tion problems have been recently addressed via expectation

(SI) of “iteratively reweighted least squares” (IRLS) algorithms:  maximization (EM) algorithms [7], [27], [28], as well as
the possibility of having to handle infinite weights, which may by majorization-minimization (MM) methods (also known as

cause both numerical and convergence issues. In this paper, d ootimizati t timizati thods:
we prove several new results which strongly support the claim olihd optimization oF Suffogate optimization mMethods, see

that the SI does not compromise the usefuiness of this class of[36] for a tutorial/review on MM algorithms) [18], [29]. Eker
algorithms. Exploiting the unified MM perspective, we introduce approaches to wavelet-based image restoration were hecent

a new algorithm, resulting from using ¢, bounds for non-convex reviewed in [7] and [28], so we refrain from reviewing them

regularizers; the experiments confirm the superior performance ; T .
of this method, when compared to the one based on quadratic &eor]e,[zlz]d simply indicate some key references: [5], [6]],[21

majorization. Finally, an experimental comparison of the several !
algorithms, reveals their relative merits for different standard This paper f_OCUSGS on th? class of .MM apprOQChes to
types of scenarios. wavelet-based image restoration by considering threelgess

EDICS: RST-DBLR, "Image & Video Restoration andj0rization strategies leading to three different classe
i o algorithms, as described in the following three subsestion
Enhancement: Deblurring

A. MM Algorithms via Majorizing the Log-Likelihood

We show that the methods independently introduced by
Wavelet-based methods are the current state-of-the-artgieral authors [18], [27], [28], [23], [24], [40], [49], 0%
imgge den_oi_sing, both in terms of performance and compglsn all be seen as MM algorithms based on a separable
tational efficiency (seee.g, [26], [42], [43], [45], [47], and qyadratic majorizer on the log-likelihood. This class ajal
the many references therein). However, image restorationyjthms involve the iterative application of non-linear isthr
general €.g, deblurring/deconvolution) is much more chalyge/thresholding denoising operators, thus they are terme
lenging than denoising, and applying wavelets turns outeto Rerative shrinkage-thresholdingiST) or iterative denoising

a much harder task. Unlike most approaches to wavelet-bagfghrithms. Convergence proofs for this class of algorghm
denoising, which lead to thresholding rules, the optinimat naye been recently presented in [16], [18].

problems resulting from the wavelet-based formulations of
Qeconvplutpn have no simple closed-form solutions (et(ceg MM Algorithms via Majorizing the Penalty Function
in special circumstances [21]). ) o

Most formulations of image deconvolution under wavelet- When a quadratic separable majorizer on the penalty func-

based priors lead to very large scale optimization problerHgn is adopted, the resulting MM algorithm has the struetur
of an iteratively reweighted shrinkagéRS) which is related
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non-differentiability, the corresponding weight is infinithus where matrixH represents the observation operator, and
locking this variable at that point. This effect raises ndoa contains samples of independent zero-mean Gaussian random
difficulties (handling infinity) and may prevent convergeraf variables of variance2. Matrix H can model many types of
the algorithm. linear observations, but this paper will focus on deconyoitu
In this paper, we show several new results concernitig.g, deblurring) problems. In this case, matkikrepresents a
the infamous “singularity issue”, which strongly suggdsitt 2D convolution and it is block-circulant with circulant loks
this issue doesn’t compromise the usefulness of this clhss(assuming periodic boundary conditions for the convohjtio
algorithms. More specifically, we show that or block Toeplitz with Toeplitz blocks [1]. Multiplying any
a) the algorithm can be written in such a way that iector (image) byH or H” can thus be done using the 2D
dispenses with having to handle infinite values;  fast Fourier transform (FFT) with a cost O NV log V), where
b) if initialized with all components different from N is the number of image pixels.
zero, then, with probability one, no component will To obtain a wavelet-based formulation, consider thaan
become zero in a finite number of iterations; be represented on some wavelet basisxas W6, where
c) if the algorithm converges, it does so to a minimizef is the vector of representation coefficients and the set of
of the objective function (with probability one). columns of W is a wavelet basis or dictionary. In the case
of an orthogonal basisW is a square orthogonal matrix,

C. MM Algorithms via Majorizing Both the Log-LikelihoodWhereas for an over-complete dictionary (e.g., a tight &am

and the Penalty Function W has more columns than rows. With this wavelet-based
. . .__representation, the observation model becomes
We introduce a new class of MM algorithms, obtamedeD
by combining the separable quadratic majorizer on the log- y =HW®O +n, (2)

likelihood with a majorizer on penalty function, for whichew
consider two options: with a quadratic majorizer, we recov
a particular instance of the algorithm introduced in [7]tlwi log p(y|0) = — B ly — HWO|2 + K ©)
an ¢; majorizer, which is well suited for non-convex penalty 202 2 ’

functions, we obtain a new class of algorithms which we C&NhereH -||3 denotes the usual squared Euclidean norm &nd

gnd the resulting log-likelihood function is

iterative softthresholding (ISoft). is a constant independent 6f
The maximum penalized likelihood@PL) estimate off is
D. Outline of the Paper given by R
The remaining sections of the paper are organized as 6 = arg H}ginL(e)v (4)

follows. Section Il reviews the formulation of wavelet-bds
image restoration as an optimization problem, analyzes twgere 1 )

sources of the difficulties in handling that optimizatiorolpr L(6) = by ly —HWS8|z +A1C(8), ()
lem, and mentions related work. Section Il contains a brig\;herec
introduction to MM algorithms. In Section IV, a class of
MM algorithm is derived by considering majorizers on th
log-likelihood term of the objective function. Another st

of algorithms, obtained by using majorizers on the penal
function, is presented in Section V; that section also dant
new theoretical results concerning the properties of tlassc
of algorithms. In Section VII, we summarize the algorithm

(0) is a penalty function which has several different
ossible interpretations, depending on the framework iithwvh

e problem is formulated. In Bayesian decision theoretic
terms, (4) defines the well-knowmaximum a posteriori
t1AP) estimate, withAC(6) = —o2log p(8), where p(8)

