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ABSTRACT
This paper considers the problem of blindly calibrating sen-
sor response using routine sensor network measurements.
We show that as long as the sensors slightly oversample
the signals of interest, then unknown sensor gains can be
perfectly recovered. Remarkably, neither a controlled stim-
ulus nor a dense deployment is required. We also character-
ize necessary and sufficient conditions for the identification
of unknown sensor offsets. Our results exploit incoherence
conditions between the basis for the signals and the canon-
ical or natural basis for the sensor measurements. Practical
algorithms for gain and offset identification are proposed
based on the singular value decomposition and standard
least squares techniques. We investigate the robustness of
the proposed algorithms to model mismatch and noise on
both simulated data and on data from current sensor net-
work deployments.
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1. INTRODUCTION
Sensors are notoriously prone to calibration errors, and

arguably these errors are one of the major obstacles to the
practical use of sensor networks [3]. Calibrating every sen-
sor by hand is infeasible if sensor networks are to scale even
into the tens of devices; yet it may be that applications
need more accurate measurements than uncalibrated, low-
cost sensors provide. Consequently, automatic methods for
jointly calibrating sensor networks in the field, without de-
pendence on controlled stimuli or high-fidelity groundtruth
data, is of significant interest. We call this problem blind
calibration.

One approach to blind sensor network calibration is to be-
gin by assuming that the deployment is very dense, so that
neighboring nodes should (in principle) have nearly identical
readings [4]. Unfortunately, many existing and envisioned
sensor network deployments may not meet the density re-
quirements of such procedures.

This paper takes a very different approach to sensor net-
work calibration. In particular, our approach leverages cor-
relation in the collection of sensors without requiring a dense
deployment, making it much more suitable for practical ap-
plications. We assume a linear model for the sensor cali-
bration functions. This means that the sensor readings are
calibrated up to an unknown gain and offset (bias) for each
sensor, possibly after applying a suitable and fixed transfor-
mation to the raw sensor readings, e.g., taking the logarithm
or applying the original factory calibration transformation.

The paper makes three main contributions. First, we pro-
pose a novel automatic sensor calibration procedure that
requires solving a linear system of constraints involving rou-
tine sensor measurements. By “routine” we mean that ac-
tual signal measured by the sensor network is uncontrolled
and unknown. This is why we refer to the problem as blind
calibration. The constraint equations are based on mild as-
sumptions that guarantee that the sensor measurements are
at least slightly correlated over space, i.e., the network over-
samples the underlying signals of interest. Second, we prove
the rather surprising fact that these assumptions, which are
commonly met in practice, suffice to perfectly recover un-
known sensor gains. That is, it is possible to blindly calibrate
the gains using only the routine readings made by the sen-
sors. Third, we prove that the sensor offsets (biases) can
also be partially recovered from routine readings; they can
be completely recovered with some additional overhead.

To give a preview of our approach, suppose we are mea-
suring a temperature field with an array of n sensors. Tem-
perature fields tend to vary smoothly, and so they may be



considered to be bandlimited. The Nyquist theorem dictates
a minimum spacing between sensors in order to adequately
sample a bandlimited signal. If sensors are spaced more
closely than the minimum requirement, then we are “over-
sampling” the signal. In this case, the underlying bandlim-
ited signal will lie in a lower dimensional (low frequency)
subspace of the n dimensional measurement space. This
condition provides a useful constraint for blind calibration.
Correctly calibrated signals must lie in the lower dimen-
sional subspace, and this leads to a system of linear equa-
tions which can be used to solve for the gain and offset
calibration parameters.

2. PROBLEM FORMULATION
Consider a network of n sensors. At a given time instant,

each sensor makes a measurement, and we denote the vector
of n measurements by x = [x(1), . . . , x(n)]′, where ′ denotes
the vector transpose operator (so that x is an n × 1 col-
umn vector). We will refer to x as a “snapshot.” When
necessary, we will distinguish between snapshots taken at
different times using a subscript (e.g., xs and xt are snap-
shots at times s and t).

Each sensor has an unknown gain and offset associated
with its response, so that instead of measuring x the sensors
report

y(j) =
x(j) − β(j)

α(j)
, j = 1, . . . , n

where α = [α(1), . . . , α(n)]′ are the sensors’ gain calibration
factors and β = [β(1), . . . , β(n)]′ are the sensors’ calibration
offsets. It is assumed that α(j) 6= 0, j = 1, . . . , n. With this
notation, the sensor measurement y(j) can be calibrated by
the linear transformation x(j) = α(j)y(j) + β(j). We can
summarize this for all n sensors using the vector notation

x = Y α + β , (1)

where Y = diag(y) and the diag operator is defined as

diag(y) =

2
64

y(1)
. . .

y(n)

3
75 .

The blind calibration problem entails the recovery of α and
β from routine uncalibrated sensor readings such as y.

In general, without further assumptions, blind calibration
appears to be an impossible task. However, it turns out that
under mild assumptions that may often hold in practice,
quite a bit can be learned from raw (uncalibrated) sensor
readings like y. Assume that the sensor network is slightly
“oversampling” the phenomenon being sensed. Mathemat-
ically, this means that the calibrated snapshot x lies in
a lower dimensional subspace of n-dimensional Euclidean
space. Let S denote this “signal subspace” and assume that
it is r-dimensional, for some integer 0 < r < n. For exam-
ple, if the signal being measured is bandlimited and the sen-
sors are spaced closer than required by the Shannon-Nyquist
sampling rate, then x will lie in a lower dimensional subspace
spanned by frequency basis vectors. If we oversample (rela-
tive to Shannon-Nyquist) by a factor of 2, then r = n/2. Ba-
sis vectors that correspond to smoothness assumptions, such
as low-order polynomials, are another potentially relevant
example. In general, the signal subspace may be spanned

by an arbitrary set of r basis vectors. The calibration co-
efficients α and β and the signal subspace S may change
over time, but here we assume they do not change over the
course of blind calibration. As we will see, this is a reason-
able assumption, since the network may be calibrated from
very few snapshots.

Let P denote the orthogonal projection matrix onto the
orthogonal complement to the signal subspace S . Then ev-
ery x ∈ S must satisfy the constraint

P x = P (Y α + β) = 0 (2)

This is the key idea behind our blind calibration method.
Because the projection matrix P has rank n − r, the con-
straint above gives us n−r linearly independent equations in
2n unknown values (α and β). If we take snapshots from the
sensor network at k distinct times, y1, . . . , yk, then we will
have k(n−r) equations in 2n unknowns. For k ≥ 2n/(n−r)
we will have more equations than unknowns, which is a
hopeful sign. This observation leads to several basic ques-
tions which we address in this paper.

