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Abstract. This paper aims to shed light on achievable limits in active
learning. Using minimax analysis techniques, we study the achievable
rates of classification error convergence for broad classes of distributions
characterized by decision boundary regularity and noise conditions. The
results clearly indicate the conditions under which one can expect sig-
nificant gains through active learning. Furthermore we show that the
learning rates derived are tight for “boundary fragment” classes in d-
dimensional feature spaces when the feature marginal density is bounded
from above and below.

1 Introduction

The interest in active learning in the machine learning community has increased
greatly in the last few of years, in part due to the dramatic growth of data
sets and the high cost of labeling all the examples in such sets. There are sev-
eral empirical and theoretical results suggesting that in certain situations active
learning can be significantly more effective than passive learning [1–5]. Many of
these results pertain to the “noiseless” setting, in which the labels are determin-
istic functions of the features. In certain noiseless scenarios it has been shown
that the number of labeled examples needed to achieve a desired classification
error rate is much smaller than what would be need using passive learning. In
fact for some of those scenarios, active learning requires only O(log n) labeled
examples to achieve the same performance that can be achieved through passive
learning with n labeled examples [3, 6–8]. This exponential speed-up in learning
rates is a tantalizing example of the power of active learning.

Although the noiseless setting is interesting from a theoretical perspective,
it is very restrictive, and seldom relevant for practical applications. Some active
learning results have been extended to the “bounded noise rate” setting. In
this setting labels are no longer a deterministic function of the features, but
for a given feature the probability of observing a particular label is significantly
higher than the probability of observing any other label. In the case of binary
classification this means that if (X, Y ) is a feature-label pair, where Y ∈ {0, 1},
then |Pr(Y = 1|X = x)− 1/2| > c for every x in the feature space, with c > 0.
In other words, Pr(Y = 1|X = x) “jumps” at the decision boundary, providing
a very strong cue to active learning procedures. Under this assumption it can be
shown that results similar to the ones for the noiseless scenario can be achieved



[4, 9–11]. These results are intimately related to adaptive sampling techniques in
regression problems [12–14, 10, 15], where similar performance gains have been
reported. Furthermore the active learning algorithm proposed in [9] in addition
to provide improvements in certain bounded noise conditions is shown to perform
no worse than passive learning in general settings.

In this paper, we expand the theoretical investigation of active learning to
include cases in which the noise is unbounded. In the case of binary classification
this means that Pr(Y = 1|X = x) is not bounded away from 1/2. Notice that
in this case there is no strong cue that active learning procedures can follow,
since as sampling approaches the decision boundary the conditional probability
Pr(Y = 1|X = x) approaches 1/2. Since situations like this seem very likely to
arise in practice (e.g., simply due to feature measurement errors if nothing else),
it is important to identify the potential of active learning in such cases.

Our main result can be summarized as follows. Following Tsybakov’s formula-
tion of distributional classes [16], the complexity of the Bayes decision boundary
can in many cases be characterized by a parameter ρ = (d−1)/α, where d is the
dimension of the feature space and α is the Hölder regularity of the boundary.
Furthermore, the behavior of Pr(Y = 1|X = x) in the vicinity of the boundary
can be characterized by a parameter κ ≥ 1. The value κ = 1 corresponds to
the noiseless or bounded noise situation and κ > 1 corresponds to unbounded
noise conditions. We derive lower bounds on active learning performance. In
particular, it is shown that the fastest rate of classification error decay using
active learning is n−

κ
2κ+ρ−2 , where n is the number of collect examples, whereas

the fastest decay rate possible using passive learning is n−
κ

2κ+ρ−1 . Note that the
active learning rate is always superior to that of passive learning. Tsybakov has
shown that in certain cases (κ → 1 and ρ → 0) passive learning can achieve
“fast” rates approaching n−1 (faster than the usual n−1/2 rate). In contrast, our
results show that in similar situations active learning can achieve much faster
rates (in the limit decaying as fast as any negative power of n). Also note that
the passive and active rates are essentially the same as κ →∞, which is the case
in which Pr(Y = 1|X = x) is very flat near the boundary and consequently there
is no cue that can efficiently drive an active learning procedure. Furthermore we
show that the learning rates derived are tight for “boundary fragment” classes
in d-dimensional feature spaces when the density of the marginal distribution
PX (over features) is bounded from above and below on [0, 1]d.

The paper is organized as follows. In Section 2 we formally state the active
learning problem and define the probability classes under consideration. Sec-
tion 3 presents the basic results on lower bounds for active learning rates and
in Section 4 we provide corresponding upper bounds, which match the lower
bounds up to a logarithmic factor. Together, this demonstrates the bounds are
tight and hence near minimax optimal. Final remarks are made in Section 5 and
the main proofs are given in the Appendix.