4s a prior density (usually heavy-tailed), expressing tharse
nature of the wavelet coefficients of natural images [43k Th

d vze thei tational cost iteration. SAfid stimation criterion (4) can also be seen in a regularinatio
and analyze their computational cost per rteration. Seall S|oe spective as a way to address the ill-posed problem afinfe
presents an experimental comparison of the several type 'RE

i . : . ) . ring @ from y; in that setting('(@) is called the regularization
algorithms, showing their relative merits for differenpgs of function and) is the regularization parameter [3].

scenarios, in_ terms of. severity of the blu_r ope_rator; annOl_Jn Of course the MAP/MPL criterion is not the only possible
of added noise; natqre of the adopte_d prior. Finally, Sch%hoice for wavelet-based image denoising/restoratiord an
IX ends the paper with some concluding remarks. several alternatives have been proposed with excellenttses
[33], [44], [45], [48]. In this paper, we are solely concedne
with algorithms for solving the MAP/MPL criterion, and will
A. Wavelet-Based Image Deconvolution not discuss the relative merits of this option with respect t
In this paper, we adopt the standard convention of represeifie possible alternatives.
ing images as vectors, obtained by stacking all the pixels in
some predetermined ordee.g, lexicographically). In image B. Gaussian Priors / Quadratic Penalties
reconstruction/restoration problems, the goal is to esnan
original imagex from an observatioly, assumed to have beenG
produced by the linear-Gaussian observation model

A
y = Hx +n, @) —0?logp(0) =1 C(0) =T 6"PO+ R,

Il. PROBLEM FORMULATION

The simplest version of (4) is obtained when a zero-mean
aussian prior fop is adopted:
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whereP is symmetric positive semi-definite arftlis a scalar
independent of). In this case, the solution of (4) is

6= (WH'HW +\P) WTH"y. ©6)

In this paper, we will describe MM algorithms which are
obtained by addressing each one (or both) of this difficsiltie
that is, by using majorizers for the log-likelihood or/are t
penalty function.

Of course, this estimate can only be obtained via an iterativ

algorithm, due to the huge size of the matrix being inveried;

fact, it's not even practical to explicitly compute it or stoit
(e.g, for 256 x 256 images, it would be 2562 x 2562 matrix).

C. Non-Gaussian (Sparseness-Inducing) Priors

It is well accepted that Gaussian densities are not adequgl?e
L ey St

models for the statistics of wavelet coefficients of natura

images; the sparse nature of wavelet-based represemstat

(many very small or even zero coefficients together with a f

very large ones) demands heavy-tailed densities [41]. @ne 0

the distributions most often adopted to model the stasistic

wavelet coefficients is the independent generalized Gaussi

density (GGD, see [43])
p(0) x exp{ — TZ |6;” } )

The logarithm of this prior is proportional to theth power

@)

E. Related Problems and Approaches

Optimization problems formally close to (4), witHH W
replaced by some arbitrary matriX, have been studied in
other contexts and applications. For example, wAthbeing
the design matrixof some regression problem, the LASSO
ast absolute shrinkage and selection operator) aiteis
milar to (4), withC'(0) = ||0||1 [51]. Notice, however, that
State-of-the-art algorithms which have been proposed lie so

Ae LASSO (such ag¢east angle regressiof22]) cannot be

ew

used to address (4) because maHiaWV can not be explicitly
computed or stored, nor is it possible to access individmasr
columns, or elements. This fact places (4) beyond the reach
of most general-purpose optimization methods.

Another problem formulation leading to an objective func-
tion with the same form as (4) is the following. Let the
columns of W contain a redundant (over-complete) dictionary
with respect to which a representation of the observed image

(or signal) is sought [14], [23], [24]. This representaticemn
be obtained by solving (4), witll = I andC'(@) being some
penalty function encouraging sparse solutions [23], [Z4le
algorithms considered in this paper can be directly appled
where A = 0'2 7. It has been found that gOOd WaVeIet'basem]is scenario. Foc(a) — ||0||1, this is known as thdvasis-
models of natural images are obtained fo& 1 [43]. pursuit denoisingoroblem [14].

Another class of heavy-tailed prior densities which hasbee Finally, we should mention that MM algorithms have been
used to model wavelet coefficients (and which contains GGldged for more than a decade in image reconstruction (mainly
with p < 2 as special cases) is that of Gaussian scale miXtU'iﬁStomographic medical imaging, see.g, [20], [25], [39]).
(GSM); see [2], [7], [17], [45], for details. However, to the best of our knowledge, they have only very

If (4) is hard to solve wherp(6) is a Gaussian prior, it recently been used to tackle the optimization problems that

becomes much harder whe(@) is a heavy-tailed prior, such result from wavelet-based approaches to inverse problems
as a GGD or GSM. In this case, we no longer even have@g, deconvolution) [18], [28], [29].

“closed form” expression (such as (6)).

of an ¢, norm' plus an irrelevant constart, that is,

— 02 logp(0) =X C(0) = A 0[5 + S,

A majorization-minimization (MM, [36]) iterative algohim
for solving (4) has the form

6" = argmin(8:0")

M AJORIZATION-MINIMIZATION ALGORITHMS
D. The Sources of Difficulties

The difficulty of solving (4) has two main sources:

« Matrix HW, unlike H alone, is not block-circulant (nor (8)
block-Toeplitz), thus cannot be efficiently handled usin
FFT-based methods. Even wh&¥% is orthogonal HW
is not. The presence of this matrix makes solving (
even in the Gaussian case examined in |I-B, a task t
can only be achieved using iterative algorithms.

%hereQ(B;B’) > L(0), for any @, 8’, andQ(0;0) = L(6),
a4e. Q(0;0") upper bounds (majorized)(), touching it for
I‘ét: @’. It's well known that this property of the Q-function
implies monotonicity of the algorithm, since

~(t+1) ~(t+1) ~(t+1) ~b) ~(t+1) )
. . L(6 = L(0 —-Q(0 ;0 0 ;0
o When the penaltyC'(0) (equivalently, the log prior ( ) (A(t+1)) A(t?( 10)+Q( 167)
—logp(@)) is not a quadratic function o, there is, in < Qo ;0 7)
eneral, no close-form solution to (4). A(t) () ~(t)
9 ) < Q@76 = 1@"), (©)
) where the first inequality results fro®(9;60') > L(6), the
IRecall that the¢, norm is defined agv|l, = (3, |vi|?) /P thus . ~(t)
V| = 3=, |viP. Although forp < 1, [|v||, is not a norm, we will (as is Second one from the fact that, according to (@)6;6 )
commonly done) still refer to it as a norm. A+

attains its minimum foi® = 6 .
The MM approach opens the door to the derivation of EM-
type algorithms [19], where th€)-function (the majorizer)