1. Is it possible to blindly recover α and β from a sufficient
number of uncalibrated sensor snapshots? Mathemat-
ically, this question boils down to determining whether
or not the constraints provide 2n linearly independent
equations.

2. If perfect blind calibration is not possible, then can we
achieve a partial calibration from the raw data? Can
we improve this partial calibration with a small amount
of additional overhead?

3. How is the recovery affected by sensor noise? Certainly,
we cannot expect the constraint (2) to hold perfectly in
the presence of noise, so robust versions of the problem
need to be developed.

4. How is the recovery affected by mismodeling in P ? Again,
robust versions of the problem are necessary to cope
with cases where the signals are not perfectly lying in
the subspace.

The paper is organized as follows. We first describe the
related work, and then in Section 4 we give initial observa-
tions which come out of the problem formulation we have
just described. In Section 5 we describe results for offset cal-
ibration, and in Section 6 we give identifiability conditions
for gain calibration. In Section 7 we evaluate our theory in
both simulation and on real sensor data.

3. RELATED WORK
The most straightforward approach to calibration is to ap-

ply a known stimulus x to the sensor network and measure
the response y. Then using the groundtruth input x we can
adjust the calibration parameters so that (1) is achieved.
We call this non-blind calibration, since the true signal x

is known. This problem is called inverse linear regression;
mathematical details can be found at [8]. Non-blind calibra-
tion is used routinely in sensor networks [10, 13], but may
be difficult or impossible in many applications.

As for blind calibration in sensor networks, the problem
of relating measurements such as received signal strength
or time delay to distance for localization purposes has been
studied extensively [9, 12]. This problem is quite differ-
ent from the blind calibration problem considered in this



paper, which assumes that the measurements arise from ex-
ternal signals (e.g., temperature) and not from range mea-
surements between sensors. In [14], the problem of cal-
ibrating sensor range measurements by enforcing geomet-
ric constraints in a system-wide optimization is considered.
Calibration using geometric and physical constraints on the
behavior of a point light source is considered in [6]. The
constraint that proximal sensors in dense deployments make
very similar measurements is leveraged in [4]. In this paper,
our constraint is simply that the phenomenon of interest lies
in a subspace. This is a much more general constraint and
hopefully therefore it can be widely applicable.

Blind equalization and blind deconvolution [11] are related
problems in signal processing. In these problems, the obser-
vation model is of the form y = h∗x, where ∗ is the convolu-
tion operator, and both h and x must be recovered from y.
Due to the difference between the calibration and convolu-
tion models, results from blind deconvolution do not readily
apply to blind calibration. Most similar to our problem is
work in multi-channel blind deconvolution [7]. This prob-
lem involves observing one unknown signal through multi-
ple unknown channels. Blind calibration involves observing
multiple unknown signals through one unknown calibration
function. This connection merits further study which is be-
yond the scope of this paper.

4. BLIND CALIBRATION
Given k snapshots at different time instants y1, . . . , yk,

the subspace constraint (2) results in the following system
of k(n − r) equations:

P (Y i α + β) = 0 , i = 1, . . . , k (3)

The true gains and offsets must satisfy this equation, but
in general the equation may be satisfied by other vectors as
well. Establishing conditions that guarantee that the true
gains and/or offsets are the only solutions is the main theo-
retical contribution of the paper.

It is easy to verify that the solutions for β satisfy

P β = −P Ȳ α (4)

where Ȳ = 1
k

Pk
i=1 Y i, the time-average of the snapshots.

One immediate observation is that the constraints only de-
termine the components of β (in terms of the data and α)
in the signal “nullspace” (the orthogonal complement to S).
The component of the offset β that lies in the signal sub-
space is unidentifiable. This is intuitively very easy to un-
derstand. Our only assumption is that the signals measured
by the network lie in a lower dimensional subspace. The
component of the offset in the signal subspace is indistin-
guishable from the mean or average signal. Recovery of this
component of the offset requires extra assumptions, such as
assuming that the signals have zero mean, or additional cal-
ibration resources, such as the non-blind calibration of some
of the sensor offsets. We discuss this further in Section 5.

Given this characterization of the β solutions, we can re-
write the constraints (3) in terms of α alone:

P (Y i − Ȳ )α = 0 , i = 1, . . . , k (5)

If bα is a solution to this system of equations, then every
vector β satisfying P β = −P Ȳ bα is a solution for β in the
original system of equations (3). In other words, for a given
bα, the value of the component of the offset in the nullspace
is P Ȳ bα.

Another simple but very important observation is that
there is one degree of ambiguity in α that can never be
resolved blindly using routine sensor measurements alone.
The gain vector α can be multiplied by a scalar c, and it
cannot be distinguished whether this scalar multiple is part
of the gains or part of the true signal. We call this scalar
multiple the global gain factor. A constraint is needed to
avoid this ambiguity, and without loss of generality we will
assume that α(1) = 1. This constraint can be interpreted
physically to mean that we will calibrate all other sensors
to the gain characteristics of sensor 1. The choice of sensor
1 is arbitrary and is taken here simply for convenience.

If noise, mismodeling effects, or other errors are present
in the uncalibrated sensor snapshots, then a solution to (3)
or (5) may not exist. Robust solutions are discussed in Sec-
tion 7.1.

5. OFFSET CALIBRATION
The component of the offset in the signal subspace is gen-

erally unidentifiable, but in special cases it can be deter-
mined. For example, if it is known that the phenomenon of
interest fluctuates symmetrically about zero (or some other
known value), then the average of many measurements will
tend to zero (or the known mean value). In this situation,
the average

1

k

kX

i=1

yi =

 
1

k

kX

i=1

xi − β

!
/α ≈ −β/α

where the the division operation is taken element-by-element.
This follows since 1

k

Pk
i=1 xi ≈ 0 for large enough k. Thus

we can identify the offset simply by calculating the aver-
age of our measurements. More precisely, we can identify
eβ = β/α, which suffices since we can equivalently express
the basic relationship (1) between calibrated and uncali-

brated snapshots as x = (Y + eβ) α.
Another situation in which we can determine (or partially

determine) the component of the offset in the signal sub-
space is when we have knowledge of the correct offsets for
a subset of the sensors. We call this partially blind offset
calibration. Suppose that we are able to directly measure
the offsets at m < n sensors, indexed by m distinct integers
1 ≤ ℓ1, . . . , ℓm ≤ n. Let βm denote an m × 1 vector these
offsets. Let T be an m × n “selection” matrix that when
applied to an arbitrary n× 1 vector produces an m× 1 vec-
tor of the elements at locations ℓ1, . . . , ℓm from the original
vector. With this notation, we can write βm = T β. Also
note that

βm = T β = T (P β + (I − P )β) = T P β + T (I − P )β,

where (I − P )β is the offset component in the signal sub-
space and P β is the offset component in the orthogonal
complement to the signal subspace.

