1 Review: Maximum Likelihood Estimation

In the last lecture, we have \(n \) i.i.d observations drawn from an unknown distribution
\[
Y_i \overset{i.i.d.}{\sim} p_{\theta^*}, \quad i = \{1, \ldots, n\}
\]
where \(\theta^* \in \Theta \).

With loss function defined as \(l(\theta, Y_i) = -\log p_{\theta}(Y_i) \), the empirical risk is
\[
\hat{R}_n = -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(Y_i).
\]

Essentially, we want to choose a distribution from the collection of distributions within the parameter space that minimizes the empirical risk, i.e., we would like to select
\[
p_{\hat{\theta}_n} \in \mathcal{P} = \{p_{\theta}\}_{\theta \in \Theta}
\]
where
\[
\hat{\theta}_n = \arg \min_{\theta \in \Theta} -\sum_{i=1}^{n} \log p_{\theta}(Y_i).
\]

The risk is defined as
\[
R(\theta) = E[l(\theta, Y)] = -E[\log p_{\theta}(Y)].
\]

Note that \(\theta^* \) minimizes \(R(\theta) \) over \(\Theta \).
\[
\theta^* = \arg \min_{\theta \in \Theta} -E[\log p_{\theta}(Y)]
\]
\[
= \arg \min_{\theta \in \Theta} -\int \log p_{\theta}(y) \cdot p_{\theta^*}(y) \, dy.
\]

Finally, the excess risk of \(\theta \) is defined as
\[
R(\theta) - R(\theta^*) = \int \log \frac{p_{\theta^*}(y)}{p_{\theta}(y)} p_{\theta^*}(y) \, dy \equiv K(p_{\theta}, p_{\theta^*}).
\]

We recognized that the excess risk corresponding to this loss function is simply the Kullback-Leibler (KL) Divergence or Relative Entropy, denoted by \(K(p_{\theta_1}, p_{\theta_2}) \). It is easy to see that \(K(p_{\theta_1}, p_{\theta_2}) \) is always non-negative and is zero if and only if \(p_{\theta_1} = p_{\theta_2} \). KL divergence measures how different two probability distributions are and therefore is natural to measure convergence of the maximum likelihood procedures. However, \(K(p_{\theta_1}, p_{\theta_2}) \) is not a distance metric because it is not symmetric and does not satisfy the triangle inequality. For this reason, two other quantities play a key role in maximum likelihood estimation, namely Hellinger Distance and Affinity.
The **Hellinger distance** is defined as

\[
H(p_{\theta_1}, p_{\theta_2}) = \left(\int \left(\sqrt{p_{\theta_1}(y)} - \sqrt{p_{\theta_2}(y)} \right)^2 dy \right)^{\frac{1}{2}}.
\]

We proved that the squared Hellinger distance lower bounds the KL divergence:

\[
H^2(p_{\theta_1}, p_{\theta_2}) \leq K(p_{\theta_1}, p_{\theta_2})
\]

\[
H^2(p_{\theta_1}, p_{\theta_2}) \leq K(p_{\theta_2}, p_{\theta_1})
\]

The **affinity** is defined as

\[
A(p_{\theta_1}, p_{\theta_2}) = \int \sqrt{p_{\theta_1} \cdot p_{\theta_2}(y)} dy.
\]

we also proved that

\[
H^2(p_{\theta_1}, p_{\theta_2}) \leq -2 \log (A(p_{\theta_1}, p_{\theta_2})).
\]

Example 1 (Gaussian Distribution) \(Y\) is Gaussian with mean \(\theta\) and variance \(\sigma^2\).

\[
p_{\theta}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta)^2}{2\sigma^2}}
\]

First, look at

\[
\log \frac{p_{\theta_2}}{p_{\theta_1}} = \frac{1}{2\sigma^2} \left[(\theta_1^2 - \theta_2^2) - 2(\theta_1 - \theta_2)y \right]
\]