20f course, ifH = I and W is orthogonal, (4) may have closed-form
solution for some choices ¢f(@); however, in this case, we would be in the
presence of a pure denoising problem, not a deconvolutioblgro
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doesn't have to result from a model with missing-data, as which is, of course, an equality fér= 6’. This suggests using
standard EM. Any convenient inequality and any property @he rh.s. of (13) ag@(g;é(t)), with ' = 8, According

L(6) can be invoked to obtain a vali@-function [36]. o [36], this quadratic bounding approach to obtaining a
MM algorlthms havg three properties (which have trivighonotonic algorithm was first introduced in [8].
proofs), of which we will make use later: A choice of D leading to a simple algorithm is a matrix

proportional to identity. In fact, as stated by the follogin
Property 1: The functionQ.(6;60') = AQ(6;60') + B, proposition (shown in Appendix A1) = WTHTHW,
where A > 0 and B are constants independent®f meaning that we can ud® = I in (13).
(possibly dependent off) defines exactly the same

) , ; Proposition 1: Let the set of columns oW correspond to
iteration asQ(6;0").

a normalized tight frame, that4sWW7 = I and H be
normalized such thatH|» = 1. Then,I = WTHTHW.

Property 2: Let L() = L.1(0 L4(0); consider . . . .
pery (9) 1(0) + L2(0) I InsertingD =TI into (13), we can write (after some simple

two majorizers, Q:(0;6') > L;(8) and it
Q2(6;0') > L,(8), both with equality forg = ¢’. ManipPu ation)

Then, all the following functions majorize.(0) L,(0 <} 0_o6W2 1K 14
(with equality for@ = 0'): Q1(0;0') + Q»(6;6"), (6) < 2 16 =™ ’ (14)
L1(0) + Q2(6;0"), andQ1(6;0") + L2(6). where K is a constant independent 8fand
) )
Property 3: The monotonicity property of MM is kept if, o' =6 +W'H" (y - HW§6 ) . (15)
instead of exactly minimizing)(0; 0 ' ) (as in (8)),
the following weaker condition is satisfied: B. Update Rule

With a majorizer forL, in hand, we invokeProperty 1 to
): drop K and Property 2 to use (14) to build a majorizer for

_(t41) the complete objective functioh,(0) + AC(8). The resulting
Notice that this is the only property & that ypdate equation is thus

was invoked in showing the monotonicity of MM. A

~(t+1) A(t+1) éit)

0 is such thatQ(6 §(t); 6"

) < Q(

similar reasoning underliegeneralizedEM (GEM) 6""" — argmin {1 160 — ¢W||2 + A 0(9)} . (16)
algorithms [53]. Algorithms defined by iteration (10), 6 (2
instead of (8), are thus calledeneralized MM Notice that (16) corresponds to a pure denoising problem
(GMM) algorithms. (same as (4)-(5), wittHW = I), under a penalty/log-prior
C(6), and with “noisy coefficients»*). Denoting as® .
IV. MM A LGORITHM VIA MAJORIZATION OF THE the function which returns the solution of (16), which is a
LOG-LIKELIHOOD so-called “denoising rule”, we can write (16) as
A. Majorizing the Log-Likelihood , é4t+1): Doy ((b(t))
Let us denoteL,(0) = (1/2)|ly — HW@|*, the log-
likelihood term of the objective function in (5). This is . <é<t> L WTHT (y—HWé(t)>> an
a quadratic function with positive semi-definite Hessian ’

WTH"HW, thus convex (though not necessarily strictly s0), The algorithm defined by (17), termégrative shrinkage-
and gradien® " H" (HW6—y). We can write a second orderthresholding(IST), coincides with those previously presented
Taylor expansion of this function (which is exact, becaue tin [18], [28], and [29]. Theoretical results concerning the

function is quadratic) about some poifit convergence of this iterative procedure can be found in,[18]
L) = L(0)+(0—0)T WTHT(HWO —y) for the case of convex GGD priors, that is, 0(6) = |62,

with 1 < p < 2. The results in [18] were recently extended and

gradient atg’ generalized in [16]. Similar algorithms were also proposed

1 . ; .

+ Yo eT WIHTHW (0 - 0'). (1) [49] and [50], vylthout any formal 'support or analysis, buttwi

2 —_— excellent practical results. Algorithms of the same classew
Hessian also proposed in [23] and [24], to find sparse representation

Now let D be a symmetric matrix such that on redundant dictionaries.
D = WIHTHW, (12) For a few choices of”(0), there are closed-form expres-

- o sions for¥ ¢ . We focus only on decoupled penalty functions
where- denotes matrix inequality SinceA = B = v'(A—  of the formC(6) = 3, C(6,). In this case, (16) can be solved

B)v >0, for anyv, we can obtain a majorizer fat,(6) as separately w.r.t. each component:
< / _ o\T TyyT /o
Lé(e) > Lége ) + (0 0 ) W'H (HWG y) é\it—i_l) _ argmin {; (97 - ¢1)2 + )\0(97)} , (18)
+5(0-6)"D(6 -8, (13) "

4If the columns of a matrix correspond to a normalized tight frathen
SRecall thatA > B (for two symmetric matrices) means that matrixWW7 = I, but WTW may be different from identity, becaud® may
A — B is positive semi-definite. not be orthogonal; see [10], [41], for an introduction tonfies.
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where ¢; denotes thei-th component of¢"). There are to be tangent to\C'(9) at ¢, that is, their derivatives af’
two standard cases for which (18) has simple closed-fomrmust coincide. This condition leads to
solutions. For a zero-mean Gaussian pri(f;) = (1/2)62,

! 0/
the solution is simply n=2A 09(, ) (0", (22)
1) ¢y oY i St
0, =T (19) whereC’(0) is the derivative of’(-) at6. Of course, we could

also solve forv to have the majorizer touchC(6) at ¢’, but

For a Laplacian priorife., C(0;) = |6;|? with p = 1), we have this value is irrelevant for the algorithm (s@eoperty 1).
Notice that when the penalty corresponds to a log-prior,