As pointed out in Section 4, we can determine the compo-
nent of the offset in the nullspace using P β = −P Ȳ bα. Let
us assume that this component is known (from the estimated
calibration gains), and define β∆ = T (I − P )β, the signal
subspace component of the offset at sensors ℓ1, . . . , ℓm. This
component satisfies the relation

β∆ = βm − T P β = βm + T P Ȳ bα. (6)

The projection matrix corresponding to the signal subspace,
(I − P ), can be written in terms of a set of orthonor-



mal column vectors, φ1, . . . , φr, that span the signal sub-
space. Let Φ = [φ1 · · ·φr] denote an n × r matrix whose
columns are the basis vectors. Then (I − P ) = ΦΦ′ and
so we can also write β∆ = TΦΦ′β. Note that the off-
set component in the signal subspace is completely deter-
mined by the r parameters θ = Φ′β. Defining ΦT = TΦ,
we can write β∆ = ΦT θ. If ΦT is invertible, then us-
ing (6) the parameters θ can be uniquely determined by
θ = Φ−1

T (βm + T P Ȳ bα). Thus, if ΦT is invertible, then
the complete offset vector β can be determined from the
subset of offsets βm and the estimated gains bα. If ΦT has
rank q < r, then we can determine the signal subspace offset
component up to a remaining unidentifiable component in a
smaller r − q dimensional subspace of the signal subspace.

The rank of ΦT cannot be greater than m, the number of
known sensor offsets, which shows that to completely deter-
mine the offset component in the signal subspace we require
at least m = r known offsets. In general, knowing the offsets
for an arbitrary subset of m sensors may not be sufficient
(i.e., ΦT may not be invertible), but there are important
special cases when it is. First note the Φ, by construction,
has full rank r. Also note that the selection matrix T selects
the m rows corresponding to the known calibration offsets
and eliminates the remaining n − m rows. So, we require
that the elimination of any subset of n − m rows of Φ does
not lead to a linearly dependent set of (m × 1) columns.
This requirement is known as an incoherence condition, and
it is satisfied as long as the signal basis vectors all have
small inner products with the natural or canonical sensor
basis (n× 1 vectors that are all zero except for a single non-
zero entry). For example, frequency vectors (e.g., Discrete
Fourier Transform vectors) are known to satisfy this type of
incoherence condition [5]. This implies that for subspaces of
bandlimited signals, ΦT is invertible provided m ≥ r.

6. GAIN CALIBRATION
The possibilities for offset calibration are fairly straight-

forward, as described above, but conditions that guaran-
tee that the gains can be blindly calibrated are less obvi-
ous. This section theoretically characterizes the existence of
unique solutions to the gain calibration problem. As pointed
out in Section 4, the gain calibration problem can be solved
independently of the offset calibration task, as shown in (5),
which corresponds to simply removing the mean snapshot
from each individual snapshot. Therefore, it suffices to con-
sider the case in which the snapshots are zero-mean and
to assume that Ȳ = 0, in which case the gain calibration
equations may be written as

P Y i α = 0 , i = 1, . . . , k (7)

The results we present also hold for the general case in which
Ȳ 6= 0. We first consider general conditions guaranteeing
the uniqueness of the solution to (7) and then look more
closely at the special case of bandlimited subspaces.

6.1 General Conditions
The following conditions are sufficient to guarantee that

a unique solution to (7) exists.

A1. Oversampling: Each signal x lies in a known r-
dimensional subspace S , r < n. Let φ1, . . . , φr de-
note a basis for S . Then x =

Pr
i=1 θiφi, for certain

coefficients θ1, . . . , θr.

A2. Randomness: Each signal is randomly drawn from S
and has mean zero. This means that the signal coeffi-
cients are zero-mean random variables. The joint dis-
tribution of these random variables is absolutely con-
tinuous with respect to Lebesgue measure (i.e., a joint
r-dimensional density function exists). For any collec-
tion of signals x1, . . . , xk, k > 1, the joint distribution
of the corresponding kr coefficients is also absolutely
continuous with respect to Lebesgue measure (i.e., a
joint kr-dimensional density function exists).

A3. Incoherence: Define the nr × n matrix

MΦ =

2
64

P diag(φ1)
...

P diag(φr)

3
75 (8)

and assume that rank(MΦ) = n − 1. Note that MΦ

is a function of the basis of the signal subspace. The
matrix P , the orthogonal projection matrix onto the
orthogonal complement to the signal subspace S , can
be written as P = I−ΦΦ′, where I is the n×n identity
matrix and Φ = [φ1, . . . , φr].

Assumption A1 guarantees that the calibrated or true sen-
sor measurements are correlated to some degree. This as-
sumption is crucial since it implies that measurements must
satisfy the constraints in (3) and that, in principle, we can
solve for the gain vector α. Assumption A2 guarantees the
signals are not too temporally correlated (e.g., different sig-
nal realizations are non-identical with probability 1). Also,
the zero-mean assumption can be removed, as long as one
subtracts the average from each sensor reading. Assump-
tion A3 essentially guarantees that the basis vectors are suf-
ficiently incoherent with the canonical sensor basis, i.e., the
basis that forms the columns of the identity matrix. It is
easy to verify that if the signal subspace basis is coherent
with the canonical basis, then rank(MΦ) < n − 1. Also,
note that MΦ1 = 0, where 1 = [1, . . . , 1]′, which implies
that rank(MΦ) is at most n − 1. In general, assumption
A3 only depends on the assumed signal subspace and can
be easily checked for a given basis. In our experience, the
condition is satisfied by most signal subspaces of practical in-
terest, such as lowpass, bandpass or smoothness subspaces.

Theorem 1 Under assumptions A1, A2 and A3, the gains
α can be perfectly recovered from any k ≥ r signal measure-
ments by solving the linear system of equations (5).