Then,

\[
K(p_{\theta_1}, p_{\theta_2}) = \mathbb{E}_{\theta_2} \left[\log \frac{p_{\theta_2}}{p_{\theta_1}} \right]
= \frac{\theta_1^2 - \theta_2^2}{2\sigma^2} - \frac{2(\theta_1 - \theta_2)}{2\sigma^2} \left(\int y \cdot p_{\theta_2}(y) dy \right)
= \frac{1}{2\sigma^2} (\theta_1^2 + \theta_2^2 - 2\theta_1\theta_2) = \frac{(\theta_1 - \theta_2)^2}{2\sigma^2}.
\]

\[
-2 \log A(p_{\theta_1}, p_{\theta_2}) = -2 \log \left(\int \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta_1)^2}{2\sigma^2}} \right)^{1/2} \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta_2)^2}{2\sigma^2}} \right)^{1/2} dy \right)
= -2 \log \left(\int \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta_1)^2}{4\sigma^2}} = \frac{(y-\theta_2)^2}{4\sigma^2} dy \right)
= -2 \log \left(\int \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{4\sigma^2} \left[(y-\theta_1+\theta_2)^2 + (\frac{\theta_1-\theta_2}{2\sigma})^2 \right]} dy \right)
= -2 \log \left(\frac{(\theta_1 - \theta_2)^2}{4\sigma^2} \right)
= \frac{(\theta_1 - \theta_2)^2}{4\sigma^2} = \frac{1}{2} K(p_{\theta_1}, p_{\theta_2}) \geq H^2(p_{\theta_1}, p_{\theta_2}).
\]
2 Maximum likelihood estimation and Complexity regularization

Suppose that we have \(n \) i.i.d training samples, \(\{X_i, Y_i\}_{i=1}^n \overset{i.i.d.}{\sim} p_{XY} \).

Using conditional probability, \(p_{XY} \) can be written as

\[
p_{XY}(x, y) = p_X(x) \cdot p_{Y|X=x}(y).
\]

Let’s assume for the moment that \(p_X \) is completely unknown, but \(p_{Y|X=x}(y) \) has a special form:

\[
p_{Y|X=x}(y) = p_{f^*(x)}(y)
\]

where \(p_{Y|X=x}(y) \) is a known parametric density function with parameter \(f^*(x) \).

Example 2 (Signal-plus-noise observation model)

\[
Y_i = f^*(X_i) + W_i \quad , i = 1, \ldots, n
\]

where \(W_i \overset{i.i.d.}{\sim} N(0, \sigma^2) \) and \(X_i \overset{i.i.d.}{\sim} p_X \).

\[
p_{f^*(x)}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-f^*(x))^2}{2\sigma^2}}
\]

\[
Y|X = x \sim \text{Poisson}(f^*(x))
\]

\[
p_{f^*(x)}(y) = e^{-f^*(x)} \frac{[f^*(x)]^y}{y!}.
\]

The **likelihood loss function** is

\[
l(f(x), y) = \quad -\log p_{XY}(X, Y) = \quad -\log p_X(X) - \log p_{Y|X}(Y|X) = \quad -\log p_X(X) - \log p_{f^*(x)}(Y).
\]

The **expected loss** is

\[
E[l(f(X), Y)] = E_X \left[E_{Y|X}[l(f(X), Y)|X = x] \right] = E_X \left[E_{Y|X}[-\log p_X(X) - \log p_{f^*(x)}(Y)|X = x] \right] = -E_X[\log p_X(X)] - E_X[\log p_{f^*(x)}(Y)|X = x] = -E_X[\log p_X(X)] - E[\log p_{f^*(x)}(Y)].
\]

Notice that the first term is a constant with respect to \(f \).

Hence, we define our **risk** to be

\[
R(f) = -E[\log p_{f^*(x)}(Y)] = -E_X[\log p_{f^*(x)}(Y)|X = x] = -\int \left(\int \log p_{f^*(x)}(y) \cdot p_{f^*(x)}(y) \, dy \right) p_X(x) \, dx.
\]

The function \(f^* \) minimizes this risk since \(f(x) = f^*(x) \) minimizes the integrand. Our **empirical risk** is the negative log-likelihood of the training samples:

\[
\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n -\log p_{f(X_i)}(Y_i)
\]
The value $\frac{1}{n}$ is the empirical probability of observing $X = X_i$.