éf”l) = soft(¢;, \) = sign(é;) max{0, |;| — A}, AC(0) = —o?logp(6), equation (22) can be written as
the well-known soft threshold (ST) function [43]. Closed T@0) = —0? L 1 dlogp(6)| _ o P'(¥)
form solution of (18), withC(¢;) = |6;|?, also exist for o' ae |, 0 p(0")’

p € {4/3,3/2, 3,4} [13]. Finally, the also popular hard- . . o ) . . .

threshold (HT) function can be seen as the limit of (18), witWhICh comc@es W'.th equation (18) in [7]; this shows the

C(6;) = 6,7, whenp goes to zero (see [43] for details) method therein derived under an EM framework, also has an
A shrinkage/thresholding function which was shown in [7 M interpretation, based on quadratic majorizers for GSM

and [28] to be very effective for wavelet-based deconvoluti . g-priors. This quadratic bounding technique is well know
is the non-negative garrotéNNG), in robust regression, where it is used to derive the iteztiv

reweighted least squares (IRLS) method [35].

~(t+1) max {0, ¢? — \?} Notice thatY (¢’) in (22) is not defined fo#’ = 0. If C(0)
0; = garrote(¢;, \) = Gt lpso (20) ' has finite second derivative at the origin, we can defir{e)
o by continuity. Noticing that, in this cas€}’(0) = 0, we have
wherel,— is the indicator function of the conditiom = 0.
As shown in [7], the NNG corresponds to the solution of (18) i SO _ o, €0 - C70) c"(0)
under a prior which does belong to the GSM family. 00 6 60 0—0 ’

by definition of second derivative, which is by hypothesis
V. MM A LGORITHM VIA MAJORIZATION OF THEPENALTY finite. In this case, the objective function is strictly cerv
L . and twice differentiable, and the Q-function
A. Majorizing the Penalty/Log-Prior

In this section we derive MM algorithms by considering Q(6; 0') = |y —-HW9|*> + 6" D(6) 6, (23)
majorizers for GGD (for0 < p < 2) and GSM log-priors. , . ) .
. : : - \ whereD(6") = diag(Y(¢;), ¢ = 1,2,...), is smooth. Thus,
We consider only independent priors, whe(®) = I1, p(0:) convergence of the resulting MM algorithm can be easily

Eleeqsungalc)entt)lgi on( )to aZGgl\(/l zimlellhe(roef taﬁlé?]aggglsd:rn:;shown, following the same line of reasoning used to show
P 9 y convergence of EM [53].

particular case). Even in denoising problems (whBEre- I) Y h ft d lties i let-based
with an orthogonal wavelet basig\’W = WW7 = T), owever, the most often used penalties in wavelet-base

r1‘mage restoration are non-differentiable at the originjoivh

IS, a sufficient condition for leading to sparse estimateg.[43
For these penalties, we have to follow a different route. The
nctiong(-; -) : R? — R = RU {—o0, +0c0}, given by

which allows decoupling the solution of (4), most priors i
this class do not lead to closed-form solutions (except in
few cases mentioned in Subsection IV-B).

Let us take note of some properties of GSMs which Wlﬁu
be needed below. Any (univariate) GSM densjyd) is 2Y)/2+v <= 040
necessarily even, since it's a convex combination (maybeq(g 0 = { +o0 = 0=0A0£0 (24)
infinite) of even functions (zero-mean Gaussian densities) 0 = 0 =0A0=0
For the same reason, any (univariate) GSM deng(t}) is a
decreasing function gf|, thus\ C(0) = — o2 logp(#) is an is well defined for alb and¢’, and is a valid majorizer because
[ , of course also even. Since GSMst satisfiesq(0, 6') > AC(0), with equality foré = ¢’. Finally,
have heavier tails than a pure Gaussian, the correspondsince C'(0) = >, C(6;), we invoke Property 2 to add the

penalty\C'(9) = — o2 log p(#) necessarily grows slower thanindividual majorizers yielding the majorizer

a quadratic function. Finally, singg#) is a GSM, bothp(9)

and C(#) are C™, except maybe at the origin [32], [46]. > q(0::60;) = AC(6) (25)
SinceC(0) is even and subquadratic, it is majorized by an i

even quadratic functiori;e. we seek; andv such that with equality for@ = 6’. Adding this majorizer to the log-

n o likelihood termL,(8) = (1/2) ||y — A8||?, whereA = HW,
AC(O) < 2 0"+ v, (1) yields theQ-function
with equality for6 = 0, wheret’ = §(t) denotes the previous 0') =y — A6|* + Z (0;; 65). (26)

iterate, all throughout this section. This requiteg2) 6% + v
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B. Update Rule Finally, the pair of update equation@%*” =0 and(34) can

t+1 i
The updated iteratd'" ), denoted simply a®”, is the be written compactly as

minimizer of Q(6; 6'). The bound defined in (24) implies  (+D) — (4 —3)0W 4+ (1 — )00 + (35)

that the updating rule satisfies _ : ,
pdating BE[E+T] 1[0<”+ AT (y—AB(Z))},
(0 =0) < (0;=0), (27) L .
. _ _ which is the form used in [7]. Parametesisand 3 can be
meaning that it can be stated as the constrained problem adjusted to maximize the speed of the SOSIM (see [7]).
"o . B 2 L In summary, the resulting method is a GMM algorithm
0 = arg“g“{ ly — Ad]| +QZq(9“9i) } where each step consists of computing maikfix followed
subject to, — 0, ' (28) by a number of SOSIM steps, large enough to guarantee the
decrease of th€)-function.
where Z = {i : 0; = 0}, and 8 is the subvector o
corresponding to the indices id. Letting Z = {i : 6, # 0},

we denote ad\ ; the matrix formed by the columns & with D. Singularities and Convergence

indices inZ. Problem (28) is equivalent to The main difficulty in studying convergence of the algo-
, rithm defined by (29) and (30) is caused by the following