2 Problem Formulation

Let (X, Y ) ∈ [0, 1]d × {0, 1} be a random vector, with unknown distribution
PXY . Our goal is to construct a “good” classification rule, that is, given X we
want to predict Y as accurately as possible, where our classification rule is a
measurable function f : [0, 1]d → {0, 1}. The performance of the classifier is
evaluated in terms of the expected 0/1-loss. With this choice the risk is simply
the probability of classification error,

R(f) ∆= E[1{f(X) 6= Y }] = Pr(f(X) 6= Y ) ,

where 1{·} denotes the indicator function. Since we are considering only binary
classification (two classes) there is a one-to-one correspondence between classi-
fiers and sets: Any reasonable classifier is of the form f(x) = 1{x ∈ G}, where
G is a measurable subset of [0, 1]d. We use the term classifier interchangeably
for both f and G. Define the optimal risk as

R∗ ∆= inf
G measurable

R(G) .

R∗ is attained by the Bayes Classifier G∗ ∆= {x ∈ [0, 1]d : η(x) ≥ 1/2}, where

η(x) = E[Y |X = x] = Pr(Y = 1|X = x) ,

is called the conditional probability (we use this term only if it is clear from the
context). In general R(G∗) > 0 unless the labels are a deterministic function of
the features, and therefore even the optimal classifier misclassifies sometimes. For
that reason the quantity of interest for the performance evaluation of a classifier
G is the excess risk

R(G)−R(G∗) = d(G, G∗) ∆=
∫

G∆G∗
|2η(x)− 1|dPX(x) , (1)

where ∆ denotes the symmetric difference between two sets3, and PX is the
marginal distribution of X.

Suppose that PXY is unknown, but that we have a large (infinite) pool of
feature examples we can select from, large enough so that we can choose any
feature point Xi ∈ [0, 1]d and observe its label Yi. The data collection operation
has a temporal aspect to it, namely we collect the labeled examples one at the
time, starting with (X1, Y1) and proceeding until (Xn, Yn) is observed. One can
view this process as a query learning procedure, where one queries the label of
a feature vector. Formally we have:

A1 - Yi, i ∈ {1, . . . , n} are distributed as

Yi =
{

1 , with probability η(Xi)
0 , with probability 1− η(Xi)

.

3 A∆B
∆
= (A ∩ Bc) ∪ (Ac ∩ B), where Ac and Bc are the complement of A and B

respectively.



The random variables {Yi}n
i=1 are conditionally independent given {Xi}n

i=1.

A2.1 - Passive Sampling: Xi is independent of {Yj}j 6=i.

A2.2 - Active Sampling: Xi depends only on {Xj , Yj}j<i. In other words

Xi|X1 . . .Xi−1,Xi+1, . . . ,Xn, Y1 . . . Yi−1, Yi+1, . . . , Yn

a.s.= Xi|X1 . . .Xi−1, Y1 . . . Yi−1 .

The conditional distribution on the right hand side (r.h.s) of the above expression
is called the sampling strategy and is denoted by Sn. It completely defines our
sampling procedure. After collecting the n examples, that is after collecting
{Xi, Yi}n

i=1, we construct a classifier Ĝn that is desired to be close to G∗. The
subscript n denotes dependence on the data set, instead of writing it explicitly.

Under the passive sampling scenario (A2.1) the sample locations do not de-
pend on the labels (except for the trivial dependence between Xj and Yi), and
therefore the collection of sample points {Xi}n

i=1 may be chosen before any ob-
servations are collected. On the other hand, the active sampling scenario (A2.2)
allows for the ith sample location to be chosen using all the information collected
up to that point (the previous i− 1 samples).

In this paper we are interested in a particular class of distributions, namely
scenarios where the Bayes decision set is a boundary fragment. That is, the
Bayes decision boundary is the graph of function. We consider Hölder smooth
boundary functions. Throughout the paper assume that d ≥ 2, the dimension of
the feature space.

Definition 1. A function f : [0, 1]d−1 → R is Hölder smooth if it has continu-
ous partial derivatives up to order k = bαc (k is the maximal integer such that
k < α.) and

∀ z,x ∈ [0, 1]d−1 : |f(z)− TPx(z)| ≤ L‖z − x‖α ,

where L,α > 0, and TPx(·) denotes the order k Taylor polynomial approximation
of f expanded around x. Denote this class of functions by Σ(L,α).

For any g ∈ Σ(L,α) let epi(g) =
{
(x, y) ∈ [0, 1]d−1 × [0, 1] : y ≥ g(x)

}
, that is,

epi(g) is epigraph of g. Define

GBF
∆= {epi(g) : g ∈ Σ(L,α)} .