The theorem is proved in the Appendix. The theorem
demonstrates that the gains are identifiable from routine
sensor measurements; that is, in the absence of noise or
other errors, the gains are perfectly recovered. In fact, the
proof shows that under A1 and A2, the condition A3 is both
necessary and sufficient. When noise and errors are present,
the estimated gains may not be exactly equal to the true
gains. However, as the noise/errors in the measurements
tend to zero, the estimated gains tend to the true gains.

6.2 Bandlimited Subspaces
In the special case in which the signal subspace corre-

sponds to a frequency domain subspace, a slightly more pre-
cise characterization is possible which shows that even fewer
snapshots suffice for blind calibration. As stated above,



assumption A3 is often met in practice and can be easily
checked given a signal basis Φ. One case where A3 is auto-
matically met is when the signal subspace is spanned by a
subset of the Discrete Fourier Transform (DFT) vectors:

φm = [1, e
−i2πm

n , . . . , e
−i2(n−1)πm

n ]′/
√

n, m = 0, . . . , n − 1

In this case we show that only ⌈n−1
n−r

⌉ + 1 snapshots are re-
quired. This can be significantly less than r, meaning that
the time over which we must assume that the subspace and
calibration coefficients are unchanging is greatly reduced.
The following assumptions and theorem summarize this re-
sult.

B1. Oversampling: Assume that each signal x lies in a
bandlimited r-dimensional subspace S , r < n, spanned
by φm1

, . . . , φmr
, where m1, . . . , mr are distinct in-

tegers from the set {0, . . . , n − 1}. Furthermore, as-
sume that these integers are aperiodic in the following
sense. Let s denote the vector with one at locations
m1, . . . , mr and zero otherwise. This vector indicates
the support set of the signal subspace in the DFT do-
main. The integers m1, . . . , mr are called aperiodic if
every circular (mod n) shift of s is distinct. It is easy
to check this condition and, in fact, most bandlimited
subspaces have aperiodic support sets.

B2. Randomness: Note that each signal x ∈ S can be
written as x =

Pr
j=1 θjφmj

, for certain coefficients

θ1, . . . , θr. Each signal is randomly drawn from S and
has mean zero. This means that the signal coefficients
are zero-mean random variables. The joint distribu-
tion of these random variables is absolutely contin-
uous with respect to Lebesgue measure (i.e., a joint
r-dimensional density function exists). Also assume
that multiple signal observations are statistically un-
correlated.

Assumption B1 guarantees that the calibrated or true sen-
sor measurements are spatially correlated to some degree.
As before, this assumption is crucial since it implies that
measurements must satisfy the constraints in (3) and that,
in principle, we can solve for the gain vector α. The ra-
tionale behind the assumption that the frequency support
set is aperiodic is less obvious, but its necessity is due to
the 2π-periodicity of the DFT (see [1] for further details).
Assumption B2 guarantees the signals are not temporally
correlated (analogous to A2, above). The following theorem
characterizes the identifiability of the sensor gains in this
situation.

Theorem 2 It is necessary to make at least k ≥ ⌈n−1
n−r

⌉ sig-
nal measurements in order to determine the gains, where
⌈z⌉ denotes the smallest integer greater than or equal to z.
Moreover, under assumptions B1 and B2, the gains α can
be perfectly recovered from any k = ⌈n−1

n−r
⌉ + 1 signal mea-

surements by solving the linear system of equations (5).

The theorem is proved in the Appendix. The proof takes
advantage of the special structure of the DFT basis. Alter-
natively, one could apply Theorem 1 in this case to obtain a
slightly weaker result; namely that under B1 and B2 k ≥ r
observations suffice to perfectly recover the gains.

7. EVALUATION
In order to evaluate whether this theory of blind cali-

bration is possible in practice, we explore its performance
in simulation under both measurement noise and the mis-
characterization of the projection matrix P . Additionally,
we show the performance of the algorithm on two temper-
ature sensor datasets, one dataset from a controlled exper-
iment where the sensors are measuring all the same phe-
nomenon and thus lie in a 1-dimensional subspace, and the
other from a deployment in a valley at a nature preserve
called the James Reserve1, where the true dimension of the
spatial signal is unknown. First, we discuss the technical
tools for implementation of robust blind calibration.

7.1 Robust Estimation
Blind calibration is simply a problem of solving the lin-

ear system of equations in (5). If noise, mismodeling ef-
fects, or other errors are present in the uncalibrated sensor
snapshots, then a solution to (5) may not exist. There are
many methods for finding the best possible solution, and
we employ singular value decomposition and standard least
squares techniques.

First, note that the constraints can be expressed as

Cα = 0 (9)

where the matrix C is given by

C =

2
64

P (Y 1 − Ȳ )
...

P (Y k − Ȳ )

3
75 (10)

In the ideal case, there is always at least one solution to the
constraint Cα = 0, since the true gains must satisfy this
equation. On the other hand, if the sensor measurements
contain noise or if the assumed calibration model or signal
subspace is inaccurate, then a solution may not exist. That
is, the matrix C may have full column rank and thus will
not have a right nullspace. A reasonable robust solution in
such cases is to find the right singular vector of C associated
with the smallest singular value. This vector is the solution
to the following optimization.

bα = arg min
α

‖Cα‖2
2 (11)

In other words, we find the vector of gains such that Cbα is
as close to zero as possible. This vector can be efficiently
computed in numerical computing environments, such as
Matlab, using the economy size singular value decomposi-
tion (svd)2. Note that in the ideal case (no noise or error)
the svd solution satisfies (5). Thus, this is a general-purpose
solution method.

Blind calibration of the gains can also be implemented
by solving a system of equations in a least squared sense
as follows. Recall that we have one constraint on our gain
vector, α(1) = 1. This can be interpreted as knowing the
gain coefficient for the first sensor. We can use this knowl-
edge as an additional constraint on the solution. If we let
c1, . . . , cn be the columns of C, let α̃ be the gain vector
with α(1) removed, and let C̃ be the matrix C with the first
column removed, we can rewrite the system of equations as

1http://www.jamesreserve.edu
2The Matlab command is svd(C, 0).



Example Simulated Field Measured Field

Figure 1: Two example simulated square fields. On

the left, a 256 × 256 field generated with a basic

smoothing kernel, which represents a true continu-

ous field. On the right, an 8×8 grid of measurements

of the same field. The fields can be quite dynamic

and still meet the assumptions for blind calibration.

The fields are shown in pseudocolor, with red denot-

ing the maximum valued regions and blue denoting

the minimum valued regions.

