Multidimensional Wavelet Representations

It is possible to construct wavelet representations and DWTs for multidimensional signals. In particular, we will be interested in 2-d DWTs for image analysis.

The basic scale space construction is completely analogous to the 1-d case.

We begin by specifying a scaling function \(\phi(x) \) where \(x \in \mathbb{R}^n \) and generate a space

\[
V_0 = \{ \phi(x - k) \}_{k \in \mathbb{Z}^n}
\]

\(n \)-tuples of integers
Ex. 2-d Haar scaling function

Let \(x = (x, y) \) point in the plane

\[
\Phi(x, y) = \begin{cases}
1, & 0 \leq x < 1, 0 \leq y < 1 \\
0, & \text{o.w.}
\end{cases}
\]

This is a very natural approximation function for images since we normally associate each pixel value with the integral of the underlying (continuous) image intensity function over a small square region of space.
2-d MRA

The 2-d multiresolution subspaces are generated by translates and dilates of the scaling function.

\[V_j = \{ a^{j(n_2)} \phi (2^j r - k) \}_{k \in \mathbb{Z}^n} \]

And we have

\[\cdots \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2(\mathbb{R}^n) \]

Ex. Haar scaling functions

\[\phi(a^{-j}x-1, a^{-j}y-1) \]
2-d Wavelet Subspaces

Difficulty:

Going from scale 2^{-j} to $2^{-(j+1)}$ (equiv. resolution 2^j to 2^{j-1}) involves a loss of information in the ratio of $2^n : 1$.

Ex. Haar Analysis

At scale 2^{-j}, each $2^{-j+1} \times 2^{-j+1}$ region of the plane is "analyzed" by 4 scaling functions. In contrast, at scale $2^{-(j+1)}$, only one scaling function analyzes the same region.
To account for the $2^n : 1$ loss of information between V_j and V_{j-1}, it is necessary to have 2^{n-1} wavelet functions (or equivalently 2^{n-1} highpass filters) to carry this lost info.

Ex. Haar Analysis

To represent the difference between V_j and V_{j-1}, we need to represent the deviations of the V_j piecewise constant approximation over the region $[0, 2^{-j_1}) \times [0, 2^{-j_1})$ from the V_{j-1} constant approximation over the same region.
These deviations or "details" are represented by projecting the image onto the 2-d Haar wavelets:

\[\psi_1(x, y) \]
\[\psi_2(x, y) \]
\[\psi_3(x, y) \]

Note:
- \(\psi_1 \) carries the horizontal deviation (i.e., senses vertical edges or details)
- \(\psi_2 \) carries vertical deviation (i.e., senses horizontal edges)
- \(\psi_3 \) carries diagonal deviation (i.e., sensitive to diagonal structure)
2-d Wavelet Subspaces

So, in 2-d we have 3 wavelet subspaces at each scale

\[W_j^1, W_j^2, \text{ and } W_j^3 \]

\[V_{j+1} = V_j \oplus W_j^1 \oplus W_j^2 \oplus W_j^3 \]

Ex. Let \(\psi_{j,m,n} = \psi^j(2^j x - m, 2^j y - n) \) (Haar wavelets)

Verify that

\[P_{V_{j+1}} f(x,y) = P_{V_j} f(x,y) + P_{W_j^1} f(x,y) \]

\[+ P_{W_j^2} f(x,y) + P_{W_j^3} f(x,y) \]

Hint: It suffices to show that each scaling function \(\phi(2^{j+1} x + m, 2^{j+1} y + n) \)

can be expressed as a linear combination of \(\{ \phi(2^j x + m, 2^j y + n) \}_{j=1,2,3} \) and \(\{ \psi^j(2^j x + m, 2^j y + n) \}_{j=1,2,3} \)
Note that the Haar wavelets

\[\psi'(x,y) \]
\[\begin{array}{|c|c|}
\hline
\frac{1}{2} & -\frac{1}{2} \\
\hline
-\frac{1}{2} & \frac{1}{2} \\
\hline
\end{array} \]
\[\begin{array}{|c|c|}
\hline
\frac{1}{2} & -\frac{1}{2} \\
\hline
\frac{1}{2} & \frac{1}{2} \\
\hline
\end{array} \]

\[\psi^2(x,y) \]
\[\begin{array}{|c|c|}
\hline
\frac{1}{2} & -\frac{1}{2} \\
\hline
-\frac{1}{2} & \frac{1}{2} \\
\hline
\end{array} \]
\[\begin{array}{|c|c|}
\hline
\frac{1}{2} & -\frac{1}{2} \\
\hline
\frac{1}{2} & \frac{1}{2} \\
\hline
\end{array} \]

\[\psi^3(x,y) \]
\[\begin{array}{|c|c|}
\hline
\frac{1}{2} & -\frac{1}{2} \\
\hline
-\frac{1}{2} & \frac{1}{2} \\
\hline
\end{array} \]
\[\begin{array}{|c|c|}
\hline
\frac{1}{2} & -\frac{1}{2} \\
\hline
\frac{1}{2} & \frac{1}{2} \\
\hline
\end{array} \]

can all be represented as products of one-dimensional Haar wavelets and scaling functions

\[\psi'(x,y) = \psi(x) \phi(y) \]
\[\psi^2(x,y) = \phi(x) \psi(y) \]
\[\psi^3(x,y) = \psi(x) \psi(y) \]

where

\[\phi(x) = \begin{cases}
1, & 0 \leq x < 1 \\
0, & \text{otherwise}
\end{cases} \]

\[\psi(x) = \begin{cases}
1, & 0 \leq x < \frac{1}{2} \\
-1, & \frac{1}{2} \leq x < 1 \\
0, & \text{otherwise}
\end{cases} \]
A similar construction holds in general.