In other words GBF is a collection of sets indexed by Hölder smooth functions
of the first d− 1 coordinates of the feature domain [0, 1]d. Therefore G∗ and the
corresponding boundary function g∗ are equivalent representations of the Bayes
classifier.

In order to get a better understanding of the potential of active learning
we impose further conditions on the distribution PXY . We assume that PX is
uniform on [0, 1]d. The results in this paper can easily be generalized to the
case where the marginal density of X with respect to the Lebesgue measure
is not uniform, but bounded above and below, yielding the same rates of error



convergence. We require also η(·) to have a certain behavior around the decision
boundary. Let x = (x̃, xd) where x̃ = (x1, . . . , xd−1). Let κ ≥ 1 and c > 0 then

|η(x)− 1/2| ≥ c|xd − g∗(x̃)|κ−1, if |xd − g∗(x̃)| ≤ ε0 , (2)
|η(x)− 1/2| ≥ cε0

κ−1, if |xd − g∗(x̃)| > ε0 , (3)

for some ε0 > 0. The condition above is very similar to the so-called margin
condition (or noise-condition) introduced by Tsybakov [16]. If κ = 1 then the
η(·) function “jumps” across the Bayes decision boundary, that is η(·) is bounded
away from the value 1/2. If κ > 1 then η(·) crosses the value 1/2 at the Bayes
decision boundary. Condition (2) indicates that η(·) cannot be arbitrarily “flat”
around the decision boundary (e.g., for κ = 2 the function η(·) behaves linearly
around 1/2). This means that the noise affecting observations that are made
close to the decision boundary is roughly proportional to the distance to the
boundary. We also assume a reverse-sided condition on η(·), namely

|η(x)− 1/2| ≤ C|xd − g∗(x̃)|κ−1 , (4)

for all x ∈ [0, 1]d, where C > c. This condition, together with (2) and (3) pro-
vides a two-sided characterization of the “noise” around the decision boundary.
Similar two-sided conditions have been proposed for other problems [17, 18].
Let BF(α, κ, L,C, c) be the class of distributions satisfying the noise conditions
above with parameter κ and whose Bayes classifiers are boundary fragments
with smoothness α.

3 Lower Bounds

In this section we present lower bounds on the performance of active and passive
sampling methods. We start by characterizing active learning for the boundary
fragment classes.

Theorem 1. Let ρ = (d− 1)/α. Then

lim inf
n→∞

infbGn,Sn

sup
P∈BF(α,κ,L,C,c)

E[R(Ĝn)]−R(G∗) ≥ cminn−
κ

2κ+ρ−2 ,

where inf bGn,Sn
denotes the infimum over all possible classifiers and sampling

strategies Sn, and cmin > 0 is a constant.

The proof of Theorem 1 is presented in Appendix A. An important remark is
that condition (4) does not play a role in the rate of the lower bound, therefore
dropping that assumption (equivalently taking C = ∞) does not alter the result
of the theorem.

Contrast this result with the one attained for passive sampling: under the
passive sampling scenario it is clear that the sample locations {Xi}n

i=1 must be
scattered around the interval [0, 1]d in a somewhat uniform manner. These can
be deterministically placed, for example over a uniform grid, or simply taken



uniformly distributed over [0, 1]. The results in [16] imply that, under (A1),
(A2.1), and κ ≥ 1,

infbGn,Sn

sup
P∈BF(α,κ,L,C,c)

E[R(Ĝn)]−R(G∗) ≥ cminn−
κ

2κ+ρ−1 (5)

where the samples {Xi}n
i=1 are independent and identically distributed (i.i.d.)

uniformly over [0, 1]d. Furthermore this bound is tight, in the sense that it is
possible to devise classification strategies attaining the same asymptotic behav-
ior. We notice that under the passive sampling scenario the excess risk decays at
a strictly slower rate than the lower bound for the active sampling scenario, and
the rate difference can be dramatic, specially for large smoothness α (equiva-
lently low complexity ρ). The active learning lower bound is also tight (as shown
in the next section), which demonstrates that active learning has the potential
to improve significantly over passive learning. Finally the result of Theorem 1
is a lower bound, and it therefore applies to the broader classes of distributions
introduced in [16], characterized in terms of the metric entropy of the class of
Bayes classifiers.

The proof of Theorem 1 employs relatively standard techniques, and follows
the approach in [19]. The key idea is to reduce the original problem to the
problem of deciding among a finite collection of representative distributions.
The determination of an appropriate collection of such distributions and careful
managing assumption (A2.2) are the key aspects of the proof. Notice also that
the result in (5) can be obtained by modifying the proof of Theorem 1 slightly.