C̃ α̃ = −c1. The robust solution is the value of α̃ that
minimizes the LS criterion ‖C̃ α̃ + c1‖2

2.
More generally, we may know several of the gain coeffi-

cients for what we call partially blind calibration. Let h be
the sum of the α(i)ci corresponding to the known gains, let
α̃ be the gain vector with the known gains α(i) removed,

and let C̃ be the matrix C with those columns ci removed.
Now we have C̃ α̃ = −h and the robust solution is the min-
imizer of

‖C̃ α̃ + h‖2
2 (12)

We can solve this optimization in a numerically robust man-
ner by avoiding the squaring of the matrix C̃ that is implicit
in the conventional LS solution, α̃ = (C̃′C̃)−1C̃′(−h). This
“squaring” effectively worsens the condition number of the
problem and can be avoided by using QR decomposition
techniques3.

7.2 Simulations
To test the blind calibration methods on simulated data,

we simulated both a field and snapshots of that field. We
generated gain and offset coefficients, measurement noise,
and most importantly, a projection matrix P .

We simulated a smooth field by generating an 256 × 256
array of pseudorandom Gaussian noises (i.e., a white noise
field) and then convolving it with the smooth impulse re-

sponse function h(i, j) = e(−s((i−l/2)2+(j−l/2)2), s > 0. Fig-
ure 1 shows an example field with the smoothing parameter
s = 1, which could represent a smoothly varying tempera-
ture field, for example. We simulated sensor measurements
by sampling the field on a uniform 8 × 8 grid of n = 64
sensors. For gains, we drew uniformly from α ∈ [0.5, 1.5]
and for offsets from β ∈ [−.5, .5]. After applying α and β

to the measurements, we then added Gaussian noise, with
mean zero and variance σ.

Separately, we created P to be a low-pass DFT matrix.
We kept 3 frequencies in 2d, which means with symmetries
we have an r = 49-dimensional subspace4. With this setup,

3We used α = C̃\−h in Matlab.
4If the 2-dimensional signal has p frequencies, then the sub-
space is of rank r = (2p + 1)2.
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Figure 2: Gain and offset error performance with

exact knowledge of P and increasing measurement

noise. The results show the mean and median error

over 100 simulation runs.
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show the mean and median error for 100 simulation

runs.

we can adjust the parameters of the smoothing kernel, while
keeping P constant, to test robustness of blind calibration
to an assumed subspace model that may over- or under-
estimate the dimension of the subspace of the true field.
The smoothing kernel and projection P both characterize
lowpass effects, but the smoothing operator is only approx-
imately described by the projection operator, even in the
best case. We can also create our field by projecting the
random field onto the r-dimensional subspace using P ; this
represents the case where the true subspace is known ex-
actly.

Estimates of the gains and offsets were calculated using
the methods discussed above and described in more detail
below. For all the results, we calculated the average error
per sensor in the estimate α̂, and similarly the estimate β̂,
as follows.

errα =
‖α − α̂‖2

2

n
(13)

In order to interpret the error results, keep in mind the
range of α and β. For gain, a 1% error will be approximately
10−2, and 1% error in offset would be approximately of 10−3.

7.2.1 Error Results using SVD
We simulated blind calibration with the described sim-

ulation set-up. We first generated mean-zero fields using
our smoothing kernel and took snapshot measurements of
each field. We used k = 3r snapshots (slightly more than
the theoretical minimum of k = r) for added robustness to
noise and modeling errors. Then we constructed the matrix
C from equation (10) and took the minimum right singu-
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lar vector as the estimate of the gains α as described in
Section 7.1. We then estimated β = −Ȳ α.

Results from totally blind calibration in simulation are
shown in the Figures 2 and 3. Figure 2 shows error in gain
and offset estimates under the burden of increasing noise
variance using exact knowledge of the subspace defined by
P . That is, the fields in these simulations were created by
projecting random signals into the space defined by projec-
tion matrix P . The maximum value in the signals was 1, and
therefore the noise variance can be taken as a percentage;
i.e., variance of 10−2 represents 1% noise in the signal. The
blind calibration performed very well in this scenario; at 1%
noise the gain estimation error was less than 1×10−4 and the
offset estimation error was less than 2.4 × 10−3. The figure
shows mean and median error over 100 simulation runs.

Knowing the true subspace exactly is possible in prac-
tice only when performing blind calibration in a very well-
known environment, such as an indoor factory. Even in
this case, there will be some component of the true sig-
nals which is outside of the subspace defined by the cho-
sen P . Figure 3 shows how gain and offset error are af-
fected by out-of-subspace components in the true signals.
We used a basic smoothing kernel to control smoothness of
the true field and kept P constant as described above with
r = 49. The smoothing kernel and the projection operator
are both low-pass operators, but even in the best case, some
of the smoothed field will be outside of the space defined
by the projection matrix P . We defined the error in P as
‖x − P x‖2/‖x‖2. The x-axis value in the figure is the aver-
age error in P over 100 random fields smoothed with a given
smoothness parameter. The figure shows mean and median
error in gain and offset estimates over these 100 simulation
runs. Again the results are compelling. The gain estimation
error was around 10−2 even when 10% of the signal was out-
side of the subspace. The offset estimation as well was still
very accurate, below 7 × 10−3 even when 20% of the signal
was outside of the subspace.

7.2.2 Comparison of Techniques
Here we compare the SVD technique to the LS technique

and the totally blind calibration to partially blind calibra-
tion, where we know some of the calibration coefficients
ahead of time. To be completely explicit, here we have a
description of the approaches.

Totally blind SVD or SVD performs gain estimation using
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Figure 5: Offset error performance for SVD, blind

LS, and partially blind LS. The top graph shows

offset error for zero-mean signals, and the bottom

graph is for non-zero-mean signals. Results show

mean error over 50 simulation runs.

the minimum right singular vector of the svd and normal-
izes assuming α(1) = 1. Offsets are then estimated using
β = −Ȳ α. Totally blind LS or LS performs gain estimation
by solving equation (12) in a least-squares sense and assum-
ing knowledge only of α(1) = 1. Offsets are estimated as in
SVD. Partially blind LS or partial blind performs gain esti-
mation by again solving equation (12) in the least-squared
sense but now assuming we know at least r of the true gain
values. Offsets are then estimated as described in Section 5
for non-zero mean signals, i.e. using β∆ = TΦΦ′β to solve
for θ = Φ′β and thus β.