Often in function estimation, we have control over where we sample X. Let’s assume that $X = [0, 1]^d$ and $Y = \mathbb{R}$. Suppose we sample X uniformly with $n = m^d$ samples for some positive integer m (i.e., take m evenly spaced samples in each coordinate).

Let $x_i, i = 1, \ldots, n$ denote these sample points, and assume that $Y_i \sim p_{f^*}(x_i)(y)$. Then, our empirical risk is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), Y_i) = \frac{1}{n} \sum_{i=1}^{n} -\log p_{f(x_i)}(Y_i).$$

Note that x_i is now a deterministic quantity. Our risk is

$$R(f) = -\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[\log p_{f(x_i)}(Y_i) \right]$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[\int \log p_{f(x_i)}(y_i) \cdot p_{f^*}(y_i) \, dy_i \right].$$

The risk is minimized by f^*. However, f^* is not a unique minimizer. Any f that agrees with f^* at the point $\{x_i, Y_i\}$ also minimizes this risk.

Now, we will make use of the following vector and shorthand notation. The uppercase Y denotes a random variable, while the lowercase y and x denote deterministic quantities.

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Then,

$$p_f(Y) = \prod_{i=1}^{n} p(Y_i | f(x_i)) \quad \text{(random)}$$

$$p_f(y) = \prod_{i=1}^{n} p(y_i | f(x_i)) \quad \text{(deterministic)}.$$

With this notation, the empirical risk and the true risk can be written as

$$\hat{R}_n(f) = -\frac{1}{n} \log p_f(Y).$$

$$R(f) = -\frac{1}{n} \mathbb{E} \left[\log p_f(Y) \right]$$

$$= -\frac{1}{n} \int \log p_f(y) \cdot p_{f^*}(y) \, dy.$$
We will essentially accomplish the same result here, but avoid the need for explicit concentration inequalities and instead make use of the information-theoretic bounds.

We would like to select an \(f \in \mathcal{F} \) so that the excess risk is small.

\[
0 \leq R(f) - R(f^*) = \frac{1}{n} \mathbb{E} [\log p_{f^*}(Y) - \log p_f(Y)] = \frac{1}{n} \mathbb{E} \left[\log \frac{p_{f^*}(Y)}{p_f(Y)} \right] = \frac{1}{n} K(p_f, p_{f^*})
\]

where

\[
K(p_f, p_{f^*}) = \sum_{i=1}^{n} \left(\int \frac{p_{f^*(x_i)}(y_i)}{p_{f(x_i)}(y_i)} \cdot p_{f^*(x_i)}(y_i) \, dy_i \right) \left(\int p_{f^*(x_i)}(y_i) \, dy_i \right) - \int p_{f(x_i)}(y_i) \, dy_i
\]

is again the KL divergence.

Unfortunately, as mentioned before, \(K(p_f, p_{f^*}) \) is not a true distance. So instead we will focus on the expected squared Hellinger distance as our measure of performance. We will get a bound on

\[
\frac{1}{n} \mathbb{E} \left[H^2(p_f(Y), p_{f^*}(Y)) \right] = \frac{1}{n} \sum_{i=1}^{n} \left(\int \left(\sqrt{p_{f^*(x_i)}(y_i)} - \sqrt{p_{f(x_i)}(y_i)} \right)^2 \, dy_i \right).
\]

4 Maximum Complexity-Regularized Likelihood Estimation

Theorem 1 (Li-Barron 2000, Kolaczyk-Nowak 2002) Let \(\{x_i, Y_i\}_{i=1}^{n} \) be a random sample of training data with \(\{Y_i\} \) independent,

\[
Y_i \sim p_{f^*(x_i)}(y_i), i = 1, \ldots, n
\]

for some unknown function \(f^* \).