4 Upper Bounds

In this section we construct an active learning procedure and upper bound its
error performance. The upper bound achieves the rates of Theorem 1 to within
a logarithmic factor. This procedure yields a classifier Ĝn that has boundary
fragment structure, although the boundary is no longer a smooth function. It
is instead a piecewise polynomial function. This methodology proceeds along
the lines of [20, 21], extending one-dimensional active sampling methods to this
higher dimensional setting. For this methodology we use some results reported in
[22] addressing the problem of one-dimensional change-point detection under the
noise conditions imposed in this paper. The ideas in that work were motivated by
the work of Burnashev and Zigangirov [12], pertaining a change-point detection
problem under the bounded noise rate condition (equivalent to κ = 1).

We begin by constructing a grid over the first d−1 dimensions of the feature
domain, namely let M be an integer and l̃ ∈ {0, . . . ,M}d−1. Define the line
segments Ll̃

∆= {(M−1l̃, xd) : xd ∈ [0, 1]}. We collect N samples along each line,
yielding a total of NMd−1 samples (where n ≥ NMd−1). Our goal is to estimate
g(M−1l̃), for all l̃, using these samples. We will then interpolate the estimates
of g at these points to construct a final estimate of the decision boundary. The
correct choices for M and N will arise from the performance analysis; for now



we point out only that both M and N are growing with the total number of
samples n.

When restricting ourselves to the line segment Ll̃ the estimation problem
boils down to a one-dimensional change-point detection problem. Consider first
the case κ = 1. In [12] an active sampling methodology was developed and
analyzed, with the following property: using N sample points actively chosen
yields an estimator ĝ(M−1l̃) of g(M−1l̃) such that

Pr
(
|ĝ(M−1l̃)− g∗(M−1l̃)| > t

)
≤ 1

t
exp(−c2N) ,

therefore it is possible to estimate g∗(M−1l̃) accurately with a very small number
of samples. It was shown in [22] (and further detailed in [23]) that, when κ > 1,
using N sample points in Ll̃ chosen actively based on knowledge of κ, yields an
estimate ĝ(M−1l̃) of g(M−1l̃) such that

Pr(|ĝ(M−1l̃)− g∗(M−1l̃)| > t) ≤ 2
t

exp

(
−N

3
c2

(
t

6

)2κ−2
)

. (6)

Taking
t = tN

∆= c1 (log N/N)
1

2κ−2 (7)

guarantees that Pr(|ĝ(M−1l̃)− g∗(M−1l̃)| > tN ) = O (N−γ) , where γ > 0 can
be arbitrarily large provided c1 is sufficiently large.

Let {ĝ(M−1l̃)} be the estimates obtained using this method at each of the
points indexed by l̃. We use these estimates to construct a piecewise polynomial
fit to approximate g∗. In what follows assume α > 1. The case α = 1 can be
handled in a very similar way. Begin by dividing [0, 1]d−1 (that is, the domain
of g∗) into cells. Let M0 be the largest integer such that M0 ≤ M/bαc. Let
q̃ ∈ {0, . . . ,M0}d−1 index the cells

Iq̃
∆=
[
q̃1bαcM−1, (q̃1 + 1)bαcM−1

]
×· · ·×

[
q̃d−1bαcM−1, (q̃d−1 + 1)bαcM−1

]
.

Note that these cells almost partition the domain [0, 1]d−1 entirely. If M/bαc
is not an integer there is a small region on the edge of the domain that is not
covered by these cells, with volume O(M−1). In each of these cells we perform a
polynomial interpolation using the estimates of g∗ at points within the cell. We
consider a tensor product polynomial fit L̂q̃, that can be written as

L̂q̃(x̃) =
∑

l̃:M−1 l̃∈Iq̃

ĝ(M−1l̃)Qq̃,l̃(x̃) ,

where x̃ ∈ [0, 1]d. The functions Qq̃,l̃ are the tensor-product Lagrange polyno-
mials [24]. The final estimate of g∗ is therefore given by

ĝ(x̃) =
∑

q̃∈{0,...,M0}d−1

L̂q̃(x̃)1{x̃ ∈ Iq̃}

which defines a classification rule Ĝn.



Theorem 2. Consider the classification methodology described above, using
M =

⌊
n

1
α(2κ−2)+d−1

⌋
and N =

⌊
n/(M − 1)d−1

⌋
. Let ρ = (d− 1)/α, then

lim sup
n→∞

sup
P∈BF(α,κ,L,C,c)

E[R(Ĝn)]−R(G∗) ≤ cmax (log n/n)
κ

2κ+ρ−2 .

The proof of Theorem 2 is given in Appendix B. One sees that this estimator
achieves the rate of Theorem 1 to within a logarithmic factor. It is not clear if
the logarithmic factor is an artifact of our construction, or if it is unavoidable.
One knows [20] that if κ, α = 1 the logarithmic factor can be eliminated by using
a slightly more sophisticated interpolation scheme.