For partially blind LS we use enough of the true offsets
such that we can solve for the complete component of β

in the signal subspace. The fields we simulated are nearly
bandlimited subspaces, and so the theory would imply that
r true offsets are enough to estimate β. In order to be robust
to noise, we used knowledge of the offsets of r + 5 sensors,
again slightly more than the bare minimum suggested by
the theory.

A comparison of the techniques is quite interesting. First,
as we expect, the partially blind estimation does better than
the other two methods in all cases; this follows from the fact
that it is using more information. In Figure 4 you can see in
the gain estimation, the SVD method out-performs totally
blind LS, but partially blind LS has the lowest error of all
the methods.

In the case of offset error, the SVD and totally blind LS
techniques out-perform one another depending on the noise
variance and whether or not the signals are zero-mean. Fig-
ure 5 shows offset error for all three techniques. The par-
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Figure 6: Results of blind calibration on the calibra-

tion dataset.

tially blind LS method is unaffected by non-zero mean sig-
nals, which follows because method for estimating the offsets
does not change with a zero-mean assumption. The other
methods, on the other hand, capture the mean signal as
part of their offset estimates, and as we can see, estimation
error using the non-zero-mean signals is higher than using
zero-mean signals.

The most intriguing part of these results is that totally
blind LS performs slightly better than SVD for the offset
estimate in non-zero-mean signals, despite the fact that it is
using a gain estimate with more error from the first step in
order to estimate the offsets. This implies that if calibration
offset is the most important for calibration of your system,
and you have non-zero-mean signals, you might prefer the
totally blind LS method over the SVD.

7.3 Evaluation on Sensor Datasets
We evaluate blind calibration on two sensor network

datasets, which we call the calibration dataset and the cold
air drainage transect dataset.

7.3.1 Calibration Dataset
The calibration dataset was collected in September

2005 [2] along with data from a reference-caliber instru-
ment in order to characterize the calibration of the ther-
mistors used for environmental temperature measurement
at the James Reserve. From the experiment, the conclusion
was drawn that after the factory-supplied calibration was
applied to the raw sensor measurements, the sensors dif-
fered from the reference thermocouple linearly, i.e. by only
a gain and offset. Thus these sensors are suitable for evalu-
ating the work we have done thus far on blind calibration.
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Figure 7: The mica2 motes in the cold air drainage

transect run down the side of a hill and across a

valley. The mote locations pictured are those that

we used in this paper.

The data is available in the NESL CVS repository5.
The setup of this experiment consisted of nine6 tempera-

ture sensors. These sensors were placed in a styrofoam box
along with a thermocouple attached to a datalogger, pro-
viding ground truth temperature readings. Therefore, all
sensors were sensing the same phenomenon, and so the sub-
space spanned by the nine measurements is rank one. Thus,
for P we used a lowpass dct matrix which kept only the dc
frequency space. To illustrate, we used the following com-
mands in Matlab:

r = 1; n = 9;

I = eye(n);

U = dct(I);

U(r+1:n,:) = 0;

P = idct(U);

We calibrated these data using snapshots from the dataset
and the SVD method. Figure 6 shows the calibration coeffi-
cient estimates and reconstructed signals for the sensors in
the experiment. The gains and offsets were recovered with
very little error. The uppermost plot shows the true and
estimated gains and offsets. The lower plot shows the data
before and after calibration, along with the ground truth
measurement in blue. This clearly demonstrates the utility
of blind calibration.

7.3.2 Cold Air Drainage Dataset
The cold air drainage transect dataset consists of data

from an ongoing deployment at the James Reserve. The de-
ployment measures air temperature and humidity in a valley
in order to characterize the predawn cold air drainage. The
sensors used are the same as the sensors in the calibration
dataset, and thus again the factory calibration brings them
within an offset and gain of one another. The data we used
for evaluation is from November 2, 2006, and it is available in
the sensor data repository called SensorBase7. On this same
day, we visited the James Reserve with a reference-caliber
sensor and took measurements over the course of the day in

5This data is available at http://www.ee.ucla.edu/
∼sunbeam/bc/
6The experiment had ten sensors, one of which was faulty. In
this analysis we used data from the nine functional sensors.
7http://sensorbase.org
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order to get the true calibration parameters for comparison.
The deployment consists of 26 mica2 motes which run

from one side of a valley to the other (Figure 7) across
a streambed and in various regions of tree and mountain
shade. Each mote has one temperature and one humidity
sensor. For our purposes, we collected calibration coeffi-
cients from 10 of the temperature sensors.

The signal subspace in this application does not corre-
spond to a simple lowpass or smooth subspace, since sen-
sors at similar elevations may have similar readings, but can
be quite distant from each other. In principle, the signal
subspace could be constructed based on the geographic po-
sitions and elevations of the sensor deployment. However,
since we have the calibrated sensor data in this experiment,
we can use these data directly to infer an approximate sig-
nal subspace. We constructed the projection P using the
subspace associated with the four largest singular values of
the calibrated signal data matrix.

We performed totally blind calibration using SVD. We
constructed C using 64 snapshots taken over the course of
the morning along with P as described. Figure 8 shows the
results. The gain error was very small, only .0053 average
per sensor, whereas if we were to assume the gain was 1 and
not calibrate the sensors at all, the error would be .0180
average per sensor. On the other hand, the offset error was
only slightly better with blind calibration than it would have
been without: we saw .3953 average error per sensor as com-
pared to 0.4610 error if the offsets were assumed to be zero.
We believe that the offset estimation did not perform well
due primarily to the fact that the mean signal is not zero
in this case (e.g., the average sensor readings depend on el-
evation). Better offset estimates could be obtained using
knowledge of one or more of the true sensor offset values.

8. EXTENSIONS AND FUTURE WORK
There are many issues in blind calibration that could be

explored further. The two main areas ripe for study are
the choice of the subspace P and the implementation of
blind calibration. There are many possible choices for a suit-
able subspace, including frequency subspaces and smooth-
ness subspaces. How to choose the subspace when faced with
a sensor deployment where the true signals are unknown
is an extremely important question for blind calibration.
Methodologies for creating a P would be extremely useful to
the more general application of blind calibration, especially

ones which could incorporate trusted measurements or the
users’ knowledge of the physical space where the sensors are
deployed. At the same time, implementations of blind cali-
bration that are robust to model error in the subspace would
allow users to be more liberal in the choice of P .