0 = 0 (29) feature: if a component reaches zero, it stays zero foreesr (

0% = arg Hbm{ ly — A29H2 + OTDZB } . (30) (21)), possibly preventing convergence to a minimizer @& th

objective function.
whereD ; = diag(Y(6)), i € 2)_ Since (30) is quadratic, the A sim_ilar difficulty appears in t_he IRLS algorithm for robus_t _
minimizer is simply given by regression and has caused serious problems in charauterizi
. its convergence behavioe.g, the convergence proof in [11]
Ag y. (31) includes a finiteness condition on the weights which, in
our problem, would require using a penalty function with
As shown Appendix A.1, the update rule which combines (28kcond derivative at the origin. As noted above, this would
and (31) can be written compactly as rule out most sparseness inducing penalties, which are not
g T T —1 differentiable at the origin.
6"=EA (AEA + I) Y (32) A related issue occurs in the so-called Weiszfeld algorithm
whereE is a diagonal matrix with the?; ; entry given by (WA, [52]) for the Fermat-Weber problem, which consists in
) finding the point minimizing the sum of the distances to a set
B — { (T(Gg)) < 0/#0 (33) of given points (see [9] for recent results and referencEs.
o 0 < 0;=0. WA can also be seen as an MM algorithm based on quadratic
épajorization and also has an IRLS flavor [12]. The proof of

necessary to handle infinite values, which is usually pdintgonverggljce of that algorithm requires that all weights are
out as a weakness of IRLS type algorithms. If a compone% ays finite, "?"f]d most of the_work_thgreafter was focused on
becomes zero, the corresponding elemeniEoélso simply Studying CO”d'“‘?”S upder which Fh's IS true.

becomes zero. Of course, this will lock this component ab zer The observations in the previous paragraph clearly beg

forever, which may impact the convergence of the algorith e following question: if the algorithm is initialized it

to a minimizer of the objective function. This issue will beal_ Qomponents dlffere_nt from_ zero, does it converge fo a
analyzed in detail below, in Subsection V-D. minimizer of the objective function? Although we do not have

a proof of convergence, we will next present results (thefsro
of which can be found in Appendix A) which strongly suggest
C. Solving the Update Equation that this IRLS-type zero locking behavior does not seem to
To implement each update step, one can simply keepc@mpromise the convergence of the algorithm.
zero the components that were zero and compute the remainbefinition 1: Let Z(0) = {i : 6; = 0} and Z(g) ={i:
ing ones by solving (31). Of course this does not requigg -£ 0} be two functions that return the sets of indices of the,
inveTzrting the matrix, but J}JSt solving the correspondingteyn  respectively, zero and nonzero components of a vector.
(AZ AIZ ;r DZI)Gd:_ AZ yl. D#:‘ to its S'Zr?’ this syzt_em Proposition 2: Consider thaty is generated according to
B e e Phrosch PO 1 ). ey = A0 . with§ an vy e parametr
stationary iterative metho@SOSIM) [4], which is defined by vector, and the update equation s given by (32). Then
Z20)=0 = P({y:2(8")#0}) =0, (36)

outY = (a-p)oY +(1-a)es Y+ (34)
~ —1[,(3) T (o  A_p that is, with probability one with respect to the (Gaussian)
f [Dz+1] [02+AZ (y Az97 ﬂ density governing the generation @f if the algorithm is
1 t
Notice that the iteration counteiin (34) defines an inner loop initialized such thatZ (60" ) = 0, then,Z(é( )) = (), for any
(the SOSIM scheme) which is nested inside the MM iteratiofinite ¢.

07 — (Ag A —|—D§)

This form of the update equation shows that it is nev
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The following proposition characterizes the minima of thB. Non-Quadratic Majorizer for the Penalty
objective function (5) and extends to arbitrary convex GSM Thg fact that the majorizer on the log-likelihood makes this
priors recent results shown in [30], [31] f6f(0) = 6] term separable opens the door to the use of majorizers on the

Proposition 3: Consider the objective functior,(§) = penalty which need not be quadratic. In fact, what is dekdrab
ly — A6|?/2 + A\C(8) where C(6) = > .C(¢;) is a Iis that the penalty majorizer, when added to a separable log-
sum of convex (not necessarily strictly so) even functionkelihood majorizer, yields aQ-function with a closed-form
continuously differentiable everywhere except maybe at tininimizer. In view of this, art; majorizer is a natural choice
origin. Then,8* is a global minimum ofZ () if and only if for £, penalties with0 < p < 1, for two reasons: it's tighter

its components satisfy the following set of conditions: than a quadratic majorizer; the minimizer of the resulting Q
function is given by a simple soft thresholding rule.
af (y — A% = A()’(g;f), if 67 #0 (37) The penalty|d|?, for 0 < p < 1 and 6’ # 0, satisfies the
al (y — AB%)| < A§, it 9r=0 (38 Mmeaquality
0 < 10| p 0[P~ + (1 —p) [0']7, (41)

wherea; is the j-th column of matrixA andé = C’(0") , ) o
limy g+ C'(6). with equality for6 = ¢’. Of course, forp < 1, the majorizer

] ] . ) (41) is undefined fo¥’ = 0. Proceeding as for the quadratic
Finally, the following proposition uses the previous one tf'hajorizer, we define the functior(-, -) : R? — R as

characterize the points to which the algorithm may converge ) )
Proposition 4: Let the iterative algorithm defined by the r(6;6') — ig) 01+ ¢ z z, fg AO£0O (42)
update equation (32) be initialized with all nonzero compo- "~/ 0 , [
. ~(1) _ = 0=0A0=0,
nents,i.e, Z(@ ') = (. If the algorithm converges to some ) R ) .
point 6%, then, with probability one, this point satisfies thavherel'(¢') = A p[6'[P~, while ¢ = (1—p) [¢'|" is a constant
necessary and sufficient conditions (NSC) of optimality){37irrelevant for the resulting algorithm. Usirigroperty 2, we

(38), thus is a global optimum. finally have the following bound for a GGD penalty
~In summary, we have shown that if the algorithm is ini- A6 < Zr(9i7 0)). (43)
tialized with all components different from zero, then (wit p

probability one) no component will become zero in a finit
number of steps; moreover, if the algorithm converges, th
(also with probability one) it does so to a global optimum

of the convex objective function. Notice that these ressitg Q6;0') = 1 16 — &2 + Zr(ei, 9)). (44)
nothing about rates of convergence, and it is not clear hew th 2 - !

proximity of singularities affects the speed of the aldanit
this is left as a topic of future research.