5 Final Remarks

Since the upper and lower bounds agree up to a logarithmic factor, we may con-
clude that lower bound is near minimax optimal. That is, for the distributional
classes under consideration, no active or passive learning procedure can perform
significantly better in terms of error decay rates. Our upper bounds were de-
rived constructively, based on an active learning procedure originally developed
for one-dimensional change-point detection [12]. In principle, the methodology
employed in the upper bound calculation could be applied in practice in the case
of boundary fragments and with knowledge of the key regularity parameters κ
and ρ. Unfortunately this is not a scenario one expects to have in practice, and
thus a key open problem is the design of active learning algorithms that are
adaptive to unknown regularity parameters and capable of handling arbitrary
boundaries (not only fragments). A potential approach is a multiscale technique
as used in [10]. The results of this paper do indicate what we should be aiming
for in terms of performance. Moreover, the bounds clarify the situations in which
active learning may or may not offer a significant gain over passive learning, and
it may be possible to assess the conditions that might hold in a given application
in order to gauge the merit of pursuing an active learning approach.
Acknowledgements: Supported by NSF grants CCR-0350213 and CNS-
0519824.

A Proof of Theorem 1

The proof strategy follows the basic idea behind standard minimax analysis
methods, and consists in reducing the problem of classification in the large class
BF(α, κ, L,C, c) to a test of a finite set of hypothesis. These are distributions
PXY ∈ BF(α, κ, L,C, c) chosen carefully. The main tool is the following theorem,
adapted from [19] (page 85, theorem 2.5).

Theorem 3 (Tsybakov, 2004). Let F be a class of models. Associated with
each model f ∈ F we have a probability measure Pf defined on a common proba-
bility space. Let M ≥ 2 be an integer and let df (·, ·) : F ×F → R be a collection



of semi-distances (indexed by f ∈ F). Suppose we have {f0, . . . , fM} ∈ F such
that

i) dfk
(fj , fk) ≥ 2 a > 0, ∀0≤j,k≤M ,

ii) Pf0 � Pfj
, ∀j=1,...,M , (see footnote4)

iii) 1
M

∑M
j=1 KL(Pfj‖Pf0) ≤ γ log M ,

where 0 < γ < 1/8. The following bound holds.

infbf sup
f∈F

Pf

(
df (f̂ , f) ≥ a

)
≥

√
M

1 +
√

M

(
1− 2γ − 2

√
γ

log M

)
> 0 ,

where the infimum is taken with respect to the collection of all possible estima-
tors of f (based on a sample from Pf ), and KL denotes the Kullback-Leibler
divergence5 .

Note that in final statement of Theorem 3 the semi-distance between the
estimate f̂n and f̂ might depend on f . This is a critical feature in our setup,
since the excess risk depends on the underlying unknown distribution (1).

To apply the theorem we need to construct a subset of BF(α, κ, L,C, c) with
the desired characteristics. These elements are distributions PXY and therefore
uniquely characterized by the conditional probability η(x) = Pr(Y = 1|X = x)
(since we are assuming that PX is uniform over [0, 1]d). Let x = (x̃, xd) with
x̃ ∈ [0, 1]d−1. As a notational convention we use a tilde to denote a vector of
dimension d− 1. Define

m =
⌈
c0n

1
α(2κ−2)+d−1

⌉
, x̃l̃ =

l̃− 1/2
m

,

where l̃ ∈ {1, . . . ,m}d−1. Define also ϕl̃(x̃) = Lm−αh(m(x̃ − x̃l̃)) , with h ∈
Σ(1, α), supp(h) = (−1/2, 1/2)d−1 and h ≥ 0. It is easily shown that such a
function exists, for example

h(x̃) = a
d−1∏
i=1

exp
(
− 1

1− 4x2
i

)
1{|xi| < 1/2} ,

with a > 0 sufficiently small. The functions ϕl̃ are little “bumps” centered at
the points x̃l̃. The collection {x̃l̃} forms a regular grid over [0, 1]d−1.

4 Let P and Q be two probability measures defined on a common probability space
(Ω,B). Then P � Q if and only if for all B ∈ B, Q(B) = 0 ⇒ P (B) = 0.

5 Let P and Q be two probability measures defined on a common probability space.
The Kullback-Leibler divergence is defined as

KL(P‖Q) =

 R
log dP

dQ
dP , if P � Q,

+∞ , otherwise.
,

where dP/dQ is the Radon-Nikodym derivative of measure P with respect to mea-
sure Q.



Let Ω = {ω = (ω1, . . . , ωmd−1), ωi ∈ {0, 1}} = {0, 1}md−1
, and define

G =

gω(·) : gω(·) =
∑

l̃∈{1,...,m}d−1

ωl̃ϕl̃(·), ω ∈ Ω

 .