Suppose we have a collection of candidate functions \(\mathcal{F} \), and complexities \(c(f) > 0, f \in \mathcal{F}, \) satisfying

\[
\sum_{f \in \mathcal{F}} 2^{-c(f)} \leq 1.
\]

Define the complexity-regularized estimator

\[
\hat{f}_n \equiv \arg \min_{f \in \mathcal{F}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log p_f(Y_i) + \frac{2c(f) \log 2}{n} \right\}.
\]

Then,

\[
\frac{1}{n} \mathbb{E} \left[H^2(p_f(Y), p_{f^*}(Y)) \right] \leq -\frac{2}{n} \mathbb{E} \left[\log (A(p_f(Y), p_{f^*}(Y))) \right] \leq \min_{f \in \mathcal{F}} \left\{ \frac{1}{n} K(p_f, p_{f^*}) + \frac{2c(f) \log 2}{n} \right\}.
\]

Before proving the theorem, let’s look at a special case.
Example 3 (Gaussian noise) Suppose $Y_i = f(x_i) + W_i$, $W_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$.

$$p_{f(x_i)}(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - f(x_i))^2}{2\sigma^2}}$$

Using results from example 1, we have

$$-2 \log A \left(p_{f_n}(Y), p_f^* (Y) \right) = \sum_{i=1}^{n} -2 \log A \left(p_{f_n(x_i)}(Y_i), p_{f^*(x_i)}(Y_i) \right) = \sum_{i=1}^{n} -2 \log \int \sqrt{p_{f_n(x_i)}(y_i) \cdot p_{f^*(x_i)}(y_i)} \, dy_i = \frac{1}{4\sigma^2} \sum_{i=1}^{n} \left(\hat{f}_n(x_i) - f^*(x_i) \right)^2.$$

Then,

$$-\frac{2}{n} E \left[\log A(p_{\hat{f}_n}, p_{f^*}) \right] = \frac{1}{4\sigma^2 n} \sum_{i=1}^{n} E \left[\left(\hat{f}_n(x_i) - f^*(x_i) \right)^2 \right].$$

We also have,

$$\frac{1}{n} K(p_f, p_{f^*}) = \frac{1}{n} \sum_{i=1}^{n} \frac{(f(x_i) - f^*(x_i))^2}{2\sigma^2}$$

$$- \log p_f(Y) = \frac{1}{n} \sum_{i=1}^{n} \frac{(Y_i - f(X_i))^2}{2\sigma^2}.$$

Combine everything together to get

$$\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 + \frac{2c(f) \log 2}{n} \right\}.$$

The theorem tells us that

$$\frac{1}{4n} \sum_{i=1}^{n} E \left[\frac{\left(\hat{f}_n(x_i) - f^*(x_i) \right)^2}{\sigma^2} \right] \leq \min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{(f(x_i) - f^*(x_i))^2}{2\sigma^2} + \frac{2c(f) \log 2}{n} \right\}$$

or

$$\frac{1}{n} \sum_{i=1}^{n} E \left[\left(\hat{f}_n(x_i) - f^*(x_i) \right)^2 \right] \leq \min_{f \in \mathcal{F}} \left\{ \frac{2}{n} \sum_{i=1}^{n} (f(x_i) - f^*(x_i))^2 + \frac{8\sigma^2 c(f) \log 2}{n} \right\}.$$

Now let’s come back to the proof.

Proof:

$$H^2 (p_{\hat{f}_n}, p_{f^*}) = \int \left(\sqrt{p_{\hat{f}_n}(y)} - \sqrt{p_{f^*}(y)} \right)^2 \, dy \leq -2 \log \left(\sqrt{\int p_{\hat{f}_n}(y) \cdot p_{f^*}(y) \, dy} \right)$$
\[E \left[H^2 \left(p_{f_n}, p_{f^*} \right) \right] \leq 2 E \left[\log \left(\frac{1}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right) \right]. \]

Now, define the theoretical analog of \(\hat{f}_n \):
\[f_n = \arg \min_{f \in \mathcal{F}} \left\{ \frac{1}{n} K \left(p_f, p_{f^*} \right) + \frac{2c(f) \log 2}{n} \right\}. \]