%ombining (43) with the majorizer in (13), finally leads teth
-function

Minimizing with respect to each;, leads to the update rule

0; = soft(¢;,I'(6))), (45)
VI. MM A LGORITHMS BY MAJORIZING BOTH THE where _ r_
LOG-LIKELIHOOD AND THE PENALTY I(0;) = feo = H=0 (46)
v ). < 6, +0.

A. Quadratic Majorizers Notice that softz, +00) = 0, for any z.
. ] . As with the quadratic penalty majorizer, if a component
Itis clear f_romPropertyZ (se_e Section III)_th_a_tathlrd_classbecOmes zero, it will be stuck at zero forever, which may
of MM algorithms can be obtained by combining(, adding) prevent convergence to a minimizer. It isn’t possible teeast

the majorizers (13) and (25) derived in the two Previoug, this majorizer the results presented in Section V-D fer th

sections, yielding the)-function quadratic majorizer. Furthermore, notice that wipea 1, the
objective function is non-convex, thus no monotonic aldponi

Q(6;0') =6 — 9ll3+ > _ q(6:6)) (39) can be guaranteed to converge to a global optimum. Never-

i theless, in practice, we have never observed any convergenc

roblems: as long as all components are initialized far away
nough from zero, the algorithm always yields high quality
image restorations.

Notice thatQ(@;0’) can be minimized separately w.r.t. eaclg
component);, leading to a simple shrinkage operation,

0/_/ — Ei,i ¢z
1 1 + Ei7i7

(40)  VII. SUMMARY OF ALGORITHMS AND COMPUTATIONAL
COSTANALYSIS

whereE; ; depends on the previous estimate according to (33).In this section, we briefly summarize all the algorithms
Observe (see (35)) that this update rule coincides with@leinpresented in this paper. The algorithm presented in Section
SOSIM iteration fora = 8 = 1 (with « = 1, the SOSIM is IV (Equation (17)) is calledterative shrinkage-thresholding

in fact a first-order method). (IST), since it proceeds by iteratively applying a non-éine
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shrinkage-thresholding functiobic . The class of algorithms in [7], [24], [28], [29], [33], [37]. In those papers, the b
defined in Section V are termetbratively reweighted shrink- can also find examples where the visual quality of the redtore
age (IRS), because Equation (32) can be seen as a shrinkggages may be assessed. It's clear that the performance of
operation, in which the shrinkage weights ¥ are updated such criteria €.g, in terms of SNR improvement) does not
at each iteration. When aecond-order stationary iterative depend on the optimization algorithm used to implement it,
method(SOSIM), defined in (35), is used to solve (31), wéut only on the type of wavelets and of the penalt§g). On
refer to the resulting algorithm as IRS-2. When we take the other hand, the relative convergence speed the algarith
single step of a first-order method to solve (31), the resuls essentially independent of these choices. In this paper,
ing update equation is given by (40) and the correspondimg use GGD priorsj.e, C(6) = [|0|]b, and simple Haar
algorithm is called IRS-1. Finally, the algorithm introdetin  wavelets. We are well aware that this does not lead to sfate-o
Section VI-B, defined by (45), is designated as ISoft (stagdi the-art performance in terms of SNR improvement; however,
for iterative softthresholding). the conclusions obtained concerning the relative speetieof t

It worth pointing out that all the algorithms involve com-algorithms are valid for other wavelets and penalty furmgio
puting ¢(“, as given by (15), which is nothing more than the The experiments reported in this section were designed

current estimat@ = minus the gradient of the log-likelihoodto evaluate the algorithms considered in this paper in three

term. Defining the function typical image restoration scenarios: strong blur with lavise
S (experiment 1), mild blur with medium noise (experiment 2),
®0)=0+W H (y-HW®) (47) and no blur with strong noise (experiment 3). The details

L) ~(t) i . L of each of these scenarios are shown in Table II. All the
we can writeg™ = ®(0 ). With this function in hand, we gi40rithms were initialized with alld; equal to a small

summarize the algorithms considered in this paper in Tableghnstant (notice that this does not correspond to a constant

TABLE | image) and parametex was hand tuned for the best SNR

SUMMARY OF THE ALGORITHMS: FOR EACH ALGORITHM, THE Improvement'

COMPUTATIONS INVOLVED IN EACH ITERATION ARE SHOWN

et e TABLE Il

IST 0 =Wca (‘1’ (9 )) EXPERIMENTAL SETTING.

IRS-1| ComputeE by equation (33) an@ = E [E + 1] ; Experiment | image blur kernel | c(e) [ BsSNR]
~(t+1 t
RS 3 (§< )) 1 Cameraman| 9 x 9 uniform 11611 40 dB

[1,4,6,4,1)7[1,4,6,4,1]

IRS-2|| If ¢ is multiple of M, computeF as in IRS-1; 2 Lena 256 el 17 d8
— N At . 3 Cameraman| [1] (no blur) 1ey9-2 | 10 dB
"= (a-p) 81 1—0)8" Vs sF @ (e(”) 05

ISoft || Computey = [T(6'"), ..., T(6"), ..]; . . .

i Experiment 1: In this case we consider a strong blur,
8" — soft (@ (GW) ,7) corresponding to a very ill-conditioned matrifl. The

objective functionL(B(t)) is plotted in Figure 1. IRS-2 is
clearly faster than IRS-1 and IST: IRS-1 and IST require

vector additions, the diagonal product and inverdifi-+1] ! roughly 3700 iterations to reach the objective functioruesl

in IRS-1 and IRS-2, all the multiplications by scalars anﬁ?at IRS-2 reaches after 300 iterations. This was already

: S ustrated in [7] and is due to the ability of the SOSIM to
sums in IRS-2, and the soft threshold function in ISoft, ar ~ o . .
all O(N), i.e, they grow linearly with the dimension . fandle ill-conditioned systems. The slowness of IST in this

. . . problem can be traced to the matrix bound in (12), with
Therefore, the leading term of the cost per iteration of fadl t D = 1, which is very loose becaudd is very ill-conditioned.

ggo::ghlrr;s% c?nmej7from rfobmpgt'n@' -I;fr:el ?ILIJI“F\)/I;C&EE_T_S vt\)/?;hln this problem, ISoft coincides with IST, because the pgnal
a , In (47), can be done efficiently via ' is C(6) = ||8]]:. In conclusion, of the algorithms described

O(N log N) 90$t’ since these matrlcgs represent ConVOI.u“or?ﬁ'this paper, IRS-2 should be chosen for problems involving
For the multiplications byW and W+, when these matrices ; L

severely ill-conditioned blurs.
correspond to orthogonal or redundant wavelet bases, there
are efficient algorithms withO(XN) and O(N log N) cost,
respectively [41]. Consequently, the global cost per iiena
of all the algorithms iO(N log V).