Theorem: Let \(\phi \) be a scaling function and \(\psi \) be the corresponding wavelet generating an orthogonal MRA of \(L^2(\mathbb{R}) \). Define three wavelets:

\[
\psi'(x,y) = \phi(x)\phi(y) \\
\psi^2(x,y) = \phi(x)\psi(y) \\
\psi^3(x,y) = \phi(x)\phi(y)
\]

and for \(l = 1, 2, 3 \) let

\[
\psi_{j,m,n}^l = 2^j \psi(2^j x - m, 2^j y - n).
\]

Then

\[
\{ \psi_{j,m,n}^l \}_{j,m,n \in \mathbb{Z}^2} \text{ is an o.n. basis for } W_j^l.
\]

and

\[
\{ \psi_{j,m,n}, \psi_{j,m,n}^2, \psi_{j,m,n}^3 \}_{j,m,n \in \mathbb{Z}^2} \text{ is an o.n. basis for } L^2(\mathbb{R}^2).
\]
The 2-d DWT

Let \(f(x, y) \) be a 2-d image, \(x, y \in \mathbb{R}^2 \), and let \(\{ \Phi(x-m, y-n) \}_{m,n} \) be an o.n. basis for \(V_0 \) and
\[
\{ \psi_{j,m,n}^l(x,y) \}_{m,n} \text{ be an o.n. basis for } W^l_j, \quad l = 1, 2, 3, \quad j \geq 0.
\]

Then we can write
\[
f(x, y) = \sum_{m,n=-\infty}^{\infty} c_0(m,n) \Phi(x-m, y-n) + \sum_{j \geq 0} \sum_{l=1}^{3} \sum_{m,n=-\infty}^{\infty} d^l_j(m,n) \psi_{j,m,n}^l(x,y)
\]

where
\[
c_0(m,n) = \langle f, \Phi(x-m, y-n) \rangle
\]
\[
d^l_j(m,n) = \langle f, 2^j \psi(2^j x-m, 2^j y-n) \rangle
\]
\[
\{ d^l_j(m,n) \}_{m,n} = \text{wavelet coefficients at scale } 2^{-j} \text{ and orientation } l.
\]
Computing the 2-d DWT

1. Assume an initial set of scaling coefficients \(\{ C_J(m, n) \} \) representing an approximation \(f_j = P_{V_j} f \) (\(\approx f \) if \(J \) is sufficiently large) to an image \(f \) at scale \(J \).

 In practice, \(\{ C_J(m, n) \} \) are the pixel values of a digital image.

2. The wavelet and scaling coefficients at coarser scales, \(j < J \), are computed recursively using a 1-d lowpass scaling filter \(\{ h(n) \} \) and a 1-d highpass filter

\[
\hat{h}(n) = (-1)^{n} h(1-n) \]

(Exploiting separability of wavelet basis functions)
\[c_j(m',n') = \langle f, 2^j \phi(2^j x - m, 2^j y - n) \rangle \]

\[= \sum_{m,n} h(m-2^j) h(n-2^j) c_{j+1}(m',n') \]

\[d_j^1(m',n') = \sum_{m,n'} h_1(m-2m') h_1(n-2n') c_{j+1}(m',n') \]

\[d_j^2(m',n') = \sum_{m',n'} h_2(m-2m') h_2(n-2n') c_{j+1}(m',n') \]

\[d_j^3(m',n') = \sum_{m',n'} h_3(m-2m') h_3(n-2n') c_{j+1}(m',n') \]

\[\text{Note: Decimation in both vertical and horizontal directions} \]
Organization and Display of 2d-DWT

Assume we begin with a $2^J \times 2^J$ digital image f_J (i.e., \{ $c_J(m,n)$ \}_{m,n=0}^{2^J-1}$).

Because of decimation at each stage, we have

$$\{ d^j_i(m,n) \}_{m,n=0}^{2^j-1} \quad 2^j x 2^j \text{ instead of } 2^J x 2^J \quad 0 \leq j < J.$$

Note that the j_0-scale ($j_0 \leq J$) DWT of f_J produces

$$\{ c_{j_0}(m,n) \}_{m,n=0}^{2^{j_0}-1} \quad \text{and} \quad \{ d^j_0(m,n) \}_{m,n=0}^{2^j-1} \quad j = j_0, \ldots, J-1$$

Exactly $2^J \times 2^J$ scaling and wavelet coefficients.
We can organize the coefficients into an image, e.g., $j_0 = 2$.

<table>
<thead>
<tr>
<th>(0,0)</th>
<th>(0, 2^{j_0}-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>${ d_{j_2}^1 (m,n) }$</td>
<td>${ d_{j_2}^1 (m,n) }$</td>
</tr>
<tr>
<td>${ d_{j_2}^2 (m,n) }$</td>
<td>${ d_{j_2}^3 (m,n) }$</td>
</tr>
<tr>
<td>${ d_{j_1}^2 (m,n) }$</td>
<td>${ d_{j_1}^3 (m,n) }$</td>
</tr>
<tr>
<td>(2^{j_1}-1, 2^{j_1}-1)</td>
<td></td>
</tr>
</tbody>
</table>

The "subimages" are collections of wavelet or scaling coefficients at a particular scale (and orientation in the wavelet case).