The theoretical analysis in this paper is done under noise-
less conditions and with a perfect model. Future work in-
cludes both noisy analysis to find analytical bounds that
can be compared to simulation results and sensitivity anal-
ysis for our system of linear equations. Our experience is
that solutions are robust to noise and mismodeling in some
cases, and sensitive in others; we do not have a good un-
derstanding of the robustness of the methodology at this
time.

Extending the formulation to handle non-linear calibra-
tion functions would be useful in cases where a raw non-
linear sensor response must be calibrated. We believe that
many of the techniques developed in this paper can be ex-
tended to more general polynomial-form calibration func-
tions. Other interesting topics include distributed blind cal-
ibration and blind calibration in the presence of faulty sen-
sors.

9. CONCLUSIONS
The problem of sensor calibration is central to the prac-

tical use of sensor networks. The blind calibration formula-
tion and methods developed in this paper use only routine
sensor measurements, and thus give an extremely promis-
ing formulation for the mass calibration of sensors. We
have shown that calibration gains are identifiable. We have
proved how many measurements are necessary and sufficient
to estimate the gain factors, and we have shown necessary
and sufficient conditions to estimate the offsets. We have
demonstrated a working implementation on simulated and
real data, which uncovered interesting relationships between
implementation and blind calibration performance. Over-
all, the paper demonstrates that blind calibration has great
potential to be possible in practice, and we feel that the
proposed formulation merits further investigation.
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APPENDIX
Theorem 1:

Proof. First note that the case where the signal sub-
space is one-dimensional (r = 1) is trivial. In this case there
is one degree of freedom in the signal, and hence one mea-
surement coupled with the constraint that α(1) = 1 suffices
to calibrate the system. For the rest of the proof we assume
that 1 < r < n and thus 2 ≤ k < n.

Given k signal observations y1, . . . , yk, and letting bα rep-

resent our estimated gain vector, we need to show that the
system of equations

2
64

P Y 1

...
P Y k

3
75 bα = 0 (14)

has rank n−1, and hence may be solved for the n−1 degrees
of freedom in bα. Note each subsystem of equations, P Y j ,
has rank less than or equal to n− r (since P is rank n− r).
Therefore, if k < n−1

n−r
, then the system of equations certainly

has rank less than n−1. This implies that it is necessary that
k ≥ n−1

n−r
. Next note that Y j = XjA, where Xj = diag(xj)

and A = diag([1, 1/α(2), . . . , 1/α(n)]′). Then write
2
64

P X1

...
P Xk

3
75d = 0 (15)

where d = Abα. The key observation is that satisfaction of
these equations requires that Xjd ∈ S , for j = 1, . . . , k.
Any d that satisfies this relationship will imply a particular
solution for bα, and thus d must not be any vector other than
the all-ones vector for blind calibration to be possible.

Recall that by definition Xj = diag(xj). Also note that
diag(xj)d = diag(d)xj . So we can equivalently state the
requirement as

diag(d)xj ∈ S , j = 1, . . . , k . (16)

The proof proceeds in two steps. First, A2 implies that
k ≥ r signal observations will span the signal subspace with
probability 1. This allows us to re-cast the question in terms
of a basis for the signal subspace, rather than particular re-
alizations of signals. Second, it is shown that A3 (in terms of
the basis) suffices to guarantee that the system of equations
has rank n − 1.

Step 1: We will show that all solutions to (16) are con-
tained in the set

D = {d : diag(d)φi ∈ S , i = 1, . . . , r}.

We proceed by contradiction. Suppose that there exists a

vector ed that satisfies (16) but does not belong to D. Since
ed satisfies (16), we know that there exists an x ∈ S such

that diag(ed)x ∈ S . We can write x in terms of the ba-

sis, as x =
Pr

i=1 θiφi, and diag(ed)x =
Pr

i=1 θi diag(ed)φi.

Since by assumption ed does not satisfy diag(ed)φi ∈ S ,
i = 1, . . . , r, it follows that the coefficients θ1, . . . , θr must
weight the components outside of the signal subspace so that
they cancel out. In other words, the set of signals x ∈ S that

satisfy diag(ed)x ∈ S is a proper subspace (of dimension less
than r) of the signal subspace S . However, if we make k ≥ r
signal observations, then with probability 1 they collectively
span the entire signal subspace (since they are jointly con-
tinuously distributed). In other words, the probability that
all k measurements lie in a lower dimensional subspace of S
is zero. Thus, ed cannot be a solution to (16).

Step 2: Now we characterize the set D. First, observe
that the vectors d ∝ 1, the constant vector, are contained
in D, and those correspond to the global gain factor am-
biguity discussed earlier. Second, note that every d ∈ D
must satisfy P diag(d)φi = P diag(φi)d = 0, i = 1, . . . , r,
where P denote the projection matrix onto the orthogonal



complement to the signal subspace S . Using the definition
of MΦ given in (8), we have the following equivalent con-
dition: every d ∈ D must satisfy MΦd = 0. We know
that the vectors d ∝ 1 satisfy this condition. The condi-
tion rank(MΦ) = n − 1 guarantees that these are the only
solutions. This completes the proof.

Theorem 2:

Proof. First note again that the theorem is trivial if the
signal subspace is one-dimensional (r = 1), since in this case
there is one degree of freedom in the signal, and hence one
measurement (coupled with the constraint that α(1) = 1)
suffices to calibrate the system. For the rest of the proof we
assume that 1 < r < n and thus 2 ≤ k < n.

As in the proof of Theorem 1, solutions must satisfy (15),
or equivalently the equations xj • d ∈ S , for j = 1, . . . , k.
Let x denote an arbitrary signal vector, and let z = x • d.
We can express z in terms of the representation x in the
basis of S as

z =

rX

j=1

θj(φmj
• d).

Recall that multiplication in the time domain is equivalent
to (circular) convolution in the DFT domain. Let Z , X ,
and D be n × 1 vectors denoting the DFTs of z, x and d,

respectively (e.g., Z(ℓ) = 1√
n

Pn
q=1 z(q)e−j 2π

n
qℓ). Note that

X(ℓ) =
Pr

j=1 θjδ(ℓ − mj), ℓ = 0, . . . , n − 1, where δ(k) = 1
if k = 0 and 0 otherwise. Then Z is the circular convolution
of D and X ; i.e., the ℓth element of Z is given by

Z(ℓ) =

nX

q=1

D(q)X([ℓ − q]n)

where [ℓ]n is equal to ℓ mod n. Hence, z ∈ S if and only if
the support of Z is on the set of frequencies m1, . . . , mr.