In each iteration, the costs of computidg » in IST, the

Experiment 2: This experiment is targeted at assessing
the behavior of the algorithms for mild blur and medium
noise. The evolution of the objective function (in Figure
2) shows that IST is faster than both IRS-1 and IRS-2.
VIIl. EXPERIMENTS This is again a understandable result: with mild blur and

The goal of the experiments reported in this section is not toedium noise, the problem is closer to denoising than to

assess the performance of the image restoration critettaeof deblurring, and IST takes advantage of the fact that, in each
form (4). This has been carried out in several other publicderation, it uses an exact denoising rule. Again, in thiseca

tions, in comparison with other state of the art criterianely 1Soft coincides with IST, because the adopted penalty is
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Fig. 1. Evolution of the objective functiorL(@m) produced by the )

. ) o ) ~(t

algorithms IST, IRS-1, and IRS-2 in experiment 1 (see text aadleril Fig. 2. Evolution of the objective functior.(6" °) produced by the

for details). algorithms IST, IRS-1, and IRS-2 in experiment 2 (see text aadler |l
for details).

C(0) = ||0]1- In conclusion, in problems involving mild blur
and medium to strong noise, IST should be the chosen meth

Experiment 3: Finally, the third experiment aims at assessin
the speed of the ISoft algorithm. Because 1Soft only differ
from IRS-1 and IST in the way it handles the penalty (nc
the likelihood), we consider a simple denoising problém,
with H = I, with the penaltyC(0) = [|0]5 with p = 1/2.
Notice that, in this case, the denoising role-  (see (16)-
(17)) of IST does not have a closed-form; thus, we hav:
implemented¥ ¢ , via a numerical solution of (16). Of course
each iteration of the resulting IST scheme is computatlymal
much heavier than each iteration of ISoft or ISR-1. Given th
absence of blur, and the fact that we are using orthogor
wavelets,c = 5 = 1 is the optimal parametrization of IRS-2,
making it similar to IRS-1. The results in Figure 3 showtha _| "~ °7"===°=7=°77%
ISoft is almost as fast as IST (which converges in one itenati 0 2 4 6 8 10 12
because this is a denoising problem) without involving th iterations

expensive numerical implementation #¢ . I1Soft is faster _

than IRS-1 because the quadratic bound used by the Ia&égmhms
algorithm is not as tight as th§ majorizer used by ISoft.  details).

objective function

obj

~o

Evolution of the objective functiorrL(é(t)) produced by the
IST, IRS-1, and ISoft in experiment 3 (see text aadld Il for

IX. CONCLUDING REMARKS

In this paper, we have shown that several recently prbecome infinite if some component(s) of the iterate becomes
posed algorithms for wavelet-based image deconvolution cgero. Moreover, once a component becomes zero, it remains
all be seen as members of the MM family, resulting frorthere forever, possible compromising the convergence ®f th
different choices of majorizers. The IST class of algorishmlgorithm to a minimizer of the objective function. We have
(recently proposed by several authors) results from bagndishown several results which strongly suggest that thisifeat
the Hessian of the log-likelihood term with an identity npatr Of IRS algorithms does not destroy their usefulness: if priyp

By using a quadratic majorizer on the penalty function, wigitialized, the algorithm never (i.e., with probabilityem)
obtain IRS methods. This class is further divided into IRSfroduces zeros in a finite number of steps; if the algorithm
and IRS-2, when first- or second-order iterative algorithmgonverges, then it does so to a minimum of the objective
respectively, are used to address the linear system thdsndénction. We have also shown how to write the algorithm in
to be solved at each iteration. These algorithms share sostgh a way that, even if some components become zero, no
features with the IRLS family, namely in that both involvénfinite weights have to be handled.
weights which, in principle, and if handled inaly, can Finally, we have introduced a new class of methods, ob-
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tained by combining a bound on the log-likelihood with ai\.3. Proof of Proposition 2
£1; majorizer on the penalty. For non-convex penalties, the - . . .
majorizer is tighter than the quadratic one, leading toefast Proof. W'tr,‘,om IOS?, of generallty,_ consider one particular
. component off”, sayf’/. Since all diagonal elements @&

algorithms. b "by hypotheisg’) = 0) for 6 to b

We have experimentally compared these algorithms in tyB-c n_(:r)zero ( ecaust?], ty ypothesigg") = 0) for 67 to be
ical image restoration benchmark scenarios. The conclasi ero it1s necessary tha
of this comparison can be summarized as follows: algorithm
IRS-2 is the best for problems involving severe blurs; in
problems involving mild blur and medium to large noise, ISfyherea; denotes thg-th column of matrle This condition
outperforms the other methods; in problems with GGD prioffeans that the vectqrAEAT + I)~'y must belong to the
with exponent less than one, 1Soft performs better than IR§bspace orthogonal gg But matrlx(AEAT+I) is positive
while IST can not be directly used because the necessggfinite (becausdEA” is positive semi-definite), so it maps
denoising rule does not have a closed-form expression. 3 subspace into a subspace, meaning that the condition)in (50

Current research work is aimed at obtaining methods whigh equivalent toy belonging to some subspace, which has
perform as well as IRS-2 under strong blur and as well as ISEro measure, thus zero probability under the Gaussiaritglens

a” (AEAT + I) Ty o, (50)

in weak blur and medium to high noise situations. assumed in (4). Finally, this conclusion can be extended to
the complete vecto”, and to any finite number of iterations,
APPENDIXA: PROOFS since any finite union of subspaces has zero measure.m

A. A.1l. Proof of Proposition 1

Proof: The spectral norm of a symmetric matrR®, A.4. Proof of Proposition 3
denoted||Bj||2, is its largest absolute eigenvalue.{{;} are

) ' Proof: Recall that the subgradiéntat x, of a convex
the eigenvalues oB, the eigenvalues of — B are {1 —¢;},

function f : R™ — R, denoted a®)f(x), is a set of vectors

thus | B2 < 1 implies thatl > B. It turns out that defined by
WIHTHW|, = |HWHW)T n
| o= [HWEHW) vedf®) & fly)=fx)+vT(y-x), ¥y eR".
= [HWW HT If f is differentiable atx, then df(x) = {Vf(x)}. A
is differentiable a en .
= =3 =1, (48) o

necessary and sufficient condition (NSC) (@) to have a
because: by hypothesis, the convolution operator is nermglobal minimum at* is for zero to belong to the subgradient
ized, i.e., 2 = 1; by hypothesis, the columns of matrixat 8, i.e.

