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Abstract—We propose a simple modification to the recently
proposed compressive binary search [1]]. The modification removes
an unnecessary and suboptimal factor of loglogn from the
SNR requirement, making the procedure optimal (up to a small
constant). Simulations show that the new procedure performs
significantly better in practice as well. We also contrast this
problem with the well known noisy binary search problem.

I. INTRODUCTION

The recently proposed compressive binary search (CBS)
algorithm [1]] aims to determine the location of a single non-
zero entry in a vector € R”™ using m adaptive linear
projections of the form

g eeey

where a; € R™ are sensing vectors with ||a;|| = 1 and z;
are i.i.d. N'(0,1). The CBS algorithm proposed in [1]] finds
the non-zero entry with vanishing probability of error as n
gets large provided p > C'+/(n/m)loglog, n where p is the
amplitude of the non-zero entry. A bit more precisely, Theorem
1 in [d]] states that P, < § provided

8n 1
> — —
> \/ (log % + loglog, n) (1)

where P, is the probability the procedure fails to return an
index corresponding to the non-zero entry. The dependence
on ¢ is to be expected, but the authors of [1]] rightly question
whether the loglog, n term is needed. The main contribution
of this paper is a simple modification of the algorithm pro-
posed in [[1]] which eliminates this unnecessary and suboptimal
dependence on n.

II. MAIN RESULT

The CBS algorithm proposed in [1]] operates as follows.
The algorithm consists of sg = log,n steps (as in [1] we
assume n is dyadic). At each step of the algorithm, indexed
by s, measurements are taken on progressively smaller dyadic
subintervals of {1,...,n}. The sensing vectors are discrete
Haar wavelets, and the sign of each measurement gives an
indication of whether the non-zero entry is in the right or left
half-interval of the wavelet’s support. The CBS algorithm is
outlined in Fig. [l

Since the sensing vectors have unit norm, the magnitude of
the non-zero entries of the sensing vectors grow as the algo-
rithm proceeds from coarse-to-fine wavelets. Consequently, the
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Compressive Binary Search (CBS)
number of steps: so := log, n
measurements per step: ms , with » 2

initial support: Jél) ={1,...,n}
for s =1,

1) split: J; QN and J$*)left and right subinterval of Js (=)
2) sensing vector: u(®) = 27 (s0—=s+1)/2 op J(é)

wl® = 27 (o=s+1)/2 o J( *) and 0 otherwise
3) measure: y'*) = (u(®), )—l—z(“‘)7

2 N0, 1), i = 1

4) update support: J, (sF1) —
J(S‘H)
0

1m5,<m

J(S lfz eyt >0
and J5 ) otherwise

end

output: J{* ") (a single index)

Fig. 1. Compressive Binary Search algorithm.

SNR of the measurements grows exponentially as the proce-
dure progresses. In [1]], the authors divide the m measurements
among the steps as follows. For s =1,..., 59

s = |(m — s0) 27°]

It is easy to check that >_%° <=1 Ms < m. This allocation roughly
equalizes the SNR at each step. If y satisfies (I), then the CBS
algorithm is guaranteed to have a probability of error of at
most /s at each step (and the union bound yields an overall
probability of error of at most d).

Here, instead, we allocate the m measurements as follows:

Ms = {(m —50) 8 2_(5+1)J .

mg = mg + 1,

mg :=mgs + 1,

Again, it is easily verified that > %, my < m. With this
allocation, the probability of error is at most a constant
times 27° at each step; i.e., the probability of error decreases
exponentially over the steps, rather than remaining constant
as above. This simple modification is enough to eliminate the
loglog, n term in the bound in [1].
Theorem 1. If m > 2log, n and

ms = ms + 1, ms = {(m —50) S 2_(5+1)J (2)

then Zzozl ms < m and the CBS algorithm succeeds with
P. < 0 provided magnitude of the non-zero entry satisfies
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Proof: The total measurement budget satisfies

50

S0 S0
st = s0 +ZT7LS <sp+ (m— SO)Z 5276t <y,
s=1 s=1

s=1

since Y 3 | s27(5¥1) < 1. By the union bound and a Gaussian
tail bound, the total error probability satisfies

1 msp?2°
]P)e S 5 Zexp <—T> .

Since m, > (m — 50)s2~ ) and m > 2log, n = 2s¢, we
conclude m, > %32_(5“) and thus

Letting 1 > /21 log (55 + 1) yields
P, < ISZO ! +1 h < 4
© T 24\2 -
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Remark 1. The authors of also show that no procedure
can succeed at the compressive binary search problem with
probability greater than 1/2 if 4 < y/n/m. Using the new
allocation of measurements, the CBS algorithm succeeds with

probability greater than 1/2 if u > /16 log(2)n/m, within a
small constant factor of the lower bound.

Remark 2. The CBS problem is closely related to the so-
called noisy binary search problem [2]-[5]. Noisy binary
search addresses a version of the classic binary search problem
with binary noise. If the SNR is equal in each step of CBS
(as in [II), then it is equivalent to the “naive” noisy binary
search algorithm discussed in [5]], which also suffers from
the suboptimal log log, 7 factor. More sophisticated algorithms
such as Horstein’s algorithm [2]]-[4] and binary search with
backtracking [3] are optimal to within constants. The CBS
problem, however, is different from noisy binary search in that
more localized measurements (or “queries”) are more reliable.

Because of this unique feature, the optimal algorithms for
noisy binary search do not yield optimal solutions for the CBS
problem. Instead, all that is needed to eliminate the loglog, n
factor is a measurement allocation that properly exploits the
fact that more localized measurements have a larger SNR.
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Fig. 2. Numerical Simulation. Empirical performance of CBS (both original
and modified) as a function of p for n = 4096 and m = 256. 10,000 trials.
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