Since
\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \log p_f(Y) + \frac{2c(f) \log 2}{n} \right\} = \arg \max_{f \in \mathcal{F}} \left\{ \frac{1}{2} \left(\log p_f(Y) - 2c(f) \log 2 \right) \right\}
\]
we can see that
\[
\frac{\sqrt{p_{f_n}(Y)} e^{-c(\hat{f}_n) \log 2}}{\sqrt{p_{f_n}(Y)} e^{-c(\hat{f}_n) \log 2}} \geq 1.
\]

Then can write
\[
E \left[H^2 \left(p_{f_n}, p_{f^*} \right) \right] \leq 2 E \left[\log \left(\frac{1}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right) \right] \leq 2 E \left[\log \left(\frac{\sqrt{p_{f_n}(Y)} e^{-c(\hat{f}_n) \log 2} \cdot \frac{1}{\sqrt{p_{f_n}(Y) e^{-c(\hat{f}_n) \log 2}}}}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right) \right].
\]

Now, simply multiply the argument inside the log by \(\frac{p_{f^*}(Y)}{p_{f_n}(Y)} \) to get
\[
E \left[H^2 \left(p_{f_n}, p_{f^*} \right) \right] \leq 2 E \left[\log \left(\frac{\sqrt{p_{f^*}(Y)} \sqrt{p_{f_n}(Y)} e^{-c(\hat{f}_n) \log 2}}{\sqrt{p_{f_n}(Y)} \sqrt{p_{f^*}(Y)} e^{-c(\hat{f}_n) \log 2}} \cdot \frac{1}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right) \right]
\]
\[= E \left[\log \left(\frac{p_{f^*}(Y)}{p_{f_n}(Y)} \right) \right] + 2c(\hat{f}_n) \log 2 + 2E \left[\log \left(\frac{\sqrt{p_{f_n}(Y)} e^{-c(\hat{f}_n) \log 2}}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right) \right]
\]
\[= K \left(p_{f_n}, p_{f^*} \right) + 2c(\hat{f}_n) \log 2 + 2E \left[\log \left(\frac{\sqrt{p_{f_n}(Y)} e^{-c(\hat{f}_n) \log 2}}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right) \right]. \]
The terms $K(p_{f_n}, p_{f^*}) + 2c(f_n)\log 2$ are precisely what we wanted for the upper bound of the theorem. So, to finish the proof we only need to show that the last term is non-positive. Applying Jensen’s inequality, we get

$$2E \left[\log \left(\frac{\sqrt{p_{f_n}(Y) \cdot e^{-c(f_n)\log 2}}}{\sqrt{p_{f^*}(Y)}} \int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy \right) \right] \leq 2 \log \left(E \left[e^{-c(f_n)\log 2} \cdot \frac{\sqrt{p_{f_n}(Y)}}{\sqrt{p_{f^*}(Y)}} \frac{1}{\int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy} \right] \right).$$

Both Y and \hat{f}_n are random, which makes the expectation difficult to compute. However, we can simplify the problem using the union bound, which eliminates the dependence on \hat{f}_n:

$$2E \left[\log \left(\frac{\sqrt{p_{f_n}(Y) \cdot e^{-c(f_n)\log 2}}}{\sqrt{p_{f^*}(Y)}} \int \sqrt{p_{f_n}(y) \cdot p_{f^*}(y)} \, dy \right) \right] \leq 2 \log \left(\sum_{f \in \mathcal{F}} e^{-c(f)\log 2} \cdot \frac{\sqrt{p_f(Y)}}{\sqrt{p_{f^*}(Y)}} \int \sqrt{p_f(y) \cdot p_{f^*}(y)} \, dy \right) \leq 0,$$

where the last two lines come from

$$E \left[\sqrt{\frac{p_f(Y)}{p_{f^*}(Y)}} \right] = \sqrt{\frac{\int p_f(y) \cdot p_{f^*}(y) \, dy}{\int p_f(y) \cdot p_{f^*}(y) \, dy}} = \sqrt{\frac{p_f(y) \cdot p_{f^*}(y)}{p_f(y) \cdot p_{f^*}(y)}} \leq 1,$$

and

$$\sum_{f \in \mathcal{F}} 2^{-c(f)} \leq 1.$$