The set G is a collection of boundary functions. The binary vector ω is an
indicator vector: if ωl̃ = 1 then “bump” l̃ is present, otherwise that “bump”
is absent. Note that ϕl̃ ∈ Σ(L,α) and these functions have disjoint support,
therefore G ⊆ Σ(L, α). Let g ∈ G and construct the conditional distribution

ηω(x) =
{

min
(

1
2 + c · sign(xd − g(x̃))|xd − g(x̃)|κ−1, 1

)
, if xd ≤ A

min
(

1
2 + c · xκ−1

d , 1
)
, if xd > A

,

A = max
x̃

ϕ(x̃)
(

1 +
1

(C/c)1/(κ−1) − 1

)
= Lm−αhmax

(
1 +

1
(C/c)1/(κ−1) − 1

)
,

with hmax = maxx̃∈Rd−1 h(x̃). The choice of A is done carefully, in order to
ensure that the functions ηω are similar, but at the same time satisfy the margin
conditions. It is easily checked that conditions (2), (3) and (4) are satisfied for
the distributions above. By construction the Bayes decision boundary for each
of these distributions is given by xd = g(x̃) and so these distributions belong
to the class BF(α, κ, L,C, c). Note also that these distributions are all identical
if xd > A. As n increases m also increases and therefore A decreases, so the
conditional distributions described above are becoming more and more similar.
This is key to bound the Kullback-Leibler divergence between these distributions.

The above collection of distributions, indexed by ω ∈ Ω, is still too large for
the application of Theorem 3. Recall the following lemma.

Lemma 1 (Varshamov-Gilbert bound, 1962). Let md−1 ≥ 8. There exists
a subset {ω(0),ω(1), . . . ,ω(M)} of Ω such that M ≥ 2md−1/8, ω(0) = (0, . . . , 0)
and

ρ(ω(j),ω(k)) ≥ md−1/8, ∀ 0 ≤ j < k ≤ M ,

where ρ denotes the Hamming distance.

For a proof of the Lemma 1 see [19](page 89, lemma 2.7). To apply Theorem 3 we
use the M distributions (ηω(0) , . . . , ηω(M)} given by the lemma. For each distribu-
tion ηω(i) we have the corresponding Bayes classifier G∗

i . Define the semidistances

di(G, G′) =
∫

G∆G′
|2ηω(i)(x)− 1|dx .

The next step of the proof is to lower-bound di(G∗
j , G

∗
i ) = Ri(G∗

j )−Ri(G∗
i ) for

all j 6= i. Note that

di(G∗
j , G

∗
i ) =

∫
[0,1]d−1

∫ |g∗i (x̃)−g∗j (x̃)|

0

|2ηω(i)(x)− 1|dxddx̃

=
∑

l̃∈{1,...,m}d−1

|ω(i)

l̃
− ω

(j)

l̃
|
∫

[0,1]d−1

∫ Lm−αh(m(x̃−x̃l̃))

0

|2ηω(i)(x)− 1|dxddx̃ .



To bound the double-integral we just need to consider the two possible values of
ω

(i)

l̃
. We display here case ω

(i)

l̃
= 1, but exactly the same result can be shown

for ω
(i)

l̃
= 0.∫

[0,1]d−1

∫ Lm−αh(m(x̃−x̃l̃))

0

|2ηω(i)(x)− 1|dxddx̃

=
∫

[0,1]d−1

∫ Lm−αh(m(x̃−x̃l̃))

0

2c(xd − Lm−αh(m(x̃− x̃l̃)))
κ−1dxddx̃

= 2cm−(d−1)

∫
[−1/2,1/2]d−1

∫ Lm−αh(z̃)

0

(xd − Lm−αh(z̃)κ−1dxddz̃

=
2cm−(d−1)

κ

∫
[−1/2,1/2]d−1

Lκm−ακhκ(z̃)dz̃

=
2c

κ
Lκm−ακ−(d−1)‖h‖κ

κ ∼ m−ακ−(d−1) ,

where ‖h‖κ denotes the κ norm of h. Taking into account Lemma 1 we have
that, for n large enough

di(G∗
j , G

∗
i ) ≥ ρ(ω(i)

l̃
,ω

(j)

l̃
)
2c

κ
Lκm−ακ−(d−1)‖h‖κ

κ

≥ 2c

8κ
Lκ‖h‖κ

κ m−ακ ∆= an ∼ m−ακ .

We are ready for the final step of the proof. We need the following straight-
forward result

Lemma 2. Let P and Q be Bernoulli random variables with parameters respec-
tively p and q, such that p, q → 1/2. Then KL(P‖Q) = 2(p− q)2 + o((p− q)2).