For each ℓ = 1, . . . , n, let X ℓ denote the n × 1 vector
with entries X ℓ(q) = X([ℓ − q]n), q = 0, . . . , 1 (i.e., X ℓ is
obtained by reversing X and circularly shifting the result by
ℓ). Then we can write Z(ℓ) = X ′

ℓD. Thus, we can express
the constraint on the support of Z as follows:

X
′
ℓD = 0, for all ℓ 6= m1, . . . , mr (17)

Notice that this places n − r constraints on the vector D.
Also observe that the n−r row vectors X ′

ℓ, ℓ 6= m1, . . . , mr,
correspond to an (n−r)×n submatrix of the circulant matrix

Ξ = [X ′
0; X

′
1; · · · ; X ′

n−1] (18)

(circulant because each row Xℓ is a circularly shifted ver-
sion of the others). Furthermore, because signal coefficients
θ1, . . . , θr are randomly distributed according to B2, Ξ has
full rank. This follows by recalling that circulant matrices
are diagonalized by the DFT, and the eigenvalues of a cir-
culant matrix are equal to the DFT of the first row. The
first row of Ξ is X0 (indexed-reversed X). It is a simple
exercise to see that the DFT of X0 reproduces the origi-
nal signal x. Since the non-zero DFT coefficients of x are
randomly distributed according to a continuous density, the
elements of the x are non-zero with probability 1. This im-
plies that the eigenvalues of Ξ are non-zero with probability
1, and thus Ξ is full-rank. Consequently, the n−r constraint
equations in (17) are linearly independent. Also note that
D ∝ [1, 0, . . . , 0]′ (DFT of the constant vector) satisfies (17),

so in addition to the one degree of freedom due to the in-
trinsic ambiguity of the global gain factor, there are r − 1
other degrees of freedom remaining in the solutions to (17).

Now suppose that we make k signal observations
x1, . . . , xk, randomly drawn according to B2. Each signal
produces a system of constraints of the form in (17). Let
Xj,0, denote the indexed-reversed DFT of xj , j = 1, . . . , k.
These vectors generate the first row of k matrices denoted
Ξj , j = 1, . . . , k (each defined analagously to Ξ above).
Note that each vector X j,0 displays the same sparsity pat-
tern (since all signals are assumed to lie in an r-dimensional
DFT subspace and each vector has at most r non-zero en-
tries). Since B2 assumes that the coefficients of each signal
are uncorrelated, it follows that any subset of no more than r
of the vectors {X j,0}k

j=1 is a linearly independent set. Now
consider the collective constraints generated by the k signal
measurements:

X
′
j,ℓD = 0, for all ℓ 6= m1, . . . , mr and j = 1 . . . , k (19)

These constraints can be expressed in matrix notation by

letting eΞj be the (n−r)×n submatrix obtained by retaining
the n − r rows of Ξj satisfying ℓ 6= m1, . . . , mr. Then let
eΞ = [eΞ1; · · · ; eΞk]. Then (19) can be written as

eΞD = 0 (20)

We know that D ∝ [1, 0, . . . , 0]′ satisfies (19), so the number
of linearly independent equations above can be at most n−1.

In follows that the first column of eΞ is zero, and thus we
may eliminate the first element of the vectors D and the

first column of eΞ. Define D̄ by removing the first element

of D, Ξ̄j by removing the first column from eΞj , and Ξ̄ =
[Ξ̄1; · · · ; Ξ̄k]. The constraints can be written as

Ξ̄ D̄ = 0 (21)

and we wish to show that D̄ = 0 is the only solution (i.e., Ξ̄

is full rank). The matrix dimensions imply that rank(Ξ̄) ≤
min{k(n − r), n − 1}, so choosing k ≥ (n − 1)/(n − r) is
a necessary condition. The necessity of the condition that
the integers (frequencies) m1, . . . , mr are aperiodic (see B1)
can also be seen at this point. Suppose for the sake of con-
tradiction that the frequencies were not aperiodic. Then,
because the support set of one row can align with another
(at a different circular shift), one of the columns of Ξ̄ is the
zero vector, and thus rank(Ξ̄) would be less than n − 1.

Now we show that k = ⌈(n − 1)/(n − r)⌉ + 1 signal mea-
surements suffice to recover the gains. To prove that Ξ̄ is
full rank in this case, it suffices to show that the nullspaces
of Ξ̄j are disjoint. Without loss of generality, we consider
the case of a null vector of Ξ̄1. Let us denote this vec-
tor by v. We will show that this vector is not in the
nullspace of the other submatrices Ξ̄j , j = 2, . . . , k. De-
fine Ξ̄/1 = [Ξ̄2; · · · ; Ξ̄k]. The non-zero entries of the matrix
Ξ̄/1 are the (random) DFT coefficients from the k − 1 sig-
nal observations x2, . . . , xk, and these are independent of v,
which depends only on x1. By assumption B2, these coef-
ficients are continuous random variables. Consider the ran-
dom variable p = v′eΞ′

/1
eΞ/1v. Treating v as a fixed vector,

the variable p is a quadratic polynomial function of the ran-
dom DFT coefficients of x2, . . . , xk. There are two distinct
possibilities. Either p is the zero function, or p is a non-zero
polynomial function. Suppose p is the zero function, then
the conditional expectation of p given v satisfies E[p|v] = 0.



However, note that E[p|v] = v′E[Ξ̄
′
/1Ξ̄/1]v, and it is easy to

verify that the matrix E[Ξ̄
′
/1Ξ̄/1] is full rank as follows. The

matrix has a block structure, with each block of having the
form E[Ξ̄

′
iΞ̄j ]. The blocks corresponding to the same signal

observation (i.e., i = j) are full rank because of the circulant
matrix property discussed above. The blocks corresponding
to two different signal observations (i 6= j) are exactly zero
since the signals are assumed to be uncorrelated with each
other and zero mean. Together these to observations show
that E[Ξ̄

′
/1Ξ̄/1] is full rank. Therefore, E[p|v] > 0 for every

non-zero vector v, and it follows that p cannot be equal to
the zero function. However, if p is a non-zero polynomial
function, then the probability that p = 0 is 0, implying that
Ξ̄/1v 6= 0. This last argument follows from the well-known
fact that the probability measure of the set of zeros of a
polynomial function of continuous random variables is ex-
actly zero [15]. Thus, we have shown that with probability
1, Ξ̄v 6= 0 for every v 6= 0, concluding the proof.