W correspond to a normalized tight framies, WW7T =1, . . .

[10], [41]; for any matrixB, [BBT |, = [BTB|. . 0€0L(O") < L(6)=L(67),vo#6".  (51)

For our objective function,

A.2. Proof of Equation (32
d (32) OL(0) = —AT(y — AB) + 1> 0C(6;)

Proof: Applying the matrix inversion lemma to (31), as

well as the fact that all elements &f; are nonzero, ) . . . )
thus the NSC in (51) can be written in a coordinate-wise

0 — (AgAZ n DZ) Aly manner as
-1 Ju; € 0C(0%): al(y — A@) —\u; =0, forallj. (52
:[DzlAg—DzlAg (a;D;'AT +1) AZDzlAg]y s €00 aj(y = A8) = Au, 7 (2)
For those coordinate8; # 0, since away from the ori-
Putting the factoD ' AT in evidence on the left, and addingdin C(0) is continuously differentiable, we hawC(0;) =

and subtractingA ;D_"AT + 1) inside the square brackets,{C’(¢7)} and the NSC condition have the form (37).
The subgradient at zero BC(0) = [, J]; this is true

" py—1AT —1AT - C1AT both if C(0) is differentiable at the origin, in which case
63 = D;'AL [I—(AEDZ AL +T) (AZD.Z. AL +T)

4 d = 0, or otherwise, because sin€g#) is an even function
—1 limg_g- C(8) = —limg_ o+ C(¢) = —6. Thus, for zero
—1 AT
+ (AZDZ Az + I) } y coordinates¢; = 0, (52) can be written as in (38). [ ]

—1
= E;AL(AZ;E;AT+I) v, (49)
7 ( 77 ) A 5. Proof of Proposition 4

E; is S|mply obtamed fromE (deflned in (33)) by keeping Z(A<t ) = @ for any finitet. Under thls conditionA ; = A
only the nonzero elements; thus and (31) can be written as

A;E;AT = AEAT.
72777 (ATA+ D)8 = ATy, (53)
Finally, it's clear that combinin@’;, = 0 and the definition of
0% given by (49) into a single equation yields (32). m 5See [34] for a comprehensive coverage of convex analysis.
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Since D is diagonal andD,; = AC’(@E”)/@E

equivalent to
0

Y (53) is

!
A % 0 —al(y—a8"™), foralli. (54)
0,

7

If the algorithm converges t@*, the non-zero components

11

[14] S. Chen, D. Donoho, and M. Saunders. “Atomic decompastiyp basis
pursuit,” SIAM Journal of Scientific Computatiprol. 20, pp. 33-61,
1998.

[15] R. Coifman and D. Donoho. “Translation invariant desiog,” in
A. Antoniadis and G. Oppenheim, editor§/avelets and Statistics
pp. 125-150, Springer-Verlag, New York, 1995.

[16] P. Combettes and V. Wajs, “Signal recovery by proximaanmd-
backward splitting,"SIAM Journal on Multiscale Modeling & Simulatipn
vol. 4, pp. 1168-1200, 2005.

of 8 must be fixed points of (54). Inserting this fixed poinfl7] M. Crouse, R. Nowak, and R. Baraniuk. “Wavelet-basetistieal signal

conditioné\itﬂ): §§t) =6 (for 6 # 0) into (54) shows that

these components satisfy the NSC (37).
For components that converge to zetd,= 0, a fixed point

processing using hidden Markov model$EZEE Transactions on Signal
Processingvol. 46, pp. 886—902, 1998.

[18] I. Daubechies, M. De Friese, and C. De Mol. “An iteratiheesholding
algorithm for linear inverse problems with a sparsity camist” Com-
munications in Pure and Applied Mathematiesl. 57, pp. 1413-1457,

argument can't be used, because zero components are necesmg,.
sarily fixed by construction of the algorithm (see (27)). FAu9] A. Dempster, N. Laird, D. Rubin. “Maximum likelihood froimcom-
these components, we have to explicitly study the condition Plete data via the EM algorithmJournal of the Royal Statistical Society

under whichlim;_, o, 55” = 0. Given tha@t) is different from
zero, we can rewrite the update equation (54), as

~t+1) 1) [ al(y — Aém)
Cr(0; ") A
O
Under the hypothesis thiitn; ... 8" — 6%, then|T(d.")|

(B), vol. 39, pp. 1-38, 1977.

[20] A. de Pierro. “A modified expectation maximization algbrit for penal-
ized likelihood estimation in emission tomographyEEE Transactions
on Medical Imagingvol. 14, pp. 132-137, 1995.

[21] D. Donoho. “Nonlinear solution of linear inverse prehis by wavelet-
vaguelette decompositions,” Journal of Applied and Computational
Harmonic Analysisvol. 1, pp. 100-115, 1995.

[22] B. Efron, T. Hastie, |. Johnstone, R. Tibshirani. “Leasgle regression,”
The Annals of Statisticsol. 32, pp. 407-49, 2004.

[23] M. Elad, “Why simple shrinkage is still relevant for rediant
representations?”,|EEE Transactions on Information Theoryol. 52,
pp. 5559-5569, 2006.

[24] M. Elad, B. Matalon, and M. Zibulevsky, “Image denoisingth

converges irR: in fact, the numerator converges to some finite ~shrinkage and redundant representatiomsticeedings of the IEEE Com-

numbera’ (y —A0*) and\ |C’(§§t))| converges t@ \ (recall
that § = limy o+ C'(0)). If § > 0, then \T(Git )| converges
to a finite quantity, while if6 = 0, \T(@f )| goes to+oo. For

61@ to converge to zero it is thus necessary a9, )| < 1.
Finally, notice that this condition is the same as (38). ®m
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