Now let Pi be the distribution of (X1, Y1, . . . ,Xn, Yn) assuming the under-
lying conditional distribution is ηω(i) . Use the notation ZX

j
∆= (X1, . . . ,Xj) and

ZY
j

∆= (Y1, . . . , Yj). Then

KL(Pi‖P0) = Ei

[
log

PZX
n ,ZY

n ;i(Z
X
n ,ZY

n )

PZX
n ,ZY

n ;0(Z
X
n ,ZY

n )

]

= Ei

[
log

∏n
j=1 PYj |Xj ;i(Yj |Xj) PXj |ZX

j−1,ZY
j−1;i

(Xj |ZX
j−1,Z

Y
j−1)∏n

j=1 PYj |Xj ;0(Yj |Xj) PXj |ZX
j−1,ZY

j−1;0
(Xj |ZX

j−1,Z
Y
j−1)

]
(8)

= Ej

[
log

∏n
j=1 PYj |Xj ;i(Yj |Xj)∏n
j=1 PYj |Xj ;0(Yj |Xj)

]

= Ej

[
Ej

[
log

∏n
j=1 PYj |Xj ;i(Yj |Xj)∏n
j=1 PYj |Xj ;0(Yj |Xj)

∣∣∣∣∣X1, . . . ,Xn

]]
≤ 2n(cAκ−1)2 + o(n(cAκ−1)2) ≤ const · nm−α(2κ−2) ,



where the last inequality holds provided n is large enough and const is chosen
appropriately. In (8) note that the distribution of Xj conditional on ZX

j−1,Z
Y
j−1

depends only on the sampling strategy Sn, and therefore does not change with
the underlying distribution, hence those terms in the numerator and denominator
cancel out. Finally

1
M

M∑
i=1

KL(Pi‖P0) ≤ const · nm−α(2κ−2) ≤ const · c−(α(2κ−2)+d−1)
0 md−1 .

From Lemma 1 we also have γ
8 md−1 log 2 ≤ γ log M therefore choosing c0 large

enough in the definition of m guarantees the conditions of Theorem 3 and so

infbGn,Sn

sup
P∈BF(α,κ,L,C,c)

P (R(Ĝn)−R(G∗) ≥ an) ≥ cmin ,

where cmin > 0, for n large enough. An application of Markov’s inequality yields
the original statement of the theorem, concluding the proof.

B Proof of Theorem 2

The proof methodology aims at controlling the excess risk for an event that
happens with high probability. To avoid carrying around cumbersome constants
we use the ‘big-O’ 6 notation for simplicity. We show the proof only for the case
κ > 1, since the proof when κ = 1 is almost analogous.

Define the event Ωn =
{
∀l̃ ∈ {0, . . . ,M}d−1 |ĝ(M−1l̃)− g∗(M−1l̃)| ≤ tN

}
.

In words, Ωn is the event that the Md−1 point estimates of g do not deviate
very much from the true values. Using a union bound, taking into account (6)
and the choice tN in (7) one sees that 1−Pr(Ωn) = O(N−γMd−1), where γ can
be chosen arbitrarily large. With the choice of M in the theorem and choosing
c1 wisely in the definition of tN (7) we have 1− Pr(Ωn) = O

(
n−

ακ
α(2κ−2)+d−1

)
.

The excess risk of our classifier is given by

R(Ĝn)−R(G∗) =
∫

bGn∆G∗
|2η(x)− 1|dx

=
∫

[0,1]d−1

∫ max(bg(x̃),g∗(x̃))

min(bg(x̃),g∗(x̃))

|2η ((x̃, xd))− 1|dxddx̃

≤
∫

[0,1]d−1

∫ max(bg(x̃),g∗(x̃))

min(bg(x̃),g∗(x̃))

C|xd − g(x̃)|κ−1dxddx̃

=
∫

[0,1]d−1

∫ |bg(x̃)−g∗(x̃)|

0

Czκ−1dzdx̃

=
C

κ

∫
[0,1]d−1

|ĝ(x̃)− g∗(x̃)|κdx̃ = O (‖ĝ − g∗‖κ
κ) ,

6 Let un and vn be two real sequences. We say un = O(vn) if and only if there exists
C > 0 and n0 > 0 such that |un| ≤ Cvn for all n ≥ n0.



where the inequality follows from condition (4).
Let Lq̃, q̃ ∈ {0, . . . ,M0}d−1 be the clairvoyant version of L̂q̃, that is,

Lq̃(x̃) =
∑

l̃:M−1 l̃∈Iq̃

g∗(M−1l̃)Qq̃,l̃(x̃) .

It is well known that these interpolating polynomials have good local approxi-
mation properties for Hölder smooth functions, namely we have that

sup
g∈Σ(L,α)

max
x̃∈Iq̃

|Lq̃(x̃)− g∗(x̃)| = O(M−α) . (9)

This result is proved in [23]. We have almost all the pieces we need to conclude
the proof. The last fact we need is a bound on the variation of the tensor-product
Lagrange polynomials, namely it is easily shown that

max
x̃∈Iq̃

∣∣∣Qq̃,l̃(x̃)
∣∣∣ ≤ bαc(d−1)bαc . (10)

We are now ready to show the final result. Assume for now that Ωn holds,
therefore |ĝ(M−1l̃) − g∗(M−1l̃)| ≤ tN for all l̃. Note that tN is decreasing as n
(and consequently N) increase.

R(Ĝn)−R(G∗) = O (‖ĝ − g∗‖κ
κ)

= O

 ∑
q̃∈{0,...,M0}d−1

∥∥∥(L̂q̃ − g∗)1{x̃ ∈ Iq̃}
∥∥∥κ

κ

+ O(M−1)

= O

∑
q̃

∥∥∥(Lq̃ − g∗)1{x̃ ∈ Iq̃}+ (L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}
∥∥∥κ

κ

+ O(M−1)

= O

∑
q̃

(
‖(Lq̃ − g∗)1{x̃ ∈ Iq̃}‖κ +

∥∥∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}
∥∥∥

κ

)κ

+ O(M−1) ,

where the term O(M−1) corresponds to the error in the area around the edge of
[0, 1]d−1, not covered by any cells in {Iq̃}. The volume of this region is O(M−1).
Note now that

‖(Lq̃ − g∗)1{x̃ ∈ Iq̃}‖κ =

(∫
Iq̃

(Lq̃(x̃)− g∗(x̃))κ dx̃

)1/κ

= O

(∫
Iq̃

M−ακdx̃

)1/κ
 = O

(
M−αM− d−1

κ

)
.



Where we used (9). We have also∥∥∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}
∥∥∥

κ
=

∑
l̃:M−1 l̃∈Iq̃

∣∣∣ĝ(M−1l̃)− g∗(M−1l̃)
∣∣∣ ∥∥∥Qq̃,l̃

∥∥∥
κ

≤
∑

l̃:M−1 l̃∈Iq̃

tN

(∫
Iq̃

∣∣∣Qq̃,l̃(x̃)
∣∣∣κ dx̃

)1/κ

≤
∑

l̃:M−1 l̃∈Iq̃

tN

(∫
Iq̃

bαc(d−1)bαcκdx̃

)1/κ

= O
(
tNM−(d−1)/κ

)
.

Using these two facts we conclude that

R(Ĝn)−R(G∗) =

O

∑
q̃

(
‖(Lq̃ − g∗)1{x̃ ∈ Iq̃}‖κ +

∥∥∥(L̂q̃ − Lq̃)1{x̃ ∈ Iq̃}
∥∥∥

κ

)κ

+ O(M−1)

= O

 ∑
q̃∈{0,...,M0}d−1

(
M−αM− d−1

κ + tNM−(d−1)/κ
)κ

+ O(M−1)

= O
(
Md−1

(
M−αM− d−1

κ + tNM−(d−1)/κ
)κ)

+ O(M−1)

= O
((

M−α + tN
)κ + M−1

)
.

Plugging in the choices of M and N given in the theorem statement we obtain

R(Ĝn)−R(G∗) = O
(
(log n/n)

ακ
α(2κ−2)+d−1

)
.

Finally, noticing that 1− Pr(Ωn) = O
(
n−

ακ
α(2κ−2)+d−1

)
we have

E[R(Ĝn)]−R(G∗) ≤ O
(
(log n/n)

ακ
α(2κ−2)+d−1

)
Pr(Ωn) + 1 · (1− Pr(Ωn))

= O
(
(log n/n)

ακ
α(2κ−2)+d−1

)
,

concluding the proof.
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Applications, 41. Springer (2004)

20. Korostelev, A.P.: On minimax rates of convergence in image models under sequen-
tial design. Statistics & Probability Letters 43 (1999) 369–375

21. Korostelev, A., Kim, J.C.: Rates of convergence for the sup-norm risk in image
models under sequential designs. Statistics & probability Letters 46 (2000) 391–
399

22. Castro, R., Nowak, R.: Upper and lower bounds for active learning. In: 44th
Annual Allerton Conference on Communication, Control and Computing. (2006)

23. Castro, R.M., Nowak, R.D.: Minimax bounds for active learning. Techni-
cal report, ECE Dept., University of Wisconsin - Madison (2007) (available at
http://homepages.cae.wisc.edu/∼rcastro/ECE-07-3.pdf).

24. de Boor, C.: The error in polynomial tensor-product and chung-yao, interpolation.
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